Skip to main content

Fay’s Trisecant Formula and Hardy H 2 Reproducing Kernels

  • Chapter
Reproducing Kernels and their Applications

Part of the book series: International Society for Analysis, Applications and Computation ((ISAA,volume 3))

Abstract

By means of Riemann’s theta function and Klein’s prime form, we can express many important conformal invariants defined on a planar regular region. Fay’s trisecant formula is the key to obtain various identities and inequalities among them. Also, we give a short proof of the trisecant formula and discuss its application to an analogue of the Pick-Nevanlinna extremal problems for Hardy H 2 spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Bergman, The kernel function and conformal mapping, Amer. Math. Soc. Providence, R.I. 1750, 1970.

    Google Scholar 

  2. J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics 352, Springer-Verlag, 1973.

    Google Scholar 

  3. D. A. Hejhal, Theta functions, kernel functions and Abelian integrals, Amer. Math. Soc. Memoir 129, 1972.

    Google Scholar 

  4. A. H. Read, A converse of Cauchy’s theorem and applications to extremal problems, Acta Math. 160 (1959), 1–22.

    MathSciNet  Google Scholar 

  5. S. Saitoh, The Bergman norm and the Szegö norm, Trans. Amer. Math. Soc. 249 (1979), 261–279.

    MathSciNet  MATH  Google Scholar 

  6. Theory of reproducing kernels and its applications,Pitman Research Notes in Math- ematics Series 189, Longman Scientific & Technical, 1988.

    Google Scholar 

  7. L. Sario and K. Oikawa, Capacity functions, Die Grundlehren der mathematischen Wissenschaften, Band 149 Springer-Verlag New York Inc., New York, 1969.

    Google Scholar 

  8. N. Suita, Capacities and kernels on Riemann surfaces, Arch. Rational Mech. Anal. 46 (1972), 212–217.

    MathSciNet  MATH  Google Scholar 

  9. H. Widom, Extresnal polynomials associated with a system of curves in the complex plane. Adv. in Math. 2 (1969), 127–2: 32.

    MathSciNet  Google Scholar 

  10. A. Yamada, Theta functions and domain functions, RIMS Kokyuroku 323 (1978), 84–101 (in Japanese).

    Google Scholar 

  11. A. Yamada. Positive differentials, theta functions and Hardy H 2 kernels,Proc. Amer. Math. Soc.. (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yamada, A. (1999). Fay’s Trisecant Formula and Hardy H 2 Reproducing Kernels. In: Saitoh, S., Alpay, D., Ball, J.A., Ohsawa, T. (eds) Reproducing Kernels and their Applications. International Society for Analysis, Applications and Computation, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2987-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2987-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4809-0

  • Online ISBN: 978-1-4757-2987-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics