Skip to main content

Genetics of Osteoporosis

  • Chapter
  • 168 Accesses

Abstract

Osteoporosis is one of the most common bone and mineral disorders in all aging communities. It is characterized by low bone mass, and thus low bone strength, which results in fractures from relatively minor trauma. Although osteoporotic fractures are most commonly observed among the elderly, the pathogenesis of osteoporosis starts early in life and involves the interaction of multiple factors [1, 2]. Genetic epidemiologic studies provide descriptive data that convincingly demonstrate population and ethnic differences. In addition, studies of familial aggregation and familial transmission patterns and comparisons of twin concordance rates consistently point to susceptibility to developing osteoporosis being inherited in a significant proportion of individuals. The distributions of quantitative skeletal phenotypes in the general population do not conform to a monogenic mode of inheritance. Rather, susceptibility to osteoporosis appears, to involve a complex interplay between both genetic and environmental factors. Initial association studies examined polymorphisms in the vitamin D receptor and the impact of dietary calcium and vitamin D intake.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peacock M, Turner CH, Econs MJ, Foroud T: Genetics of osteoporosis. Endocr Rev2002, 23:303–326.

    Article  PubMed  CAS  Google Scholar 

  2. Ralston SH: Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab2002, 87:2460–2466.

    Article  PubMed  CAS  Google Scholar 

  3. Smith DM, Nance WE, Kang KW, et al.: Genetic factors in determining bone mass. J Clin Invest1973, 52:2800–2808.

    Article  PubMed  CAS  Google Scholar 

  4. Pocock NA, Eisman JA, Hopper JL, et al.: Genetic determinants of bone mass in adults: a twin study. J Clin Invest1987, 80:706–710.

    Article  PubMed  CAS  Google Scholar 

  5. Christian JC, Yu PL, Slemenda CW, Johnston CC: Heritability of bone mass: a longitudinal study in aging male twins. Am J Hum Genet1989, 44:429–433.

    PubMed  CAS  Google Scholar 

  6. Slemenda CW, Christian JC, Williams CJ, et al.: Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res1991, 6:561–567.

    Article  PubMed  CAS  Google Scholar 

  7. Flicker L, Hopper JL, Rodgers L, et al.: Bone density determinants in elderly women: a twin study. J Bone Miner Res1995, 10:1607–1613.

    Article  PubMed  CAS  Google Scholar 

  8. Eisman JA: Genetics of osteoporosis. Endocr Rev1999, 20:788–804.

    Article  PubMed  CAS  Google Scholar 

  9. Lutz J: Bone mineral, serum calcium, and dietary intakes of mother/daughter pairs. Am J Clin Nutr1986, 44:99–106.

    PubMed  CAS  Google Scholar 

  10. Jouanny P, Guillemin F, Kuntz C, et al.: Environmental and genetic factors affecting bone mass: similarity of bone density among members of healthy families. Arthritis Rheum1995, 38:61 – 67.

    Article  PubMed  CAS  Google Scholar 

  11. Koller DL, Econs MJ, Morin PA, et al.: Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab2000, 85:3116–3120.

    Article  PubMed  CAS  Google Scholar 

  12. Koller DL, Liu G, Econs MJ, et al.: Genome screen for quantitative trait loci underlying normal variation in femoral structure. J Bone Miner Res2001, 16:985–991.

    Article  PubMed  CAS  Google Scholar 

  13. Gennari L, Brandi ML: Genetics of male osteoporosis. CalcifTissue Int2001, 69:200–204.

    Article  CAS  Google Scholar 

  14. Orwoll ES, Belknap JK, Klein RF: Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res2001, 16:1962–1971.

    Article  PubMed  CAS  Google Scholar 

  15. Klein RF, Turner RJ, Skinner LD, et al.: Mapping quantitative trait loci that influence femoral cross-sectional area in mice. J Bone Miner Res2002, 17:1752–1760.

    Article  PubMed  CAS  Google Scholar 

  16. Stewart TL, Ralston SH: Role of genetic factors in the pathogenesis of osteoporosis. J Endocrinol2000, 166:235–245.

    Article  PubMed  CAS  Google Scholar 

  17. Blank RD: Linkage, association, and the genetic analysis of bone mineral density and related phenotypes. J Clin Densitom1998, 2:59–70.

    Article  Google Scholar 

  18. Yamada Y, Hosoi T, Makimoto F, et al.:Transforming growth factor beta-1 gene polymorphism and bone mineral density in Japanese adolescents. Am J Med1999, 106:477–479.

    Article  PubMed  CAS  Google Scholar 

  19. Langdahl BL, Knudsen JY, Jensen HK, et al.: A sequence variation: 713–8delC in the transforming growth factor-beta I gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone1997, 20:289–294.

    Article  PubMed  CAS  Google Scholar 

  20. Gong Y, Vikkula M, Boon L, et al.: Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11 q 12–13. Am J Hum Genet1996, 59:146–151.

    PubMed  CAS  Google Scholar 

  21. Gong Y, Slee RB, Fukai N, et al.: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell2001, 107:513–523.

    Article  PubMed  CAS  Google Scholar 

  22. Little RD, Carulli JP, Del Mastro RG, et al.: A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet2002, 70:11–19.

    Article  PubMed  CAS  Google Scholar 

  23. Boyden LM, Mao J, Belsky J, et al.: High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med2002, 346:1513–1521.

    Article  PubMed  CAS  Google Scholar 

  24. Econs MJ, Speer MC: Genetic studies of complex diseases: let the reader beware. J Bone Miner Res1996, 11:1835–1840.

    PubMed  CAS  Google Scholar 

  25. Morrison NA, Qi JC, Tokita A, et al.: Prediction of bone density from vitamin D receptor alleles. Nature1994, 367:284–287.

    Article  PubMed  CAS  Google Scholar 

  26. Cooper GS, Limbach DM: Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res1996, 11:1841–1849.

    Article  PubMed  CAS  Google Scholar 

  27. Krall EA, Parry P, Lichter JB, Dawson-Hughes B:Vitamin D receptor alleles and rates of bone loss: influence of years since menopause and calcium intake. J Bone Miner Res1995, 10:978–984.

    Article  PubMed  CAS  Google Scholar 

  28. Kiel DP, Myers RH, Cupples LA, et al.:The Bsml vitamin D receptor restriction fragment length polymorphism (bb) influences the effect of calcium intake on bone mineral density. J Bone Miner Res1997, 12:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  29. Arai H, Miyamoto K, Taketani Y, et al.: A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res1997, 12:915–921.

    Article  PubMed  CAS  Google Scholar 

  30. Gross C, Eccleshall TR, Malloy PJ, et al.:The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J Bone Miner Res1996, 11:1850–1855.

    Article  PubMed  CAS  Google Scholar 

  31. Harris SS, Eccleshall TR, Gross C, et al.:The vitamin D receptor start codon polymoprhism (Fokl) and bone mineral density in premenopausal American black and white women. J Bone Miner Res1997, 12:1043–1048.

    Article  PubMed  CAS  Google Scholar 

  32. Gennari L, Becherini L, Mansani R, et al.: Fokl polymorphism at translation initiation site of the vitamin D receptor gene predicts bone mineral density and vertebral fractures in postmenopausal Italian women. J Bone Miner Res1999, 14:1379–1386.

    Article  PubMed  CAS  Google Scholar 

  33. Zee RY, Myers RH, Hannan MT, et al.: Absence of linkage for bone mineral density to chromosome 12q12–14 in the region of the vitamin D receptor gene. CalcifTissue Int2000, 67:434–439.

    Article  PubMed  CAS  Google Scholar 

  34. Kelly PJ: Is osteoporosis a genetically determined disease? Br J Obstet Gynaecol1996, 103:20–27.

    PubMed  Google Scholar 

  35. Prockop DJ, Constantinou CD, Dombrowski KE, et al.:Type I procollagen: the gene-protein system that harbors most of the mutations causing osteogenesis imperfecta and probably more common heritable disorders of connective tissue. Am J Med Genet1989, 34:60–67.

    Article  PubMed  CAS  Google Scholar 

  36. Grant SF, Reid DM, Blake G, et al.: Reduced bone density and osteoporosis associated with a polymorphic Sp I binding site in the collagen type I alpha I gene. Nat Genet1996, 14:203–205.

    Article  CAS  Google Scholar 

  37. Uitterlinden AG, Burger H, Huang Q, et al.: Relation of alleles of the collagen type lalphal gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med1998, 338:1016–1021.

    Article  PubMed  CAS  Google Scholar 

  38. Mann V, Hobson EE, Li B, et al.: A COLIAI Spl binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest2001, 107:899–907.

    Article  PubMed  CAS  Google Scholar 

  39. Devoto M, Shimoya K, Caminis J, et al.: First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet1998, 6:151–157.

    Article  PubMed  CAS  Google Scholar 

  40. Niu T, Chen C, Cordell H, et al.: A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet1999, 104:226–233.

    Article  PubMed  CAS  Google Scholar 

  41. Deng HW, Xu FH, Huang QY, et al.: A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for osteoporosis. J Clin Endocrinol Metab2002, 87:5151–5159.

    Article  PubMed  CAS  Google Scholar 

  42. Klein RF, Carlos AS, Vartanian KA, et al.: Confirmation and fine mapping of chromosomal regions influencing peak bone mass in mice. J Bone Miner Res2001, 16:1953–1961.

    Article  PubMed  CAS  Google Scholar 

  43. Beamer WG, Shultz KL, Churchill GA, et al.: Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mamm Genome1999, 10:1043–1049.

    Article  PubMed  CAS  Google Scholar 

  44. Beamer WG, Shultz KL, Donahue LR, et al.: Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res2001, 16:1 195–1206.

    Google Scholar 

  45. Benes H, Weinstein RS, Zheng W, et al.: Chromosomal mapping of osteopenia-associated quantitative trait loci using closely related mouse strains. J Bone Miner Res2000, 15:626–633.

    Article  PubMed  CAS  Google Scholar 

  46. Shimizu M, Higuchi K, Bennett B, et al.: Identification of peak bone mass QTL in a spontaneously osteoporotic mouse strain. Mamm Genome1999, 10:81–87.

    Article  PubMed  CAS  Google Scholar 

  47. Copeland NG, Jenkins NA, Gilbert DJ, et al.: A genetic linkage map of the mouse: current applications and future prospects. Science1993, 262:57–66.

    Article  PubMed  CAS  Google Scholar 

  48. Flint J, Corley R: Do animal models have a place in the genetic analysis of quantitative human behavioural traits? J Mol Med1996, 74:515–521.

    Article  PubMed  CAS  Google Scholar 

  49. Phillips TJ, Belknap JK, Hitzemann RJ, et al.: Harnessing the mouse to unravel the genetics of human disease. Genes Brain Behav2002, 1:14–26.

    Article  PubMed  CAS  Google Scholar 

  50. Mackay TF: The genetic architecture of quantitative traits. Annu Rev Genet2001, 35:303–339.

    Article  PubMed  CAS  Google Scholar 

  51. Aitman TJ, Glazier AM, Wallace CA, et al.: Identification of CD36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet1999, 21:76–83.

    Article  PubMed  CAS  Google Scholar 

  52. Wayne ML, Mclntyre LM: Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA2002, 99:14903–14906.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klein, R.F. (2003). Genetics of Osteoporosis. In: Orwoll, E.S. (eds) Atlas of Osteoporosis. Current Medicine Group, London. https://doi.org/10.1007/978-1-4757-4561-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4561-0_3

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4757-4563-4

  • Online ISBN: 978-1-4757-4561-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics