Advanced Computing in Electron Microscopy

Advanced Computing in Electron Microscopy

Earl J. Kirkland

Cornell University Ithaca, New York

Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

```
Kirkland, Earl J.
Advanced computing in electron microscopy / Earl J. Kirkland.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-4757-4408-8 ISBN 978-1-4757-4406-4 (eBook)
DOI 10.1007/978-1-4757-4406-4
1. Electron microscopy--Computer simulation. I. Title.
QH212.E4K535 1998 98-362299
CIP
```

Additional material to this book can be downloaded from http://extras.springer.com

All files on this CD-ROM are covered by the following statement:

Copyright © 1998 by Earl J. Kirkland.

The computer code and or data in this file is provided for demonstration purposes only with no guarantee or warranty of any kind that it is correct or produces correct results. By using the code and or data in this file the user agrees to accept all risks and liabilities associated with the code and or data. The computer code and or data in this file may be copied (and used) for noncommercial academic or research purposes only, provided that this notice is included. This file or any portion of it may not be resold, rented, or distributed without the written permission of the author.

The files are organized into the following directories: [1] win32exe; [2] macPPC; [3] mfiles; [4] csource. For details on using the CD-ROM, please refer to Chapter 8.

For further information, contact the author via e-mail at kirkland@msc.cornell.edu.

ISBN 978-1-4757-4408-8

© Springer Science+Business Media New York 1998 Originally published by Plenum Press, New York 1998

http://www.plenum.com

10987654321

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

Preface

Image simulation has become a common tool in HREM (High Resolution Electron Microscopy) in recent years. However, the literature on the subject is scattered among many different journals and conference proceedings that have occurred in the last two or three decades. It is difficult for beginners to get started in this field. The principle method of image simulation has come to be known as simply the multislice method. This book attempts to bring the diverse information on image simulation together into one place and to provide a background on how to use the multislice method to simulate high resolution images in both conventional and scanning transmission electron microscopy. The main goals of image simulation include understanding the microscope and interpreting high resolution information in the recorded micrographs. This book contains sections on the theory of image formation and simulation as well as a more practical introduction on how to use the multislice method on real specimens. Also included with this book is a CD-ROM with working programs to perform image simulation. The source code as well as the executable code for IBM-PC and Apple Macintosh computers is included. Although the programs may not have a very elegant user interface by today's standards (simple command line dialog), the source code should be very portable to a variety of different computers. It has been compiled and run on Mac's, PC's and several different types of UNIX computers.

This book is intended to be at the level of first year graduate students or advanced undergraduates in physics or engineering with an interest in electron microscopy. It assumes a familiarity with quantum mechanics, Fourier transforms and diffraction, some simple optics and basic computer skills (although not necessarily programming skills) at the advanced undergraduate level. Prior experience with electron microscopy is also helpful. The material covered should be useful to students learning the material for the first time as well as to experienced researchers in the field. The programs provided on the CD can be used as a black-box without understanding the underlying programs (with a primary goal of understanding the transmission electron microscope image) or the source code can be used to understand how to write your own version of the simulation programs.

Although an effort was made to include references to most of the appropriate publications on this subject, there are undoubtedly some that were omitted. I apologize in advance for leaving out some undoubtedly outstanding references. I also apologize for the as yet undiscovered errors that remain in the text.

I wish to acknowledge the support of various funding agencies (principly DOE, NSF and NIH) that have supported my research efforts over the past several decades. My research experience has substantially contributed to my understanding of the material covered in this book.

I also wish to thank Dr. David A. Muller and Dr. Richard R. Vanfleet for providing many helpful suggestions and help in proof reading the manuscript and to thank Dr. M. A. O'Keefe for providing helpful comments on electron microscopy and image simulation.

Contents

Ρ	refac	e	\mathbf{v}		
1	Int	roduction	1		
2	The	e Transmission Electron Microscope	5		
	2.1	Introduction	5		
	2.2	Modeling the Electron Microscope	7		
	2.3	Relativistic Electrons	9		
	2.4	Aberrations	12		
	2.5	Reciprocity	14		
	2.6	Further Reading	17		
3	Lin	ear Image Approximations	19		
	3.1	The Weak Phase Object in Bright Field	20		
	3.2	Partial Coherence in BF-CTEM	24		
	3.3	Incoherent Imaging of Thin Specimens (CTEM)	29		
	3.4	Annular Dark Field STEM	33		
4	Sampling and the Fast Fourier Transform 41				
	4.1	Sampling	41		
	4.2	Discrete Fourier Transform	45		
	4.3	The Fast Fourier Transform or FFT	46		
	4.4	Wrap Around Error and Rearrangement	48		
	4.5	Fourier Transforming Real Valued Data	50		
	4.6	Displaying Diffraction Patterns	51		
	4.7	Further Reading	51		
	4.8	An FFT Subroutine in C	53		
	4.9	An FFT Subroutine in FORTRAN	56		
5	Simulating Images of Thin Specimens				
	5.1	The Weak Phase Object	63		
	5.2	Single Atom Properties	66		
		5.2.1 Radial Charge Distribution	67		
		5.2.2 Potential	67		

CONTENTS

		5.2.3 Atomic Size	. 70
		5.2.4 Scattering Factors	. 70
	5.3	Total Specimen Potential	
	5.4	BF Phase Contrast Image Calculation	
		5.4.1 Single Atom Images	
		5.4.2 Thin Specimen Images	
		5.4.3 Partial Coherence and the Transmission Cross Coefficient	
	5.5	ADF STEM Images of Thin Specimens	
		5.5.1 Single Atom Images	
		5.5.2 Thin Specimen Images	
	5.6	Summary of Sampling Suggestions	
	~.		
6		ulating Images of Thick Specimens	99
	6.1	The Wave Equation for Fast Electrons	
	6.2	A Bloch Wave Solution	
	6.3	The Multislice Solution	
		6.3.1 A Formal Operator Solution	
		6.3.2 A Finite Difference Solution	
		6.3.3 Free Space Propagation	
	6.4	Multislice Interpretation	
	6.5	The Multislice Method and FFT's	
	6.6	Slicing the Specimen	
	6.7	Aliasing and Bandwidth	
	6.8	Interfaces and Defects	
	6.9	Multislice Implementation	
		6.9.1 The Propagator Function and Specimen Tilt	
		6.9.2 Convergence Tests	
		6.9.3 Partial Coherence in BF-CTEM	
	6.10	More Accurate Slice Methods	
		6.10.1 Operator Solutions	
		6.10.2 Finite Difference Solutions	129
7	Mul	tislice Applications and Examples	133
	7.1	Gallium Arsenide	133
		7.1.1 BF-CTEM Simulation	
		7.1.2 ADF-STEM Simulation	138
	7.2	Silicon Nitride	140
	7.3	CBED Simulations	144
	7.4	Thermal Vibrations of the Atoms in the Specimen	150
	7.5	Quantitative Image Matching	153
8	The	Programs on the CD-ROM	157
0	8.1	Program Organization	
	8.2	Image Display	
	8.3	Programming Language	
	0.0	8.3.1 Disk File Format	

	8.4	BF-CTEM Sample Calculations	
		8.4.1 Atomic Potentials	162
		8.4.2 Multislice	166
		8.4.3 Image Formation	168
		8.4.4 Partial Coherence	169
	8.5	ADF-STEM Sample Calculations	171
	8.6	Non-Periodic Specimens	175
	8.7	Using the display Program	
	8.8	Using the Program slicview	
A	Plot	tting CTEM/STEM Transfer Functions	185
в	File	s on the CD-ROM	195
С	The	Fourier Projection Theorem	197
		-	197 199
	Ato	mic Potentials and Scattering Factors	
	Ato	mic Potentials and Scattering Factors Atomic Charge Distribution	199 200
	Ato D.1 D.2	mic Potentials and Scattering Factors Atomic Charge Distribution	199 200 202
	Ato D.1 D.2 D.3	mic Potentials and Scattering Factors Atomic Charge Distribution	199 200 202
D	Ato D.1 D.2 D.3 D.4	mic Potentials and Scattering Factors Atomic Charge Distribution	199 200 202 202
D	Ato D.1 D.2 D.3 D.4 Bili	mic Potentials and Scattering Factors Atomic Charge Distribution	199 200 202 202 202 203