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Preface

This book is devoted to the theory of probabilistic information measures
and their application to coding theorems for information sources and
noisy channels, with a strong emphasis on source coding and stationary
codes. The eventual goal is a general development of Shannon’s mathe-
matical theory of communication for single user systems, but much of
the space is devoted to the tools and methods required to prove the
Shannon coding theorems, especially the notions of sources, channels,
codes, entropy, information, and the entropy ergodic theorem. These
tools form an area common to ergodic theory and information theory
and comprise several quantitative notions of the information in ran-
dom variables, random processes, and dynamical systems. Examples are
entropy, mutual information, conditional entropy, conditional informa-
tion, and relative entropy (discrimination, Kullback-Leibler information,
informational divergence), along with the limiting normalized versions
of these quantities such as entropy rate and information rate. In addi-
tion to information we will be concerned with the distance or distortion
between the random objects, that is, the accuracy of the representation
of one random object by another or the degree of mutual approximation.
Much of the book is concerned with the properties of these quantities,
especially the long term asymptotic behavior of average information and
distortion, where both sample averages and probabilistic averages are of
interest.

The book has been strongly influenced by M. S. Pinsker’s classic Infor-
mation and Information Stability of Random Variables and Processes and
by the seminal work of A. N. Kolmogorov, I. M. Gelfand, A. M. Yaglom,
and R. L. Dobrushin on information measures for abstract alphabets and
their convergence properties. The book also has as a major influence the
work of D.S. Ornstein on the isomorphism problem in ergodic theory,
especially on his ideas of stationary codes mimicking block codes im-
plied by the entropy ergodic theorem and of the d-bar distance between
random processes. Many of the results herein are extensions of their
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viii Preface

generalizations of Shannon’s original results. The mathematical mod-
els adopted here are more general than traditional treatments in that
nonstationary and nonergodic information processes are treated. The
models are somewhat less general than those of the Russian school of
information theory in the sense that standard alphabets rather than com-
pletely abstract alphabets are considered. This restriction, however, per-
mits many stronger results as well as the extension to nonergodic pro-
cesses. In addition, the assumption of standard spaces simplifies many
proofs and such spaces include as examples virtually all examples of
engineering interest.

The information convergence results are combined with ergodic the-
orems to prove general Shannon coding theorems for sources and chan-
nels. The results are not the most general known and the converses
are not the strongest available in the literature, but they are sufficiently
general to cover most sources and single-user communications systems
encountered in applications and they are more general than those en-
countered in most modern texts. For example, most treatments confine
interest to stationary and ergodic sources or even independent identi-
cally distributed (IID) sources and memoryless channels; here we con-
sider asymptotic mean stationary sources, both one-sided and two-sided
sources, and nonergodic sources. General channels with memory are
considered, in particular the class of d-bar continuous channels.

Perhaps more important than the generality of the sources and chan-
nels is the variety of code structures considered. Most of the literature
and virtually all of the texts on information theory focus exclusively on
block codes, while many codes are more naturally described as a station-
ary or sliding-block code — a time-invariant possibly nonlinear filter,
generally with a discrete output. Here the basic results of information
theory are described for stationary or sliding-block codes as well as for
the traditional block codes and the relationships between the two coding
structures are explored in detail. Stationary codes arose in ergodic the-
ory in the context of Ornstein’s proof of the isomorphism theorem in the
1970s, and they arise naturally in the communications context of clas-
sical information theory, including common coding techniques such as
time-invariant convolutional codes, predictive quantization, sigma-delta
coding, and wavelet transform based techniques that operate as sliding-
window or online filters rather than as block operations. Mathematically,
stationary codes preserve many of the statistical properties of the source
being coded such as stationarity, ergodicity, and mixing. In practice, sta-
tionary codes avoid the introduction of blocking artifacts not present in
the original source.

This book can be considered as a sequel to my book Probability, Ran-
dom Processes, and Ergodic Properties [58], as the first edition of this
book was a sequel to the first edition [56]. There the prerequisite re-
sults on probability, standard spaces, and ordinary ergodic properties
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may be found along with a development of the general sources consid-
ered (asymptotically mean stationary, not necessarily ergodic) and of the
process distortion measures used here. This book is self contained with
the exception of common (and a few less common) results which may
be found in the first book. Results quoted from the first book are cited
for both first and second editions as the numbering system in the two
editions differs.

It is my hope that the book will interest engineers in some of the
mathematical aspects and general models of the theory and mathemati-
cians in some of the important engineering applications of performance
bounds and code design for communication systems.

What’s New in the Second Edition

As in the second edition of the companion volume [58], material has been
corrected, rearranged, and rewritten in an effort to improve the flow of
ideas and the presentation. This volume has been revised to reflect the
changes in the companion volume, and citations to specific results are
given for both the first and second editions [55, 58]. A significant amount
of new material has been added both to expand some of the discussions
to include more related topics and to include more recent results on old
problems.

More general distortion measures are considered when treating the
process distance and distortion measures, consistent with extensions or
results in [55] on metric distortion measures to powers of metrics (such
as the ubiquitous squared-error distortion) in [58].

Three new chapters have been added: one on the interplay between
distortion and entropy, one on the interplay between distortion and in-
formation, and one on properties of good source codes — codes that are
either optimal or asymptotically optimal in the sense of converging to
the Shannon limit.

The chapter on distortion and entropy begins with a classic result
treated in the first edition, the Fano inequality and its extensions, but
it expands the discussion to consider the goodness of approximation of
codes and their relation to entropy rate. Pinsker’s classic result relat-
ing variation distance between probability measures and the divergence
(Kullback-Leibler) distance is now treated along with its recent extension
by Marton comparing Ornstein’s d-bar process distance to divergence
rate. The chapter contains a preliminary special case of the coding the-
orems to come — the application of the entropy ergodic theorem to the
design of both block and sliding-block (stationary) almost lossless codes.
The example introduces several basic ideas in a relatively simple context,
including the construction of a sliding-block code from a block code in a
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way that preserves the essential properties. The example also serves to
illustrate the connections between information theory and ergodic the-
ory by means of an interpretation of Ornstein’s isomorphism theorem —
which is not proved here — in terms of almost lossless stationary coding
— which is. The results also provide insight into the close relationships
between source coding or data compression and rate-constrained simu-
lation of a stationary and ergodic process, the finding of a simple model
based on coin flips that resembles as closely as possible the given pro-
cess.

The chapter on distortion and information adds considerable mate-
rial on rate-distortion theory to the treatment of the first edition, specif-
ically on the evaluation of Shannon distortion-rate and rate-distortion
functions along with their easy applications to lower bounds on per-
formance in idealized communications systems. The fundamentals of
Csiszár’s variational approach based on the divergence inequality is de-
scribed and some of the rarely noted attributes are pointed out. The
implied algorithm for the evaluation of rate-distortion functions (origi-
nally due to Blahut [18]) is interpreted as an early example of alternating
optimization.

An entirely new chapter on properties of good codes provides a devel-
opment along the lines of Gersho and Gray [50] of the basic properties
of optimal block codes originally due to Lloyd [110] and Steinhaus [175]
along with the implied iterative design algorithm, another early exam-
ple of alternating optimization. An incomplete extension of these block
code optimality properties to sliding-block codes is described, and a sim-
ple example of trellis encoding is used to exemplify basic relations be-
tween block, sliding-block, and hybrid codes. The remainder of the chap-
ter comprises recent developments in properties of asymptotically opti-
mal sequences of sliding-block codes as developed by Mao, Gray, and
Linder [117]. This material adds to the book’s emphasis on stationary
and sliding-block codes and adds to the limited literature on the subject.

Along with these major additions, I have added many minor results ei-
ther because I was annoyed to discover they were not already in the first
edition when I looked for them or because they eased the development
of results.

The addition of three new chapters was partially balanced by the
merging of two old chapters to better relate information rates for finite
alphabet and continuous alphabet random processes.

Errors

Typographical and technical errors reported to or discovered by me dur-
ing the two decades since the publication of the first edition have been
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corrected and efforts have been made to improve formatting and ap-
pearance of the book. Doubtless with the inclusion of new material new
errors have occurred. As I age my frequency of typographical and other
errors seems to grow along with my ability to see through them. I apolo-
gize for any that remain in the book. I will keep a list of all errors found
by me or sent to me at rmgray@stanford.edu and I will post the list at
my Web site, http://ee.stanford.edu/∼gray/.
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Introduction

Abstract A brief history of the development of Shannon information the-
ory is presented with an emphasis on its interactions with ergodic the-
ory. The origins and goals of this book are sketched.

Information theory, the mathematical theory of communication, has
two primary goals: The first is the development of the fundamental
theoretical limits on the achievable performance when communicating
a given information source over a given communications channel us-
ing coding schemes from within a prescribed class. The second goal is
the development of coding schemes that provide performance that is
reasonably good in comparison with the optimal performance given by
the theory. Information theory was born in a remarkably rich state in
the classic papers of Claude E. Shannon [162, 163] which contained the
basic results for simple memoryless sources and channels and intro-
duced more general communication systems models, including finite-
state sources and channels. The key tools used to prove the original re-
sults and many of those that followed were special cases of the ergodic
theorem and a new variation of the ergodic theorem which considered
sample averages of a measure of the entropy or self information in a
process.

Information theory can be viewed as simply a branch of applied prob-
ability theory. Because of its dependence on ergodic theorems, however,
it can also be viewed as a branch of ergodic theory, the theory of in-
variant transformations and transformations related to invariant trans-
formations. In order to develop the ergodic theory example of principal
interest to information theory, suppose that one has a random process,
which for the moment we consider as a sample space or ensemble of
possible output sequences together with a probability measure on events

xvii
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composed of collections of such sequences. The shift is the transforma-
tion on this space of sequences that takes a sequence and produces a
new sequence by shifting the first sequence a single time unit to the
left. In other words, the shift transformation is a mathematical model
for the effect of time on a data sequence. If the probability of any se-
quence event is unchanged by shifting the event, that is, by shifting all
of the sequences in the event, then the shift transformation is said to
be invariant and the random process is said to be stationary. Thus the
theory of stationary random processes can be considered as a subset of
ergodic theory. Transformations that are not actually invariant (random
processes which are not actually stationary) can be considered using sim-
ilar techniques by studying transformations which are almost invariant,
which are invariant in an asymptotic sense, or which are dominated or
asymptotically dominated in some sense by an invariant transformation.
This generality can be important as many real processes are not well
modeled as being stationary. Examples are processes with transients,
processes that have been parsed into blocks and coded, processes that
have been encoded using variable-length codes or finite-state codes, and
channels with arbitrary starting states.

Ergodic theory was originally developed for the study of statistical
mechanics as a means of quantifying the trajectories of physical or dy-
namical systems. Hence, in the language of random processes, the early
focus was on ergodic theorems: theorems relating the time or sample av-
erage behavior of a random process to its ensemble or expected behav-
ior. The work of Hoph [77], von Neumann [190] and others culminated
in the pointwise or almost everywhere ergodic theorem of Birkhoff [17].

In the 1940’s and 1950’s Shannon made use of the ergodic theorem in
the simple special case of memoryless processes to characterize the op-
timal performance possible when communicating an information source
over a constrained random medium or channel using codes. The ergodic
theorem was applied in a direct fashion to study the asymptotic behav-
ior of error frequency and time average distortion in a communication
system, but a new variation was introduced by defining a mathematical
measure of the entropy or information in a random process and charac-
terizing its asymptotic behavior. The results characterizing the optimal
performance achievable using codes became known as coding theorems.
Results describing performance that is actually achievable, at least in
the limit of unbounded complexity and time, are known as positive cod-
ing theorems. Results providing unbeatable bounds on performance are
known as converse coding theorems or negative coding theorems. When
the same quantity is given by both positive and negative coding the-
orems, one has exactly the optimal performance achievable in theory
using codes from a given class to communicate through the given com-
munication systems model.
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While mathematical notions of information had existed before, it was
Shannon who coupled the notion with the ergodic theorem and an in-
genious idea known as “random coding” in order to develop the coding
theorems and to thereby give operational significance to such informa-
tion measures. The name “random coding” is a bit misleading since it
refers to the random selection of a deterministic code and not a coding
system that operates in a random or stochastic manner. The basic ap-
proach to proving positive coding theorems was to analyze the average
performance over a random selection of codes. If the average is good,
then there must be at least one code in the ensemble of codes with per-
formance as good as the average. The ergodic theorem is crucial to this
argument for determining such average behavior. Unfortunately, such
proofs promise the existence of good codes but give little insight into
their construction.

Shannon’s original work focused on memoryless sources whose prob-
ability distribution did not change with time and whose outputs were
drawn from a finite alphabet or the real line. In this simple case the
well-known ergodic theorem immediately provided the required result
concerning the asymptotic behavior of information. He observed that
the basic ideas extended in a relatively straightforward manner to more
complicated Markov sources. Even this generalization, however, was a
far cry from the general stationary sources considered in the ergodic
theorem.

To continue the story requires a few additional words about measures
of information. Shannon really made use of two different but related
measures. The first was entropy, an idea inherited from thermodynamics
and previously proposed as a measure of the information in a random
signal by Hartley [75]. Shannon defined the entropy of a discrete time
discrete alphabet random process {Xn}, which we denote by H(X) while
deferring its definition, and made rigorous the idea that the the entropy
of a process is the amount of information in the process. He did this by
proving a coding theorem showing that if one wishes to code the given
process into a sequence of binary symbols so that a receiver viewing
the binary sequence can reconstruct the original process perfectly (or
nearly so), then one needs at least H(X) binary symbols or bits (converse
theorem) and one can accomplish the task with very close to H(X) bits
(positive theorem). This coding theorem is known as the noiseless source
coding theorem.

The second notion of information used by Shannon was mutual infor-
mation. Entropy is really a notion of self information — the information
provided by a random process about itself. Mutual information is a mea-
sure of the information contained in one process about another process.
While entropy is sufficient to study the reproduction of a single process
through a noiseless environment, more often one has two or more dis-
tinct random processes, e.g., one random process representing an infor-
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mation source and another representing the output of a communication
medium wherein the coded source has been corrupted by another ran-
dom process called noise. In such cases observations are made on one
process in order to make decisions on another. Suppose that {Xn,Yn} is
a random process with a discrete alphabet, that is, taking on values in
a discrete set. The coordinate random processes {Xn} and {Yn} might
correspond, for example, to the input and output of a communication
system. Shannon introduced the notion of the average mutual informa-
tion between the two processes:

I(X, Y) = H(X)+H(Y)−H(X,Y), (1)

the sum of the two self entropies minus the entropy of the pair. This
proved to be the relevant quantity in coding theorems involving more
than one distinct random process: the channel coding theorem describ-
ing reliable communication through a noisy channel, and the general
source coding theorem describing the coding of a source for a user sub-
ject to a fidelity criterion. The first theorem focuses on error detection
and correction and the second on analog-to-digital conversion and data
compression. Special cases of both of these coding theorems were given
in Shannon’s original work.

Average mutual information can also be defined in terms of condi-
tional entropy H(X|Y) = H(X,Y)−H(Y) and hence

I(X, Y) = H(X)−H(X|Y) = H(Y)−H(X|Y). (2)

In this form the mutual information can be interpreted as the informa-
tion contained in one process minus the information contained in the
process when the other process is known. While elementary texts on
information theory abound with such intuitive descriptions of informa-
tion measures, we will minimize such discussion because of the potential
pitfall of using the interpretations to apply such measures to problems
where they are not appropriate. (See, e.g., P. Elias’ “Information theory,
photosynthesis, and religion” in his “Two famous papers” [37].) Infor-
mation measures are important because coding theorems exist imbuing
them with operational significance and not because of intuitively pleas-
ing aspects of their definitions.

We focus on the definition (1) of mutual information since it does not
require any explanation of what conditional entropy means and since it
has a more symmetric form than the conditional definitions. It turns out
that H(X,X) = H(X) (the entropy of a random variable is not changed
by repeating it) and hence from (1)

I(X,X) = H(X) (3)
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so that entropy can be considered as a special case of average mutual
information.

To return to the story, Shannon’s work spawned the new field of in-
formation theory and also had a profound effect on the older field of
ergodic theory.

Information theorists, both mathematicians and engineers, extended
Shannon’s basic approach to ever more general models of information
sources, coding structures, and performance measures. The fundamen-
tal ergodic theorem for entropy was extended to the same generality
as the ordinary ergodic theorems by McMillan [123] and Breiman [20]
and the result is now known as the Shannon-McMillan-Breiman theorem.
Other names are the asymptotic equipartition theorem or AEP, the er-
godic theorem of information theory, and the entropy theorem. A variety
of detailed proofs of the basic coding theorems and stronger versions of
the theorems for memoryless, Markov, and other special cases of random
processes were developed, notable examples being the work of Feinstein
[39] [40] and Wolfowitz (see, e.g., Wolfowitz [196].) The ideas of measures
of information, channels, codes, and communications systems were rig-
orously extended to more general random processes with abstract alpha-
bets and discrete and continuous time by Khinchine [87], [88] and by Kol-
mogorov and his colleagues, especially Gelfand, Yaglom, Dobrushin, and
Pinsker [49], [104], [101], [32], [150]. (See, for example, “Kolmogorov’s
contributions to information theory and algorithmic complexity” [23].)
In almost all of the early Soviet work, it was average mutual information
that played the fundamental role. It was the more natural quantity when
more than one process were being considered. In addition, the notion
of entropy was not useful when dealing with processes with continuous
alphabets since it is generally infinite in such cases. A generalization
of the idea of entropy called discrimination was developed by Kullback
(see, e.g., Kullback [106]) and was further studied by the Soviet school.
This form of information measure is now more commonly referred to
as relative entropy, cross entropy, or Kullback-Leibler number, or infor-
mation divergence and it is better interpreted as a measure of similarity
or dissimilarity between probability distributions than as a measure of
information between random variables. Many results for mutual infor-
mation and entropy can be viewed as special cases of results for relative
entropy and the formula for relative entropy arises naturally in some
proofs.

It is the mathematical aspects of information theory and hence the
descendants of the above results that are the focus of this book, but the
developments in the engineering community have had as significant an
impact on the foundations of information theory as they have had on ap-
plications. Simpler proofs of the basic coding theorems were developed
for special cases and, as a natural offshoot, the rate of convergence to
the optimal performance bounds characterized in a variety of important
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cases. See, e.g., the texts by Gallager [47], Berger [11], and Csiszàr and
Körner [27]. Numerous practicable coding techniques were developed
which provided performance reasonably close to the optimum in many
cases: from the simple linear error correcting and detecting codes of
Slepian [171] to the huge variety of algebraic codes that have been imple-
mented (see, e.g., [12], [192],[109], [113], [19]), the various forms of con-
volutional, tree, and trellis codes for error correction and data compres-
sion (see, e.g., [189, 81]), and the recent codes approaching the Shannon
limits based on iterative coding and message passage ideas [126, 156],
codes which have their roots in Gallager’s PhD thesis on low density
parity check codes [48]. Codes for source coding and data compres-
sion include a variety of traditional and recent techniques for lossless
coding of data and lossy coding of realtime signals such as voice, au-
dio, still images, and video. Techniques range from simple quantization
to predictive quantization, adaptive methods, vector quantizers based
on linear transforms followed by quantization and lossless codes, sub-
band coders, and model coders such as the linear preditive codes for
voice which fit linear models to observed signals for local synthesis. A
sampling of the fundamentals through the standards can be found in
[50, 160, 144, 178].

The engineering side of information theory through the middle 1970’s
has been well chronicled by two IEEE collections: Key Papers in the De-
velopment of Information Theory, edited by D. Slepian [172], and Key
Papers in the Development of Coding Theory, edited by E. Berlekamp [13]
and many papers describing the first fifty years of the field were col-
lected into Information Theory: 50 Years of Discovery in 2000 [184]. In
addition there have been several survey papers describing the history of
information theory during each decade of its existence published in the
IEEE Transactions on Information Theory.

The influence on ergodic theory of Shannon’s work was equally great
but in a different direction. After the development of quite general er-
godic theorems, one of the principal issues of ergodic theory was the
isomorphism problem, the characterization of conditions under which
two dynamical systems are really the same in the sense that each could
be obtained from the other in an invertible way by coding. Here, how-
ever, the coding was not of the variety considered by Shannon — Shan-
non considered block codes, codes that parsed the data into nonover-
lapping blocks or windows of finite length and separately mapped each
input block into an output block. The more natural construct in ergodic
theory can be called a sliding-block code or stationary code — here the
encoder views a block of possibly infinite length and produces a single
symbol of the output sequence using some mapping (or code or filter).
The input sequence is then shifted one time unit to the left, and the same
mapping applied to produce the next output symbol, and so on. This is
a smoother operation than the block coding structure since the outputs
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are produced based on overlapping windows of data instead of on a com-
pletely different set of data each time. Unlike the Shannon codes, these
codes will produce stationary output processes if given stationary input
processes. It should be mentioned that examples of such sliding-block
codes often occurred in the information theory literature: time-invariant
convolutional codes or, simply, time-invariant linear filters are sliding-
block codes. It is perhaps odd that virtually all of the theory for such
codes in the information theory literature was developed by effectively
considering the sliding-block codes as very long block codes. Sliding-
block codes have proved a useful structure for the design of noiseless
codes for constrained alphabet channels such as magnetic recording de-
vices, and techniques from symbolic dynamics have been applied to the
design of such codes. See, for example [3, 118].

Shannon’s noiseless source coding theorem suggested a solution to
the isomorphism problem: If we assume for the moment that one of the
two processes is binary, then perfect coding of a process into a binary
process and back into the original process requires that the original pro-
cess and the binary process have the same entropy. Thus a natural con-
jecture is that two processes are isomorphic if and only if they have the
same entropy. A major difficulty was the fact that two different kinds of
coding were being considered: stationary sliding-block codes with zero
error by the ergodic theorists and either fixed length block codes with
small error or variable length (and hence nonstationary) block codes with
zero error by the Shannon theorists. While it was plausible that the for-
mer codes might be developed as some sort of limit of the latter, this
proved to be an extremely difficult problem. It was Kolmogorov [102],
[103] who first reasoned along these lines and proved that in fact equal
entropy (appropriately defined) was a necessary condition for isomor-
phism.

Kolmogorov’s seminal work initiated a new branch of ergodic theory
devoted to the study of entropy of dynamical systems and its applica-
tion to the isomorphism problem. Most of the original work was done
by Soviet mathematicians; notable papers are those by Sinai [168] [169]
(in ergodic theory entropy is also known as the Kolmogorov-Sinai invari-
ant), Pinsker [150], and Rohlin and Sinai [157]. An actual construction of
a perfectly noiseless sliding-block code for a special case was provided
by Meshalkin [124]. While much insight was gained into the behavior of
entropy and progress was made on several simplified versions of the
isomorphism problem, it was several years before Ornstein [138] proved
a result that has since come to be known as the Ornstein isomorphism
theorem or the Kolmogorov-Ornstein or Kolmogorov-Sinai-Ornstein iso-
morphism theorem.

Ornstein showed that if one focused on a class of random processes
which we shall call B-processes, then two processes are indeed isomor-
phic if and only if they have the same entropy. B-process are also called
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Bernoulli processes in the ergodic theory literature, but this is potentially
confusing because of the usage of “Bernoulli process” as a synonym of
an independent identically distributed (IID) process in information the-
ory and random process theory. B-processes have several equivalent def-
initions, perhaps the simplest is that they are processes which can be
obtained by encoding a memoryless process using a sliding-block code.
This class remains the most general class known for which the isomor-
phism conjecture holds. In the course of his proof, Ornstein developed
intricate connections between block coding and sliding-block coding. He
used Shannon-like techniques on the block codes, then imbedded the
block codes into sliding-block codes, and then used the stationary struc-
ture of the sliding-block codes to advantage in limiting arguments to ob-
tain the required zero error codes. Several other useful techniques and
results were introduced in the proof: notions of the distance between
processes and relations between the goodness of approximation and the
difference of entropy. Ornstein expanded these results into a book [140]
and gave a tutorial discussion in the premier issue of the Annals of Prob-
ability [139]. Several correspondence items by other ergodic theorists
discussing the paper accompanied the article.

The origins of this book lie in the tools developed by Ornstein for the
proof of the isomorphism theorem rather than with the result itself. Dur-
ing the early 1970’s I first become interested in ergodic theory because
of joint work with Lee D. Davisson on source coding theorems for sta-
tionary nonergodic processes. The ergodic decomposition theorem dis-
cussed in Ornstein [139] provided a needed missing link and led to an
intense campaign on my part to learn the fundamentals of ergodic the-
ory and perhaps find other useful tools. This effort was greatly eased by
Paul Shields’ book The Theory of Bernoulli Shifts [164] and by discussions
with Paul on topics in both ergodic theory and information theory. This
in turn led to a variety of other applications of ergodic theoretic tech-
niques and results to information theory, mostly in the area of source
coding theory: proving source coding theorems for sliding-block codes
and using process distance measures to prove universal source coding
theorems and to provide new characterizations of Shannon distortion-
rate functions. The work was done with Dave Neuhoff, like me then an
apprentice ergodic theorist, and Paul Shields.

With the departure of Dave and Paul from Stanford, my increasing in-
terest led me to discussions with Don Ornstein on possible applications
of his techniques to channel coding problems. The interchange often
consisted of my describing a problem, his generation of possible avenues
of solution, and then my going off to work for a few weeks to understand
his suggestions and work them through.

One problem resisted our best efforts–how to synchronize block codes
over channels with memory, a prerequisite for constructing sliding-block
codes for such channels. In 1975 I had the good fortune to meet and talk
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with Roland Dobrushin at the 1975 IEEE/USSR Workshop on Information
Theory in Moscow. He observed that some of his techniques for handling
synchronization in memoryless channels should immediately generalize
to our case and therefore should provide the missing link. The key ele-
ments were all there, but it took seven years for the paper by Ornstein,
Dobrushin and me to evolve and appear [68].

Early in the course of the channel coding paper, I decided that hav-
ing the solution to the sliding-block channel coding result in sight was
sufficient excuse to write a book on the overlap of ergodic theory and
information theory. The intent was to develop the tools of ergodic the-
ory of potential use to information theory and to demonstrate their use
by proving Shannon coding theorems for the most general known in-
formation sources, channels, and code structures. Progress on the book
was disappointingly slow, however, for a number of reasons. As delays
mounted, I saw many of the general coding theorems extended and im-
proved by others (often by J. C. Kieffer) and new applications of ergodic
theory to information theory developed, such as the channel modeling
work of Neuhoff and Shields [133], [136], [135], [134] and design methods
for sliding-block codes for input restricted noiseless channels by Adler,
Coppersmith, and Hasner [3] and Marcus [118]. Although I continued
to work in some aspects of the area, especially with nonstationary and
nonergodic processes and processes with standard alphabets, the area
remained for me a relatively minor one and I had little time to write.
Work and writing came in bursts during sabbaticals and occasional ad-
vanced topic seminars. I abandoned the idea of providing the most gen-
eral possible coding theorems and decided instead to settle for coding
theorems that were sufficiently general to cover most applications and
which possessed proofs I liked and could understand.

Only one third of this book is actually devoted to Shannon source
and channel coding theorems; the remainder can be viewed as a mono-
graph on sources, channels, and codes and on information and distortion
measures and their properties, especially their ergodic properties. The
sources or random processes considered include asymptotically mean
stationary processes with standard alphabets, a subject developed in de-
tail in my earlier book Probability, Random Processes, and Ergodic Prop-
erties, which was published by Springer-Verlag in 1988 [55] with a second
edition published by Springer in 2009. That books treats advanced prob-
ability and random processes with an emphasis on processes with stan-
dard alphabets, on nonergodic and nonstationary processes, and on nec-
essary and sufficient conditions for the convergence of long term sam-
ple averages. Asymptotically mean stationary sources and the ergodic
decomposition are there treated in depth and recent simplified proofs
of the ergodic theorem due to Ornstein and Weiss [141] and others are
incorporated. The next chapter of this book reviews some of the basic
notation of the first one in information theoretic terms, but results are
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often simply quoted as needed from the first book without any attempt
to derive them. The two books together are self-contained in that all sup-
porting results from probability theory and ergodic theory needed here
may be found in the first book. This book is self-contained so far as its
information theory content, but it should be considered as an advanced
text on the subject and not as an introductory treatise to the reader only
wishing an intuitive overview. The border between the two books is the
beginning of the treatment of entropy.

Here the Shannon-McMillan-Breiman theorem is proved using the cod-
ing approach of Ornstein and Weiss [141] (see also Shield’s tutorial paper
[165]) and hence the treatments of ordinary ergodic theorems in the first
book and the ergodic theorems for information measures in this book
are consistent. The extension of the Shannon-McMillan-Breiman theo-
rem to densities is proved using the “sandwich” approach of Algoet and
Cover [7], which depends strongly on the usual pointwise or Birkhoff
ergodic theorem: sample entropy is asymptotically sandwiched between
two functions whose limits can be determined from the ergodic theorem.
These results are the most general yet published in book form and differ
from traditional developments in that martingale theory is not required
in the proofs.

A few words are in order regarding topics that are not contained in
this book. I have not included the increasingly important and growing
area of multiuser information theory because my experience in the area
is slight and I believe this topic can be better handled by others.

Traditional noiseless coding theorems and actual codes such as the
Huffman codes are not considered in depth because quite good treat-
ments exist in the literature, e.g., [47], [1], [122]. The corresponding er-
godic theory result — the Ornstein isomorphism theorem — is also not
proved, because its proof is difficult and the result is not needed for the
Shannon coding theorems. It is, however, described and many techniques
used in its proof are used here for similar and other purposes.

The actual computation of channel capacity and distortion rate func-
tions has not been included because existing treatments [47], [18], [11],
[25] [57] are quite adequate. New to the second edition, however, is
a partial development of Csiszár’s [25] rigorous development of the
information-theoretic optimization underlying the evaluation of the rate-
distortion function.

This book does not treat code design techniques in any depth, but
in this second edition properties of optimal and asymptotically optimal
source codes are developed and these properties provide insight into the
structure of good codes and can be used to guide code design. The tra-
ditional Lloyd optimality properties for vector quantizers are described
along with recent results for sliding-block codes which resemble their
block coding cousins.
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J. C. Kieffer developed a powerful new ergodic theorem that can
be used to prove both traditional ergodic theorems and the extended
Shannon-McMillan-Brieman theorem [96]. He has used this theorem to
prove strong (almost everywhere) versions of the source coding theorem
and its converse, that is, results showing that sample average distortion
is with probability one no smaller than the distortion-rate function and
that there exist codes with sample average distortion arbitrarily close to
the distortion-rate function [99, 100].
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