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Preface 

Between 1960 and 1980 a revolution in statistics occurred: Fisher's 
paradigm introduced in the 1920-1930s was replaced by a new one. This 
paradigm reflects a new answer to the fundamental question: 

What must one know a priori about an unknown functional dependency 
in order to estimate it on the basis of observations? 

In Fisher's paradigm the answer was very restrictive - one must know 
almost everything. Namely, one must know the desired dependency up to 
the values of a finite number of parameters. Estimating the values of these 
parameters was considered to be the problem of dependency estimation. 

The new paradigm overcame the restriction of the old one. It was shown 
that in order to estimate dependency from the data, it is sufficient to know 
some general properties of the set of functions to which the unknown de­
pendency belongs. 

Determining general conditions under which estimating the unknown 
dependency is possible, describing the (inductive) principles that allow one 
to find the best approximation to the unknown dependency, and finally 
developing effective algorithms for implementing these principles are the 
subjects of the new theory. 

Four discoveries made in the 1960s led to the revolution: 

(i) Discovery of regularization principles for solving ill-posed problems 
by Tikhonov, Ivanov, and Phillips. 

(ii) Discovery of nonparametric statistics by Parzen, Rosenblatt, and 
Chentsov. 
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(iii) Discovery of the law of large numbers in functional space and its 
relation to the learning processes by Vapnik and Chervonenkis. 

(iv) Discovery of algorithmic complexity and its relation to inductive in­
ference by Kolmogorov, Solomonoff, and Chaitin. 

These four discoveries also form a basis for any progress in the studies of 
learning processes. 

The problem of learning is so general that almost any question that 
has been discussed in statistical science has its analog in learning theory. 
Furthermore, some very important general results were first found in the 
framework of learning theory and then reformulated in the terms of statis­
tics. 

In particular learning theory for the first time stressed the problem of 
small sample statistics. It was shown that by taking into account the size 
of sample one can obtain better solutions to many problems of function 
estimation than by using the methods based on classical statistical tech­
niques. 

Small sample statistics in the framework of the new paradigm constitutes 
an advanced subject of research both in statistical learning theory and in 
theoretical and applied statistics. The rules of statistical inference devel­
oped in the framework of the new paradigm should not only satisfy the 
existing asymptotic requirements but also guarantee that one does one's 
best in using the available restricted information. The result of this theory 
are new methods of inference for various statistical problems. 

To develop these methods (that often contradict intuition), a compre­
hensive theory was built that includes: 

(i) Concepts describing the necessary and sufficient conditions for con­
sistency of inference. 

(ii) Bounds describing the generalization ability of learning machines 
based on these concepts. 

(iii) Inductive inference for small sample sizes, based on these bounds. 

(iv) Methods for implementing this new type of inference. 

Two difficulties arise when one tries to study statistical learning theory: 
a technical one and a conceptual one - to understand the proofs and to 
understand the nature of the problem, its philosophy. 

To overcome the technical difficulties one has to be patient and persistent 
in following the details of the formal inferences. 

To understand the nature of the problem, its spirit, and its philosophy, 
one has to see the theory as a whole, not only as a collection of its different 
parts. Understanding the nature of the problem is extremely important 
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because it leads to searching in the right direction for results and prevents 
searching in wrong directions. 

The goal of this book is to describe the nature of statistical learning the­
ory. I would like to show how the abstract reasoning implies new algorithms. 
To make the reasoning easier to follow, I made the book short. 

I tried to describe things as simply as possible but without conceptual 
simplifications. Therefore the book contains neither details of the theory 
nor proofs of the theorems (both details of the theory and proofs of the the­
orems can be found (partly) in my 1982 book Estimation of Dependencies 
Based on Empirical Data, Springer and (in full) in my forthcoming book 
Statistical Learning Theory, J. Wiley, 1996). However to describe the ideas 
without simplifications I needed to introduce new concepts (new mathe­
matical constructions) some of which are non-trivial. 

The book contains an introduction, five chapters, informal reasoning and 
comments on the chapters, and a conclusion. 

The introduction describes the history of the study of the learning prob­
lem which is not as straightforward as one might think from reading the 
main chapters. 

Chapter 1 is devoted to the setting of the learning problem. Here the 
general model of minimizing the risk functional from empirical data is in­
troduced. 

Chapter 2 is probably both the most important one for understanding 
the new philosophy and the most difficult one for reading. In this chapter, 
the conceptual theory of learning processes is described. This includes the 
concepts that allow construction of the necessary and sufficient conditions 
for consistency of the learning process. 

Chapter 3 describes the nonasymptotic theory of bounds on the conver­
gence rate of the learning processes. The theory of bounds is based on the 
concepts obtained from the conceptual model of learning. 

Chapter 4 is devoted to a theory of small sample sizes. Here we introduce 
inductive principles for small sample sizes that can control the generaliza­
tion ability. 

Chapter 5 describes, along with classical neural networks, a new type of 
universal learning machine that is constructed on the basis of small sample 
sizes theory. 

Comments on the chapters are devoted to describing the relations be­
tween classical research in mathematical statistics and research in learning 
theory. 

In the conclusion some open problems of learning theory are discussed. 

The book is intended for a wide range of readers: students, engineers, and 
scientists of different backgrounds (statisticians, mathematicians, physi­
cists, computer scientists). Its understanding does not require knowledge 
of special branches of mathematics, nevertheless, it is not easy reading since 
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the book does describe a (conceptual) forest even if it does not consider 
the (mathematical) trees. 

In writing this book I had one more goal in mind: I wanted to stress the 
practical power of abstract reasoning. The point is that during the last few 
years at different computer science conferences, I heard repetitions of the 
following claim: 

Complex theories do not work, simple algorithms do. 

One of the goals of this book is to show that, at least in the problems 
of statistical inference, this is not true. I would like to demonstrate that in 
this area of science a good old principle is valid: 

Nothing is more practical than a good theory. 

The book is not a survey of the standard theory. It is an attempt to 
promote a certain point of view not only on the problem of learning and 
generalization but on theoretical and applied statistics as a whole. 

It is my hope that the reader will find the book interesting and useful. 
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