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Philippe Aghion™ and Peter Howitt™

On the Macroeconomic
Effects of Major Technological
Change

Why is it that the adoption of new (more
advanced) technological paradigms often
entails cyclicalgrowth patierns including long
recession periods?

Among various attempts to account for
Schumpeterian waves,! one that appears
particularly promising and fruitful is the
approach based on the notion of “General
Purpose Technologies” (GPTs), that is
technologies whose introduction affects the
entire economic system. More precisely,
whilst each new GPT raises output and
productivity in the long-run, it can also cause
cyclical flucruations while the economy
adjusts to it. Examples of GPTs include the
steam engine, the electric dynamo, the laser
and the computer (see David 1990)).

An interesting model of cyclical growth

* EBRD, London and Nuffield College, Oxford
** Ohio State University and CIAR

based on GPTs is Helpman and Trajtenberg
(1995). The basic idea of this model is that
GPTs do not come ready to use off the shelf.
Instead, each GPT requires an entirely new
set of intermediate goods before it can be
implemented. The discovery and develop-
ment of these intermediate goods is a costly
activity, and the economy must wait until
some critical mass of intermediate compo-
nents has been accumulated before it is
profitable for firms to switch from the
previous GPT. During the period berween
the discovery of a new GPT and its ultimate
implementation, national income will fall as
resources are taken out of production and put
into R&D activities aimed at the discovery of
new intermediate input components.

There are two aspects of this theory which

1. Precusory contributions include Jovanovic and Rob (1990) and Cheng and Dinopoulos (1992) which tried to
generate Schumpeterian waves based on the dichotomy between fundamental and secondary innovations, with
each fundamental innovation being followed by a sequence of more and more incremental innovations. Of
particular interest as a macroeconomic model is the Cheng-Dinopoulous (1992) paper in which Schumpeterian
waves obtain as a unique [non steady-state] equilibrium solution, along which the current flow of monopoly
profits follows a cyclical evolution. “Because the economy’s wealth is equal to the discounted present value of
aggregate monopoly profit, fluctuations in profits generate procyclical fluctuations in wealth, the interest factor,
consumption (...) and aggregate R&D investments”. (Cheng-Dinopoulos.)
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may call its empirical relevance into question.
The first is the likely size of the stump that it
might cause. All of the decline in output is
attributable to the transfer of labor out of
manufacturing and into R&D. But since the
total amount of R&D labor on average is
only about two and a half percent of the labor
force, it is hard to see how this can account
for change in aggregate production of more
than a fraction of a percent. (The size of the
slump would be even smaller if we assumed,
as Helpman and Trajtenberg do, that some
national income is imputed to the R&D
workers even before their research pays off in
a positive the
intermediate sector).?

The second questionable aspect of this
theory has to do with the tZming of slow-
downs: the Helpman and Trajtenberg model
implies an immediate slump as soon as the
GPT arrives. This in turns follows from the
assumption that: (i} agents need to see the
new GPT before investing in research in
order to discover the complementary
components, and: (ii) these research activities
are sufficiently profitable that they always
divert some labor resoutces away from
manufacturing. In fact, as Paul David (1990)
argues it may take several decades before
major technological innovations can have a
significant impact on macroeconomic
activity (Paul David talks about a pre-
paradigm phase of 25 years in the case of the
electric dynamo). Then it is hard to believe
that labor could be diverted on a large scale
into an activity which will pay off only in the
very distant future. The fact that so much
secondary knowledge has to be accumulated

stream of profits in

before anyone will know what to do with the
new GPT means instead that most firms will
choose o ignore It, SO treat it as just an
academic theoretical discovery with no
foreseeable practical significance, and that no
significant speed-up R&D activity, and hence
no significant stump, will take place for a long
time.

The first of these problems is relatively
easy to deal with (at least conceptually), as
one can think of a number of reasons why the
adjustment to a massive and fundamental
technological change would cause adjust-
ment and coordination problems resulting in
a slump. For example, as Atkeson and Kehoe
(1993) analyse, the arrival of a new GPT
might induce firms to engage in risky
experimentation on a large scale with startup
firms, not all of which will succeed. The
capital sunk into these startup firms will not
yield a competitive return right away except
by chance; meanwhile national income will
drop as a result of that capital not being used
in less risky ways using the old GPT. Also, an
increase in the pace of innovation aimed at
exploiting the new GPT may well result in an
increased rate of job turnover, and hence in
an increased rate of unemployment. Green-
wood and Yorukoglu (1996) present an
analysis in which the costs of learning to use
equipment embodying the new GPT can
account for a prolonged productivity show-
down. Howitt (1996) shows how the arrival
of a new GPT can cause output growth to
slow down because it accelerates the rate of
obsolescence of existing physical and human
capital.

The second problem is more challenging

2. Helpman and Trajtenberg find that a measured slump occurs when the GPT arrives even if the full cost of R&D
is imputed as national income. The reason is that the discovery induces workers to leave a sector where their
marginal product is higher than the wage (because the intermediate sector is imperfectly competitive and pays
according to the marginal revenue product of labour rather than the marginal value product), and to enter a
sector - research — where their {imputed) marginal product is just equal to the same wage.
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to deal with. The question is, if the exploita-
tion of a new GPT is spread out over a period
of many decades why should it not result in
simply a slow enhancement in aggregate
productivity, as one industry after another
learns to use the new technology?

Again, several answers come to mind and
we actually think of the following three
explanations as being complementary. First
are the measurability problems: as already
stressed by David and others, it may take a
while before the new products and services
embodying the new GPT can be fully
accounted for by the conventional statistics.
(This, however, does not explain the
possibility of delayed slumps). Second, the
existence of strategic complementarities in the
adoption of new GPTs by the various sectors
of the economy may generate temporary
lock-in effects, of a kind similar to the
implementation cycles in Shleifer (1986). It
may then take real labor costs or other
“exogenous” economic parameters to reach a
minimum threshold before a critical number
of sectors decide to jump on the bandwagon
of the new GPT. A third explanation, which
will be the main focus of our analysis below,
lies in the phenomenon of social learning.
That is, the way most firms learn to use a new
technology is not to discover everything on
their own but to learn from the experience of
other firms in a similar situation: that is, for a
firm to learn from other firms for whom the
problems that must be solved before the
technology can successfully be implemented
bear enough resemblance to the problems
that must be solved in this firm, that it is
worth-while trying to use the procedures of
those successful firms as a “template” on
which to prepare for adoption in this firm.
Thus at first the fact that no one knows how
to exploit a new GPT means that almost
nothing happens in the aggregate. Only
minor improvements in knowledge take place

for a long time, because successful
implementation in any sector requires firms
to make independent discoveries with little
guidance from the successful experience of
others. But if this activity continues for long
enough, a point will eventually be reached
when almost everyone can see enough other
firms using the new technology to make it
worth their while experimenting with it
Thus even though the spread of a new GPT
takes place over a long period of time, most of
the costly experimentation through which
the spread takes place may be concentrated
over a relatively short subperiod, during
which there will be is a cascade or snowball
effect resulting sometimes in a (delayed)
aggregate slump.

The paper is organized as follows. We
present a simplified version of the Helpman
and Trajtenberg model of GPT which fits
nicely into the basic Schumpeterian
framework developed in Aghion and Howitr
(1992), and which also permits us to
endogeneize the long-run growth rate which
Helpman and Trajtenberg take as given. We
then extend this to introduce social learning
considerations with a view to addressing the
objections concerning the timing of
economic slow-downs. Finally we illustrate
how the objection concerning the size of
slow-down might be addressed by intro-
ducing three alternative features into the
basic social learning model namely skill-
difference, job search and obsolescence.

A simplified presentation of the

Helpman-Trajtenberg model of
GPTs

A brief reminder of the basic Schumpeterian
growth model

Let us first recall the main features of the
basic Schumpeterian growth model as
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developed in Aghion-Howitr (1992). Final
output is produced according to the flow
production function:

y=A-x°

where x is the flow of intermediate input and
A is a productivity parameter measuring the
quality of intermediate input x. (Intermediate
input itself is produced with labor according
to a one-to-one linear technology, so that x
corresponds also to the flow of manu-
facturing labor). In this economy where
population is constant (equal to L, which is
also the total flow of labor supply under the
assumption that each individual is endowed
with one unit flow of labor per unit of time),
growth will entirely result from vertical
innovations, that is from quality improve-
ments in A. That is, each innovation will
augment current productivity by the
multiplicative factor ¥>1: 4 _=yA . Inno-
vations in turn are the [random] outcome
of research activities, and are assumed
to arrive discretely with Poisson rate An,
where 7 is the current flow of research
acuvities.

In steady-state the allocation of labor
between research and manufacturing remains

_ln y(7)
A
'} ns
} Iny
} [71 3 T
In y(0) | :
i X > T
r=1 =2
Figure 2

constant over time, and is determined by the
arbitrage equation:

@ =Ayv (A)

where the LHS of (A) is the productivity-
adjusted wage rate @ =4 which a worker earns
by working in the manufacturing sector; and
A - ¥ - v is the expected reward from investing
one unit flow of labor in research. The
productivity-adjusted value » of an innova-
tion is determined by the Bellman equation:

rv=m(w) — Anv
where T(®w) denotes the productivity-
adjusted flow of monopoly profits accruing
to a successful innovator and where the term
(— Anv) corresponds to the capital loss
involved in being replaced by new subsequent
innovators.

The above arbitrage equation, which can
be reexpressed as:

n(w)

reAn

0 =Ay (A)

together with the labor market clearing
equation:
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x(w)+n=L (L) average number of innovations per unit of

where x (@) is the manufacturing demand for
labor,®> jointly determine the steady-state
amount of research 7 as a function of the
parameters A,Y,L,7, . Figure 1 above
depicts the two curves (A) and (L), and shows
the straightforward
results.

comparative  statics

In steady-state the flow of consumption
good (or final output) produced between the
+* and the (#1)” innovation is:

7, =1‘lt(L—n)a

which implies that in real time (whith we
denote by 1), the log of final output will
increase by In ¥ each time a new innovation
occurs. Thus in this one-sector economy
where each innovation corresponds by
definition to a major technological change
(i.e. to the arrival of a new GPT), growth will
be uneven (sce Figure 2) with the time path of
log y (1) being a random step function.

The average growth rate will be equal to
the size of each step, that is In ¥, times the

3. x (W)= arg max (0 x*"'- x—@ x)

x s
and
x (@)= max (&t x*" x—@- x).

time, thatis An: i.e, g=Anlny.

Although it is uneven, the time path of
aggregate output as depicted above does not
involve any slump. Accounting for the
existence of slumps requires an adequate
extension of the basic Schumpeterian model,
for example of the kind developed by Helpman
and Trajtenberg to which we now turn.

The Helpman- Trajtenberg model revisited

As before, there are L workers who can engage
either in production of existing intermediate
goods or in research aimed at discovering new
intermediate goods. But each intermediarte
good is now linked to a particular GPT. We
follow Helpman and Trajtenber in supposing
that before any of the intermediate goods
associated with GPT can be used profitably
in the final goods sector, some minimal
number of them must be available. But we
lose nothing essential by supposing that this
minimal number is one. Once the good has
been invented, its discoverer profits from a
patent on 1ts exclusive use in production,
exactly as in the basic model above.
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Thus the difference berween this model
and our basic model is that now the discovery
of a new generation of intermediate goods
comes in twe stages. First a new GPT must
come, and then the intermediate good must be
invented that implements that GPT. Neither
can come before the other. You need to see the
GPT before knowing what sort of good will
implement it, and people need to see the
previous GPT in action before anyone can
think of a new one. For simplicity we assume
that no one directs R&D towards the
discovery of a GPT. Instead, the discovery
arrives as a serendipitous byproduct of the
collective experience of using the previous one.

Thus the economy will pass through a
sequence of cycles, each having two phases, as
indicated in Figure 3 below. GPT arrives at
time 7. At that time the economy enters
phase 1 of the i* cycle. During phase 1, the
amount 7z of labor is devoted to research.
Phase 2 begins at time T+A, when this
research discovers an intermediate good to
implement GPT. During phase 2 all labor is
allocated to manufacturing, until GPT,
arrives, at which time the next cycle begins.
Opver the cycle output is equal to A F(L—n)
during phase 1 and A F(Z) during phase 2.
Thus the drawing of labor out of manu-
facturing and into research causes output to
fall each time a GPT is discovered, by an
amount equal to A, [F(L)-F(L-n)].

A steady state equilibrium is one in which
people choose to do the same amount of
research each time the economy is in phase 1,
that is where 7 is constant from one GPT to
the next. As before, we can solve for the
equilibrium value of 7 using a research
arbitrage equation and a labor market equili-
brium curve. Let ) be the wage, and v, the
discounted expected net value of profits in
the intermediate goods sector in phase j, each
divided by the productivity parameter A of
the GPT currently in use. In a steady state

these productivity-adjusted variables will all
be independent of which GPT is cutrently in
use.

Since research is conducted in phase 1 but
pays off when the economy enters into phase
2 with a productivity parameter raised by the
factor 7, the usual arbitrage condition must
hold in order for there to be a positive level of
research in the economy:

w=AYv, (1)

Suppose that once we are in phase 2, the new
GPT is delivered by a Poisson process with a
constant arrival rate equal to g. Then the
value of z, is determined by the Bellman
equation:

ro,=1 (@,)+ (v —v,) (2)
By analogous reasoning, we have:
rv =T (@) — Any, (3)

Combining (1) — (3) yields the research

arbitrage equation:
ut(o,)
w2y [n (@) 8 ) 9

Since no one does research in phase 2, we
know that the value of @, is determined
independendy of research, by the market
clearing condition: L=x(®,). Thus we can
take this value as given and regard equation
(4) as determining @, as a function of n. The
value of » is determined, as usual, by this
equation together with the labor-market
equation:

L-n=x(w) (5)

As in the basic model, the level of research »
is an increasing function of the productivity
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of research A, the size of improvement created
by each GPT 7, and the population Z; and 2
decreasing function of the rate of interest 7.
The arrival rate it of GPTs, can be shown
to have a negative affect on research;’
intuitively, an increase in (I discourages
research by reducing the expected duration of
the first of the two phases over which the
successful researcher can capitalise the rents
from an innovation. The size of the slump In
(F(L))—In (F(L-n)) is an increasing function
of n, and hence will tend to be positively
correlated with the average growth rate.

The average growth rate will be the
frequency of innovations times the size In ¥,
for exactly the same reason as in the basic
model. The frequency, however, is deter-
mined a little differently than before because
the economy must pass through zwo phases.
An innovation is implemented each time a
full cycle is completed. The frequency with
which this happens is the inverse of the
expected length of a complete cycle. This in
wurn is just the expected length of phase 1
plus the expected length of phase 2:

Thus we have the growth equation:

U-An
[+ An (©)

Eg=Iny-

Thus the expected growth rate will be
positively affected by anything that raises
research, with the possible exception of a fall
in it. In the limit, when g falls to zero, growth
must also fall to zero as the economy will
spend an infinitely long time in phase 2,
without growing. Thus for small enough
values of 1, Fg and n will be affected in
opposite directions by a change in y.

One further property of this cycle worth
mentioning is that, as Helpman and Trajten-
berg point out, the wage rate will rise when
the economy goes into a slump. That is, since
there is no research in phase 2 the normalized
wage must be low enough to provide
employment for all L workers in the manu-
facturing sector, whereas with the arrival of
the new GPT, the wage must rise to induce
manufacturers  to
research.

As already discussed in the introduction,
the Helpman and Trajtenberg model may not
quite fit the empirical and/or anecdotal
evidence on the macroeconomic impact of
major technological changes, to the extent
that it predicts immediate slumps of very
small magnitude. Whilst the introduction of
social learning considerations in the next
section will contribute to explaining the
observed delays in the macroeconomic
response to new GPTs, other considerations
such as skill differentials, job search and

obsolescence introduced in the following

release workers into

4. To show this, it suffices to show that an increase in g shifts the research arbitrage curve to the left. By applying
the implicit function theorem to (4) we see that the sign of this shift is:

Ayn(w,)

d
sgn Z‘[—l’i = —s5gn ((Dl— _l'_-l-_z._ﬂl_)

Since no research is done in phase 2, labour market equilibrium requires @,< @, and hence n(@,}>n(®,).

Applying this to (4) yields:

o >)Lyn(a>) '

1 r+An

reAn+id R Ayn(w)

r+il r+An
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section can help account for the macro-
economic significance of GPT — driven
fluctuations.

A model of major technological
change through social learning

Basic set-up

We consider the following dynamic model of
the spread of technology, which is similar to
the sorts of models used by epidemiologists
when studying the spread of disease, which
also takes place through a process of social
interaction between those who have and
those who have not yet been exposed to the
new phenomenon. The setting of model is
like the model we have just described, with a
continuum of sectors, uniformly distributed
on the unit interval, except that now each
sector must invent its own intermediate good
in order to exploit the GPT. We study here
the nature of the cycle caused by the arrival of
a single GPT, under the assumption that the
arrival rate Y4 is so small thar there is
insignificant probability that the next GPT
will arrive before almost all sectors have
adopted the one that has just arrived. In order
to simplify the analysis even further we
suppose that the amount of research in each
sector is given by a fixed endowment of
specialized research labor. Thus all the
dynamics will result from the effects of social
learning on the payoff rate to experimen-
tation. This is the phenomenon that we
believe to be at the hearr of the timing of the
delayed cyclical response to GPTs. Endo-
genizing the allocation of labor between
research and manufacturing would just
accentuate the effects we find, as it would
draw more labor research, hence
augmenting the intensity of experimentation,
just when the informational cascade we focus
on is already having the same effect.

into

Aggregate output at any point in time is
produced by labor according to the constant
returns technology:

Y={[] AG)® x(i)y*di = (7)

where A(7) =1 in sectors where the old GPT
is still used, and A(?) =¥ >1 in sectors that
have successfully innovated, while x (¢ ) is
manufacturing labor used to produce the
intermediate good in sector i.

We assume now that in each sector an
innovation requires three breakthroughs
rather than the two breakthroughs of the
previous model. First, the economy wide
GPT must be discovered. Second, a firm in
that sector must acquire a “template”, on
which to base experimentation. Third, the
firm must use this template to discover how
to implement the GPT in its particular sector.
(This third stage is equivalent t the
component finding stage in the Helpman
and Trajtenberg model, whilst the second
stage is new). Thus all sectors are in one of
three states. In state 0 are those sectors who
have not yet acquired a template. In state 1
are those who have a template but have not
yet discovered how to implement it. In state 2
are those sectors who have succeeded in
making the transition to the new GPT. We let
the fraction of sectors in each state be
represented by N and suppose that
initially n =1,7=n=0.

A sector will move from state O to state 1
if a firm in that sector either makes an
independent discovery of a template or if it
discovers one by “imitation” that is by
observing at least £ “similarly located” firms
that have made a successful transition to the
new GPT (firms in state 2). The Poisson
arrival rate of independent discoveries to such
a sector is A <<1. The Poisson arrival rate of
opportunities to observe m similarly located
firms is assumed to equal unity. The
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probability that such an observation will pay
off (in other words the probability that at
least £ among the m similar firms will have
successfully experimented the new GPT) is
given by the cumulative Binomial:

¢ (mk, nz)zjge( Z) n;{'(l—nz)m—J

since 7, is the probability that a randomly
selected firm will be in state 2. Thus the flow
of sectors from state 0 to state 1 will be nj
times the flow probability of each sector
making the transition: A +@ (m,kn).

For a sector to move from state 1 to state
2, the firm with the template must employ at
least N units of labor per periods (the
equivalent of z in the Helpman and
Trajtenberg model). We can think of this
labor as being used in formal R&D, informal
R&D, or in an experimental starting firm. In
any case it is not producing current output.
Instead it is allowing the sector access to a
Poisson process that will deliver a workable
implementation of the new GPT with an
arrival rate of A,. Thus the flow of sectors
from states 1 to 2 will be the number of
sectors in state 1, 7, times the success rate per
sector per unit of time 4,.

We can summarize the discussion to this
point by observing that the evolution over
time of the two variables 7, and 7, is given by

the autonomous system of ordinary
differential equation:

n = [}LO+(p(m,/e,n2)] (l—nl-nz)—lln!

n = 2’1'"1 (S

with initial condition: 7,(0)=0,7,(0)=0. (The
time path of 7, is then given automatically by
the identity n= 1-n—n,.)

Figure 4 depicts the solution to the above
system (S). Not surprisingly, the timepath of
n, follows a logistic curve, accelerating at first
and slowing down as 7, approaches 1, with
the maximal growth rate occurring some-
where in the middle. Likewise the path of n,
must peak somewhere in the middle of the
transition, since it starts and ends at zero. If
the arrival rate A, of independent discoveries
is very small then both 7z and », will remain
near zero for a long time. Figure 4 shows the
behaviour of 7 and 7, in the case where
4,=.005, A,=.3,m=10 and 4=3. The number
of sectors engaging in experimentation peaks
sharply in year 20 due to social learning.

The solution to the system (S) can be used
with the aggregate production function (7)
and the market clearing condition for labor to
determine the time path of aggregate output.
Using the symmetry of the production
technology (7), which implies that all the
sectors using the same GPT (either old or
new) will demand the same amount of
manufacturing labor, we can reexpress the
flow of aggregate output as:

Y={j01-n;x0(i)a di +y®- jl_l_nz x (Hdifie (8)

where x (resp. x,,) denotes the flow of labor
demand by a sector using the old (resp the
new) GPT.

In this Cobb-Douglas world the local
monopolists in sectors in state 0 and 1 who
use the old technology will demand labor
according to the demand function®

5. This follows from profit-maximization: for any sector 7, x (1)}= arg_max {p(x) - x—wx}, where:

p (@)=l = o Y1

=0 - .Yuxu-l . Yl—a

if sector i uses old technology

if sector is uses the new technology.

The corresponding first-order conditions, respectively for old and new sectors, yield the above equations {9)

and (10)..
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while those in sectors in state 2 will demand
labor according to:

L
x,=(wlo - A%t - Y (10)
where w is the real wage rate.

Now using the market clearing condition:

(l—nz)x0+n2'xN +n, N=L (L)
——
manufacturing labor demand

————
expetimenting labor

one can solve for the real wage was a function
of ¥, » and »,. Substituting this solution into
the above expressions for x and x, and then
substituting the resulting values of x, and x,,
into (8) yields the following reduced form
expression for output:

Y=(L-nN) - (l-ny+my®) ®  (11)

Figure 5 shows the time path of output,
which results from the above dynamics in n,
and 7, in the benchmark case where N=6,
L=10 and a =.5. As expected, output is not
much affected by the new GPT for the first
decade and half, but then it enters a severe
recession precisely when the number of
sectors engaging in experimentation increases
sharply as a result of social learning: output
reaches a trough in year 19, after a 10.5%
drop in output. From there output begins to
grow, ultimately attaining a value of ¥ (=1.5)
times its original value.

The delay in the slump caused by the
GPT could not have occurred without the

impacr of social learning.® That is, suppose
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that the function @(m.kn,) that embodies
the effects of social learning were replaced by
a constant value, (00=I01q0(m,k, nz)dnz, whose
average value was the same but which was not
affected by the process of observing other
sectors that have succeeded in implementing
the new GPT. Then 7, would still follow a
mild logistic curve but the intensity of
experimentation 7, would rise immediately
following the arrival of GPT and would fall
monotically from then on. Output could go
through a slump but the maximal rate of
decline would occur immediately at year 0.
This benchmark case of no social learning is
illustrated in Figure 6.

Intuitively, the reason why the slump
cannot be delayed in this case is as follows. In
order for output to be falling there must be a
positive flow of sectors into state 1, which is
drawing workers out of manufacturing. But
without social learning this flow must be
diminishing whenever a slump is underway,
since the rise in the level of 7 (and in #)) will
be reducing the rate of growth of 7. (See the
above equation 7, in (S)). Thar is, the rise in
n,+n, reduces the number of sectors 7, from
which new experimentation can arrive, while
the rise in », increases the flow of successful
innovators out of the state of experimen-
tation. Thus ecither the slump starts right

6. Greenwodd and Yorukoglu (1996) assume a private learning process that also produces diffusion according to

a mild logistic curve.
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away, in which case its intensity will diminish  resulting increase in the likelihood of
steadily, or it never starts at all.” What social  imitation counterbalances the fall in the
learning does is to reverse the effect of , on  number of possible imitators, thus causing
the rate of growth of #; that is, as n, rises, the  the cascade at the heart of our analysis.

7. To see this more formally, suppose that the output function (11) can be approximated by its first-order Taylor
expansion around 7 =7=0:
= . - 1-« 1ot
Y=L-N-n+& n; 5:—6!—(7 -1) L>0.

Because #, is always positive, 72, must also be positive whenever Y'is not rising. Thus:
If Y<0, then:

Y=-N-n+& i,
Y=-N[A+@)(l-n-n) ~An] + Ekn
V= [NQro+ A) + EL) e N +@) 7,

¥> 0 (because #,>0, in,>0).

Hence a delayed slump, with Yturning negative or becoming more negative at some date £>0, is impossible.
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Table 1

Parameter Value Slump Size Peak date Trough date

Benchmark yes 11 % 12 19

o 0.2 yes 12 % 12 19

(0.5) 0.8 yes 8 % 15 19

Y 1.1 yes 22 % 0 20

(1.5) 3.0 no

k 1 yes 23 % 0 5

3) 5 yes 4% 37 42

m 3 no

(10) 30 yes 22 % 4 10

N 2 no

(6) 8 yes 20 % 11 19

A, 001 yes 11 % 32 40

(.005) 025 yes 10 % 5 10

A, 0.1 yes 22 % 13 29

(0.3} 1.0 no

Some comparative dynamics

Table 1 below shows how the time path of
aggregate output responds to variations in the
basic parameters of the model, namely:

— o, which measures the degree of

substitutability across intermediate inputs.

— v, which measures the size of productivity
improvements brought about by the new

GPT.
— N, the number of workers taken out of
manufacturing by each experimenting

firm.

— m, the number of sectors potentially
“similar” to a given sector.

— &, the required number of observations of

successful experimentations in order to
acquire a template “by imitation”.

. — A, the arrival rate of independent ideas

for new templates.
- 7\.1, the arrival rate of success for
experimenting firms.

In all cases the simulation produces either a
marked slump, as in Figure 5 above, or a
monotonic increase in output. When there is
no slump there is an initial period of relatively
slow growth followed by a sharp acceleration
coming just after the peak in experimen-
tation. When there is a slump it almost always
comes after a period of mild growth, which
itself is often preceded by a very mild (less
than half a percentage point) recession. The
size of slump reported in Table 1 is the
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percentage shortfall from the peak attained at
the end of the period of mild growth (or from
year 0 if no such period exits) to the trough.
From Table 1 we can see:

(a) the magnitude of slumps increases as o
that is when intermediate
inputs become less substitutable. This is
fairly intuitive: as o decreases, the

decreases,

downsizing of old manufacturing sectors
which results from labor being diverted
away into experimentation, is less and less
substituted for by the new - more
productive — intermediate good sectors.

(b) the magnitude of slumps decreases as ¥
increases, and for sufficiently large ¥ the
slump even disappears. Again, this result
is intuitive: the bigger productivity of new
sectors compensates for the reduction in

old caused by

experimentation (and by the resulting
wage increase), thereby reducing the scope
for aggregate slumps.

output i sectors

(c) If m is oo small, output grows steadily:
indeed the lower m, the lower the scope
for social learning and for the resulting
snow-ball effects on aggregate output.

(d) An increase in £ leads to bigger delays but
smaller slumps: as & increases it will take
longer for “imitation” and social learning
to become operational and by the time it
becomes so, a higher number of sectors
will have already moved into using the
new and more productive GPT, hence the
smaller the size of aggregate slumps.

(e) An increase in N leads to larger slumps.

This is straightforward: the bigger NV, the
more labor will be diverted away from
manufacturing into experimentation by
firms in state 1, and therefore the bigger
the size of slumps when social learning
causes the fraction of experimenting
sectors to sharply increase.

(f) An increase in the arrtval rate of
independent ideas A, speeds up the
macroeconomic response to the new
GPT. This is not surprising, for the larger

7\.0 the faster the conditions will be created
for social learning to operate.

(g) An increase in the success rate of
experimentation A, reduces the size of
slumps: this is again easy to understand,
for the larger A, the faster the emergence
of sectors using the new GPT, which

for the

manufacturing

compensate downsizin of
p g
activities induced by

experimentation activities.

Accounting for the size of
slowdowns

Skill differentials

The last five years or so have witnessed an
upsurge of empirical papers on skill
differentials and wage inequality, and their
relationship with technological change (in
particular, see Juhn et al. (1993). It turns out
that a straightforward extensions of our GPT
model can immediately account for the
observed positive correlation between the
acceleration of technological progress
resulting from the introduction of new GPT,

and the increasing skill differential.® The

8. Our explanation of both the differential and the slowdown is similar in spirit to that of Greenwood and
Yorukoglu (1996) who also emphasize the role of skilled labor in implementing new technologies.
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same extension can also magnify the slump.

More formally, suppose that the labor
force L is now divided into skilled and
unskilled workers, and that the imple-
mentation of the new GPT requires skilled
labor whereas old sectors can indifferently use
skilled or unskilled workers to manufacture
their intermediate inputs. Also, let us assume
that the fraction of skilled workers is
increasing over time, e.g. as a result of
schooling and/or training investments which
we do not model here:

L(s)=L (1- (1-1)e™), 1<l,

where 7 is the initial fraction of skilled
workers and A, is a positive number
measuring the speed of skill acquisition.

The transition process from the old to the
new GPT can then be divided into two
subperiods. First, in the early phase of
transition (i.e. when #is low) the number of
sectors using the new GPT is too small to
absorb the whole skilled labor force, which in
turn implies that a positive fraction of skilled
workers will have to be employed by the old
sectors at the same wage as their unskilled
peers. Thus, during the carly phase of
transition the labor market will remain
“unsegmented’, with aggregated output and
real wage being determined exactly as before.’

Second, in the later state of transition,
where the fraction of new sectors has grown
sufficiently large that it can absorb the whole
skilled labor force, the labor market will
become segmented, with skilled workers
being exclusively employed (at a higher wage)

9. i.e. by equations (L) and (11), which yield:

la Lg
Y=(L-n NY1-ns+ny © )=
and
La l=g
Y

I e

wza[l—n2+n2

by new sectors whilst the unskilled workers
remain in old sectors. Let w_and w denote
the real wages respectively paid to unskilled
and skilled workers. The demand for
manufacturing labor by the old and new
sectors are still given by:

1
a-T
x0= (Lgi )a ’ Y
and
1
a1

except that we now have: w > w , where the
wo real wages are determined by two
separate labor market clearing conditions,
respectively:

L=nN+ n,x, 2w, (12)
and
L=L- L=(1-n) %, Dw, (13)
These equations yield:
_ nz Y [+ 250}
Ry ey
and
__(=m)Yy o
wz )

which, after substitution for w and w in the
. 3 u
above expressions for x, and x, and after
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substituting the resulting values of x and x,,
in equation (11), yields the following
expression for aggregate output during the
segmented phase of transition:

V(1o o L-L)os noy*(L -, N)J2

(The cut-off date between the unsegmented
and segmented phases of transition to the
new GPT is simply determined by:

Figure 7a depicts the time-path of real wages
and Figure 7b the time-path of aggregate
output in the benchmark case of the previous
section with A=.05 and 7 =.0.25. Two
interesting conclusions emerge from this
simulation.

premium starts

(a) The skill (w/w)
increasing sharply in the year #=21 when
social learning is accelerating the flow of

new sectors in the economy, and then the
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premium keeps on increasing although
more slowly during the remaining part of
the transition process.!® Since everyone
ends up earning the same (skilled) wage,
standard measures of wage inequality first

rise and then fall.

(b) Compared to the benchmark case withour
skill differentials and labor market
segmentation, the magnitude of the slump
is the same (11%) but the recovery is
slower: the reason for this is simply
that high productivity sectors are
“constrained” by the short supply of
skilled labor; in simulations with other
parameter values we see thar the slump is
exacerbated by the skill shortage if the
market becomes segmented near the peak
of experimentation.

Job search
Let us now extend the basic set-up in another
direction namely by introducing other costly

job search which, together with the

10. The acceleration in the premium, with w increasing and w_ decreasing sharply at the beginning of the
segmented phase, has to do with the high demand for skilled experimentation labor during this time-interval
where social learning peaks. The skilled real wage w starts tapering off thereafter where most sectors are already
in phase 2 and the supply of skilled labor keeps on increasing over time.
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destruction of jobs by new sectors generates
unemployment on the transition path.
Unemployment in turn diverts a higher
fraction of the labor force out of manu-
facturing activities, thereby increasing the size
of slumps relative to the benchmark case
simulated above. Indeed slumps can now
occur even if the labor N needed to perform
experiments is negligible.

More formally, suppose that, the fraction
B of wortkers in each sector that adapts the
GPT (and moves in to 7,) go into temporary
unemployment, because they are unable to
adapt to the new GPT in the sector where
they were formally unemployed. Suppose also
that the fraction A, of the unemployed per
period succeed in finding a new job. Then the
evolution of U, the number unemployed, is
governed by:

Uzﬁxo(w)/'l.ln] -4, U.

job destruction job creation

Output and the real wage are determined
exactly as in the basic model except with the
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“effective labor force” [-U instead of L.
Putting this real wage into the demand
function (9) and substituting for Yyields the
equilibrium quantity:

L-U-n N
xo(w)z .
1-n,+n,'"*

Figure 8 depicts the time paths of

unemployment and aggregate output with
the benchmark parameter set from Section 3
together with B=0.5 and A,=2. The
unemployment rate reaches a sharp peak in
year 20, just after experimentation reaches its
peak, with the predictable effect of increasing
the size of the slump (from 11% to 13%).

Obsolescence

QOur analysis in the previous section has
already discussed various mechanisms that
may potentially account for the significant
size of macroeconomic fluctuations caused by
the arrival of a new GPT: in particular the

11. For simplicity, we identify flows into unemployment with flows out of the labor force. This allows us to bypass
the technical complications involved in modelling explicitly the bargaining game between new sectors and
workers. Taking the latter more traditional modelling route would signicantly complicate the algebra without

adding much in terms of economic insights.



32

Philippe Aghion and Peter Howitt

existence of labor market segmentations; or
the occurrence of errors in the experi-
mentation process which, together with labor
market frictions, will generate unemploy-
ment fluctuations on the transition path to
the new GPT. There is however another and
maybe more straightforward explanation for
the slow-downs or slumps induced by major
technological changes, one that should
immediately occur to anyone remotely
familiar with Schumpeter’s ideas: namely, the
(capital) obsolescence caused by the new
wave of (secondary) innovations initiated by
a new GPT.

To capture this idea, we first reinterpret
the basic model by supposing that the factor
used in both production and research is not
labor but capital, either physical or human.
Each time an innovation arrives imple-
menting the GPT in a sector it destroys a
fraction 0 of the capital that had previously
been employed in that sector, because all
capital must be tailor made to use a specific
technology in a specific sector, and some of
the capital is lost when it is converted to use
in another sector or with another techno-
logy.'? For simplicity, suppose that people are
target savers, that is, they save a constant
fraction s per period of the gap between the
desired capital stock L and the actual stock K
Then the rate of net accumulation of capital
is:

K=s (L-K) - 6x(w) - A m,.

gross saving obsolescence

Output and the real wage (that is, the real rate
of return to capital) are determined as in the
basic model, but with L replaced by K. The
initial stationary state with 72=0 has K=L.

It is easy to see that this modification of

12. This is the assumption made in Howitt (1996).

the basic model is formally equivalent to that
of the previous section, with the gap I-K
replacing the number of unemployed U, the
saving rate s replacing the job-finding rate 4,,
and the obsolescence fraction d replacing the
job-destruction fraction 3. Thus, for the same
reasons as in the previous section, the capital
shortfall will peak sharply around the same
time as the peak in experimentation, and the
slump will be larger than if there were no
obsolescence.
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