Skip to main content
Book cover

The Prokaryotes pp 3200–3221Cite as

The Family Chromatiaceae

  • Chapter

Abstract

The Family Chromatiaceae (purple sulfur bacteria) comprises physiologically and genetically closely related species and genera (Fowler et al., 1984) that carry out anoxygenic photosynthesis. The most important and selective environmental factors in their aquatic habitats are anoxic conditions, the presence of hydrogen sulfide, and illumination. The only other groups of phototrophic bacteria that thrive under similar environmental conditions are the Ectothiorhodospiraceae (see Chapter 171) and the Chlorobiaceae (green sulfur bacteria; see Chapter 195). Because they live in the same types of habitats, some discussion of the Chlorobiaceae must be included in this chapter. However, since the Chlorobiaceae are not phylogenetically related to the other anoxygenic phototrophic bacteria (Stackebrandt et al., 1984), they are treated in a separate chapter, Chapter 195.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Anagnostides, K., and Overbeck. J. 1966. Methanoxydierer und hypolimnische Schwefelbakterien. Studien zur ökologischen Biocönotik der Gewässermikroorganismen. Berichte der Deutschen Botanischen Gesellschaft 79: 163–174.

    Google Scholar 

  • Baas Becking. L. G. M., and Wood, E. J. F. 1955. Biological processes in the estuarine environment I II Ecology of the sulfur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 58: 160–181.

    Google Scholar 

  • Baas Becking. L. G. M. and Kaplan. I. R. 1956. Biological processes in the estuarine environment III Electrochemical considerations regarding the sulphur cycle. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 59: 85–96.

    Google Scholar 

  • Bavendamm, W. 1924. Die farblosen und roten Schwefelbakterien des Süß-und Salzwassers, Jena: Gustav Fischer Verlag.

    Google Scholar 

  • Bharati, P. A. L., Baulaigue, R., and Matheron, R. 1982. Degradation of cellulose by mixed cultures of fermentative bacteria and anaerobic sulfur bacteria. Zentralb. Bakteriol. Hyg., I. Abt. Orig. C3: 466–474.

    CAS  Google Scholar 

  • Biebl, H., and Malik, K. A. 1976. Long term preservation of phototrophic bacteria. p. 31–33. In: Codd, G. A., Stewart, W. D. P. (ed.). Proceedings of the Second International Symposium on Photosynthetic Prokaryotes, Dundee.

    Google Scholar 

  • Biebl. H., and Pfennig, N. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Archives of Microbiology 117: 9–16.

    Google Scholar 

  • Biebl. H., and Pfennig. N. 1979. COZ fixation by anaerobic phototrophic bacteria in lakes, a review. Ergebnisse der Limnologie, special volume of Archiv für Hydrobiologie 12: 18–58.

    Google Scholar 

  • Bollinger, R., Zürrer, H., and Bachofen, R. 1985. Photo-production of molecular hydrogen from waste water of a sugar refinery by photosynthetic bacteria. Appl. Microbiol. Biotechnol. 23: 147–151.

    Google Scholar 

  • Bose. S. K. 1963. Media for anaerobic growth of photosynthetic bacteria, p. 501–519. In: Gest, H., San Pietro, A., Vernon, I. P. (ed.), Bacterial photosynthesis. Yellow Springs, Ohio: Antioch Press.

    Google Scholar 

  • Buder, J. 1915. Zur Kenntnis des Thiospirillum jenense und seiner Reaktion auf Lichtreize. Jahrbuch für wissenschaftliche Botanik 56: 529–584.

    Google Scholar 

  • Caldwell. D. E. and Tiedje. J. M. 1975. The structure of anaerobic bacterial communities in the hypolimnia of several Michigan lakes. Canadian Journal of Microbiology 21: 377–385.

    Google Scholar 

  • Caumette, P. 1984. Distribution and characterization of phototrophic bacteria isolated from the water of Bietri Bay (Ebrie Lagoon, Ivory Coast). Canadian Journal of Microbiology 30: 273–284.

    CAS  Google Scholar 

  • Caumette, P. 1986. Phototrophic sulfur bacteria and sulfate-reducing bacteria causing red waters in a shallow brackish coastal lagoon (Prevost Lagoon, France). FEMS Microbiology Ecology 38: 113–124.

    CAS  Google Scholar 

  • Caumette, P., Baulaigue, R., and Matheron, R. 1988. Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas (Salins de Giraud, France). System. Appl. Microbiol. 10: 284–292.

    Google Scholar 

  • Cerruti, A. 1938. Le condizioni oceanografiche e biologiche del Mar Piccolo di Taranto durante l’agosto del 1938. Bolletino di Pesca. Piscicoltura ed Idrobiologia 14: 71 1751.

    Google Scholar 

  • Claus, D., and Schaab-Engels. Ch. (ed.). 1977. German collection of microorganisms, catalogue of strains. Munich: Gesellschaft für Strahlen-und Umweltforschung mbH.

    Google Scholar 

  • Cohen, Y., Krumbein. W. E., and Shilo, M. 1977. Solar Lake (Sinai) 2 Distribution of photosynthetic microorganisms and primary production. Limnology and Oceanography 22: 609–620.

    CAS  Google Scholar 

  • Cohn. F. 1875. Untersuchungen über Bakterien II. Beiträge zur Biologie der Pflanzen 1: 141–207.

    Google Scholar 

  • Cooper, R. C. 1963. Photosynthetic bacteria in waste treatment. Developments in Industrial Microbiology 4: 95103.

    Google Scholar 

  • Cooper, R. C., Oswald, W. J., Bronson, J. C. 1965. Treatment of organic industrial wastes by lagooning, p. 351–363. In: Proceedings, 20th Industrial Waste Conference, Engineering Bulletin Purdue Univ. Engin. Extens, Ser. No. 118.

    Google Scholar 

  • Cooper. D. E., Rands, M. B., and Woo. C.-P. 1975. Sulfide reduction in fellmongery effluent by red sulfur bacteria Journal of the Water Pollution Control Federation 47: 2088–2100.

    Google Scholar 

  • Cviie, V. 1955. Red water in the lake “Malo Jezero” (island of Mljet). Acta Adriatica 6: 1–15.

    Google Scholar 

  • Cviié, V. 1960. Apparition d’ “eau rouge” dans le Veliko Jezero (Ile de Mljet). Rapports et Procès-Verbeaux des Reunions de la Commission Internationale de l’Exploration Scientifique de la Mer Mediterranée 15: 79–81.

    Google Scholar 

  • Czeczuga, B. 1968a. Primary production of the purple sulfuric bacteria Thiopedia rosea Winogr. (Thiorhodaceae). Photosynthetica 2: 161–166.

    Google Scholar 

  • Czeczuga, B. 1968b. Primary production of the green hydrosulfuric bacteria Chlorobium limicola Nads. (Chlorobacteriaceae). Photosynthetica 2: 11–15.

    Google Scholar 

  • Dahl, C., and Trüper, H. G. 1989. Comparative enzymology of sulfite oxidation in Thiocapsa roseopersicina strains 6311, Ml and BBS under chemotrophic and phototrophic conditions. Z. Naturforsch. 44c: 617–622.

    CAS  Google Scholar 

  • Drews, G. 1989. Energy transduction in phototrophic bacteria, p. 461–480. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech Publ., Madison, WI. and Springer-Verlag, New York.

    Google Scholar 

  • Düggeli, M. 1924. Hydrobiologische Untersuchungen im Pioragebiet. Bakteriologische Untersuchungen am Ritomsee. Schweizerische Zeitschrift für Hydrologie 2: 65–205.

    Google Scholar 

  • Ehrenberg, Chr. G. 1838. Die Infusionsthierchen als vollkommene Organismen. Leipzig: Voss.

    Google Scholar 

  • Eichler, B., and Pfennig, N. 1986. Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Archives of Microbiology 146: 295–300.

    CAS  Google Scholar 

  • Eichler, B., and Pfennig, N. 1988. A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov. Archives of Microbiology 149: 395–400.

    CAS  Google Scholar 

  • Eimhjellen, K. E. 1967. Photosynthetic bacteria and carotenoids from a sea sponge Halichondrium panicea. Acta Chemica Scandinavica 21: 2280–2281.

    CAS  Google Scholar 

  • Eimhjellen, K. E. 1970. Thiocapsa pfennigii sp. nov. a new species of the phototrophic sulfur bacteria. Archiv für Mikrobiologie 73: 193–194.

    Google Scholar 

  • Eimhjellen, K. E., Steensland, H., and Traetteberg, J. 1967. A Thiococcus sp. nov. gen., its pigments and internal membrane system. Archiv für Mikrobiologie 59: 82–92.

    PubMed  CAS  Google Scholar 

  • Ensign, J. C. 1977. Biomass production from animal waste by photosynthetic bacteria, p. 455–479. In: Schlegel, H. G., and Barnea, J. (ed.), Microbial energy conversion. E Goltze KG, Göttingen.

    Google Scholar 

  • Fenchel, T. 1969. The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia 6: 1–182.

    Google Scholar 

  • Fillipi, G. M., and Vennes, J. W. 1971. Biotin production and utilization in a sewage treatment lagoon. Appl. Microbiol. 22: 49–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer, U. 1977. Die Rolle von Cytochromen im Schwefelstoffwechsel phototropher Schwefelbakterien. Doctoral thesis, University of Bonn.

    Google Scholar 

  • Fischer, U. 1984. Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic sulfur bacteria, p. 383–407. In: Müller, A. and Krebs, B. (ed.), Sulfur, its significance for chemistry, for the geo-, bio-and cosmophere and echnology. Elsevier, Amsterdam.

    Google Scholar 

  • Fischer, U. and Trüper, H. G. 1977. Cytochrome c-550 of Thiocapsa roseopersicina: Properties and reduction of sulfide. FEMS Microbiology Letters 1: 87–90.

    CAS  Google Scholar 

  • Fowler, V. J., Pfennig, N., Schubert, W., and Stackebrandt, E. 1984. Towards a phylogeny of phototrophic purple sulfur bacteria-16S rRNA oligonucleotide cataloging of 11 species of Chromatiaceae. Archives of Microbiology 139: 382–387.

    CAS  Google Scholar 

  • Fuller, R. C., Smillie, R. M., Sisler, E. C. and Kornberg, H. L. 1961. Carbon metabolism in Chromatium. Journal of Biological Chemistry 236: 2140–2149.

    PubMed  CAS  Google Scholar 

  • Gaffron, H. 1935. Über die Kohlensäureassimilation der roten Schwefelbakterien II. Biochemische Zeitschrift 279: 1–33.

    CAS  Google Scholar 

  • Genovese, S. 1963. The distribution of the HZS in the lake of Faro (Messina) with particular regard to the presence of “red water,” p. 194–204. In: Oppenheimer, C. H. (ed.), Symposium on Marine Microorganisms. Springfield Illinois: Charles C Thomas.

    Google Scholar 

  • Giesberger, G. 1947. Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species. Antonie van Leeuwenhock Journal of Microbiology and Serology 13: 135–148.

    Google Scholar 

  • Gietzen, J. 1931. Untersuchungen über marine Thiorhodaceen Zentralblatt fur Bakteriologie, Parasitenkunde und Infektionskrankheiten Abt. 283: 183–218.

    Google Scholar 

  • Gitlitz, P. H. and Krasna, A. J. 1975. Structural and catalytical properties of hydrogenase from Chromatium. Biochemistry 14: 2561–2568.

    PubMed  CAS  Google Scholar 

  • Gloyna, E. F. 1971. Waste stabilization ponds. World Health Organization Monograph Series No. 60. Geneva: World Health Organization.

    Google Scholar 

  • Göbel, E. 1978. Direct measurement of pure absorbance spectra of living phototrophic microorganisms. Biochimica et Biophysica Acta 538: 593–602.

    PubMed  Google Scholar 

  • Gogotov, I. N. 1978. Relationships in hydrogen metabolism between hydrogenase and nitrogenase in phototrophic bacteria. Biochimie 60: 267–275.

    PubMed  CAS  Google Scholar 

  • Gogotov, I. N. 1984. Hydrogenase of purple bacteria: properties and regulation of synthesis. Archives of Microbiology 140: 86–90.

    CAS  Google Scholar 

  • Gogotov, I. N. 1986. Hydrogenases of phototrophic microorganisms. Biochimie 68: 181–187.

    PubMed  CAS  Google Scholar 

  • Gorlenko, V. M. 1968. Photosynthetizing sulphur bacteria from reservoirs of South Crimea. [In Russian, with English summary.] Mikrobiologiya 37: 745–748.

    CAS  Google Scholar 

  • Gorlenko, V. M. 1974. Oxidation of thiosulphate by Amoebobacter roseus in the darkness under microaerophilic conditions. [In Russian, with English summary.] Mikrobiologiya 43: 729–731.

    CAS  Google Scholar 

  • Gorlenko, V. M., Vainstein, M. B., and Kachalkin, V. I. 1978. Microbiological characteristic of lake Mogilnoye. Archiv für Hydrobiologie 81: 475–492.

    CAS  Google Scholar 

  • Gorlenko, V. M., Krasilnikova, E. N., Kikina, O. G., and Tatarinova, N. Y. 1979. The new motile purple sulfur bacterium Lamprobacter modestohalophilus nov. gen., nov. sp. with gas vacuoles. (In Russian.) Izv. Akad. Nauk S.S.S.R. Ser. Biol. 5: 755–767.

    Google Scholar 

  • Gorlenko, V. M., Dubinina, G. A., and Kuznetsov, S. I. 1983. The ecology of aquatic microorganisms. Stuttgart: E. Schweizerbarth’sche Verlagsbuchhandlung.

    Google Scholar 

  • Guerrero, R., Mas, J., and Pedros-Alió, C. 1984 Buoyant density changes due to intracellular content of sulfur in Chromatium warmingii and Chromatium vinosum. Archives of Microbiology 137: 350–356.

    CAS  Google Scholar 

  • Guerrero, R., Pedros-Alió, C., Esteve, I., and Mas, J. 1987. Communities of phototrophic sulfur bacteria in lakes of the Spanish Mediterranean region. Acta Academiae Aboensis 47: 125–151.

    Google Scholar 

  • Hallenbeck, P. C. 1987. Molecular aspects of nitrogen fixation by photosynthetic prokaryotes. Critical Reviews in Microbiology 14: 1–48.

    PubMed  CAS  Google Scholar 

  • Hashwa, E. A., and Trüper, H. G. 1978. Viable phototrophic sulfur bacteria from the Black Sea bottom. Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 249–253.

    Google Scholar 

  • Hatzikakidis, A. D. 1952. Periodike erythrotes ton ydaton tes limnothalasses tou Aitolikou. Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6: 21–52.

    Google Scholar 

  • Hatzikakidis, A. D. 1953. Epochiakai ydrologikai ereynai eis tas limnothalassas Mesologgiou kai Aitolikou. Anatypon ek ton praktikon tou Ellenikou Ydrobiologikou Institoutou Akademias Athenon 6: 85–143.

    Google Scholar 

  • Hauser, B., and Michaelis, H. 1975. Die Makrofauna der Watten. Strände, Riffe und Wracks um den Hohen Knechtsand in der Wesermündung, Forschungsstelle für Insel-und Küstenschutz. Norderney, Jahresbericht 1974, 26: 85–119.

    Google Scholar 

  • Heldt, H. J. 1952. Eaux rouges. Bulletin de la Societé des Sciences Naturelles de Tunisie 5: 103–106.

    Google Scholar 

  • Hensel, G. and Trüper, H. G. 1981. O-Acetylserine sulfhydrylase and S-sulfocysteine synthase activities of Chromatium vinosum. Archives of Microbiology 130: 228–233.

    CAS  Google Scholar 

  • Hoffmann, C. 1942. Beiträge zur Vegetation des Farbstreiten-Sandwattes. Kieler Meeresforschungen 4: 85–108.

    Google Scholar 

  • Holm, H. W., and Vennes, J. W. 1970. Occurrence of purple sulfur bacteria in a sewage treatment lagoon. Applied Microbiology 19: 988–996.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imhoff, J. F. 1976. Phototrophe Bakterien salzhaltiger Standorte: Ökologische und taxonomische Aspekte. Diploma Thesis. University of Bonn.

    Google Scholar 

  • Imhoff J F., and Trüper. H. G. 1976. Marine sponges as habitats of anaerobic phototrophic bacteria. Microbial Ecology 3: 1–9.

    PubMed  CAS  Google Scholar 

  • Imhoff, J. E, and Trüper, H. G. 1980. Chromatium purpuratum sp. nov., a new species of the Chromatiaceae. Zentralblatt für Bakteriologie, Abt. 1 Orig., Reihe C 1: 61–69.

    Google Scholar 

  • Irgens, R. L. 1983. Thioacetamide as a source of hydrogen sulfide for colony growth of purple sulfur bacteria. Current Microbiol. 8: 183–186.

    CAS  Google Scholar 

  • Isachenko, B. L. 1914. Studies of bacteria of the Arctic Ocean. Citedin: Gorlenko Vainstein and Kachalkin, 1978.

    Google Scholar 

  • Jannasch, H. W. 1957. Die bakterielle Rotfärbung der Salzseen des Wadi Natrun. Archiv für Hydrobiologie 53: 425–433.

    Google Scholar 

  • Jannasch, H. W., Trüper, H. G., and Tuttle, J. H. 1974. Microbial sulfur cycle in Black Sea, p. 419–425. In: Degens, E. T., Ross, D. A., (ed.), The Black Seageology, chemistry and biology. Tulsa, Oklahoma: American Association of Petroleum Geologists (Memoir 20 ).

    Google Scholar 

  • Kämpf, C., and Pfennig, N. 1980. Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Archives of Microbiology 127: 125–135.

    Google Scholar 

  • Kaiser. P. 1966. Contribution à l’étude de l’écologie des bactéries photosynthétiques. Annales de l’Institut Pasteur 111: 733–749.

    Google Scholar 

  • Kobayashi, M., and Kurata, S. 1978. The mass culture and cell utilization of photosynthetic bacteria. Process Biochem. 13: 27–30.

    CAS  Google Scholar 

  • Kobayashi, M., and Tchan, Y. T. 1973. Treatment of industrial waste solutions and production of useful byproducts using a photosynthetic bacterial method. Water Research 7: 1219–1224.

    CAS  Google Scholar 

  • Kobayashi, M., and Tchan, Y. T. 1978. Formation of dimethylnitrosamine in polluted environment and the role of photosynthetic bacteria. Water Research 12: 199–201.

    CAS  Google Scholar 

  • Kobayashi, M., Kobayashi, M., and Nakanishi, H. 1971. Construction of a purification plant for polluted water using photosynthetic bacteria. J. Ferment. Technol. 49: 817–825.

    CAS  Google Scholar 

  • Kolkwitz, R. 1909. Schizomycetes. Kryptogamenflora der Mark Brandenburg, vol. 5:1–186. Leipzig: Verlag von Gebrüder Borntraeger.

    Google Scholar 

  • Kondratieva, E. N. 1965. Photosynthetic bacteria. Jerusa- lem, Israel: Program for Scientific Translations.

    Google Scholar 

  • Kondratieva, E. N. 1979. Interrelation between modes of carbon assimilation and energy production in phototrophic purple and green bacteria, p. 117–175. In: Quayle, J. R. (ed.), International Review of Biochemistry Microbial Biochemistry, vol. 21. University Park Press, Baltimore.

    Google Scholar 

  • Kondratieva, E. N. and Gogotov, I. N. 1981. Molecular hydrogen in microbial metabolism. Nauka, Moscow. 343 pp.

    Google Scholar 

  • Kondratieva, E. N. and Gogotov, I. N. 1983. Production of molecular hydrogen in microorganisms. Advances in Biochemical Engineering/Biotechnology 28: 139–191.

    CAS  Google Scholar 

  • Kondratieva, E. N., Petushkova, Yu. P., Zhukov, V. G. 1975. Growth and oxidation of sulphur compounds by Thiocapsa roseopersicina in the darkness. [In Russian, with English summary.] Mikrobiologiya 44: 389–394.

    Google Scholar 

  • Kondratieva, E. N., Zhukov, V. G., Ivanovsky, R. N., Petushkova, Yu. R, and Monosov, E. Z. 1976. The capacity of phototrophic sulfur bacterium Thicopasa roseopersincia for chemosynthesis. Archives of Microbiology 108: 287–292.

    PubMed  CAS  Google Scholar 

  • Koppenhagen, V. 1981. Metal-free corrinoids and metal-insertion, p. 105–149. In: Dolphin, D. (ed.).Vitamin B12, vol. 2, John Wiley and Sons, New York.

    Google Scholar 

  • Koppenhagen, V., Schlingmann, G., Scher, W., and Dresow, B. 1981. Extracellular metabolites from phototrophic bacteria as possible intermediates in the biosynthesis of vitamin B12, p. 247–252. In: Moo-Young, M. (ed.), Advances in Biotechnology. Pergamon Press, New York.

    Google Scholar 

  • Krasilnikova, E. N. 1976. Anaerobic metabolism of Thiocapsa roseopersicina. (In Russian, with English summary) Mikrobiologiya 45: 372–376.

    CAS  Google Scholar 

  • Krasilnikova, E. N., Ivanovskii, R. N., and Kondratieva, E. N. 1983. Growth of purple bacteria utilizing acetate under anaerobic conditions in darkness. Mikrobiologiya (English translation edition) 52: 189–194.

    Google Scholar 

  • Krasilnikova, E. N., Petushkova, Yu. R, and Kondratieva, E. N. 1975. Growth of purple sulfur bacterium Thiocapsa roseopersicina under anaerobic conditions in the darkness. (In Russian with English summary). Mikrobiologiya 44: 700–703.

    CAS  Google Scholar 

  • Kriss. A. E., and Rukina, E. A. 1953. Purple sulfur bacteria in deep sulfurous water of the Black Sea. [In Russian] Doklady Akademii Nauk SSSR 93: 1107–1110.

    Google Scholar 

  • Kützing. Fr. T. 1883. Beiträge zur Kenntnis über die Entstehung and Metamorphose der niederen vegetabilischen Organismen, nebst einer systematischen Zusammenstellung der hierher gehörigen niedern Algenformen. Linnaea 8: 335–384.

    Google Scholar 

  • Kuznetsov. S. I. 1970. The microflora of lakes and its geochemical activity. Austin London: University of Texas Press.

    Google Scholar 

  • Lankester. R. 1873. On a peach-colored bacterium-Bacterium rubescens n.s. Quarterly Journal of Microscopic Science 13: 408–425.

    Google Scholar 

  • Lapage, S. R, Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. R. R., and Clark, W. A. (ed.). 1975. International code of nomenclature of bacteria. Washington DC.: American Society for Microbiology.

    Google Scholar 

  • Larsen, H. 1952. On the culture and general physiology of the green sulfur bacteria. Journal of Bacteriology 64: 187–196.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lauterborn, R. 1915. Die sapropelische Lebewelt. Verhandlungen der naturhistorisch-medizinischen Vereinigung zu Heidelberg. Neue Folge. vol. 13: 395–481.

    Google Scholar 

  • Leyendecker, W. 1983. Charakterisierung der partikelgebundenen APS-Reduktase aus Chromatium warmingii Stamm 6512. Diploma thesis, University of Bonn.

    Google Scholar 

  • Lindholm, T. 1987. Ecology of photosynthetic prokaryotes with special reference to meromictic lakes and coastal lagoons. ABO Academy Press, Abo Finland.

    Google Scholar 

  • Madigan, M. T. 1986. Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. International Journal of Systematical Bacteriology 36: 222–227.

    Google Scholar 

  • Malik, K. A. 1990a. Use of activated charcoal for the preservation of anaerobic phototrophic and other sensitive bacteria by freeze-drying. J. Microbiol. Meth. 12: 117–124.

    Google Scholar 

  • Malik, K. A. 1990b. A simplified liquid-drying method for the preservation of microorganisms sensitive to freezing and freeze-drying. J. Microbiol. Meth. 12: 125–132.

    Google Scholar 

  • Mandel, M., Leadbetter, E. R., Pfennig, N., and Trüper. H. G. 1971. Deoxyribonucleic acid base compositions of phototrophic bacteria. International Journal of Systematic Bacteriology 21: 222–230.

    Google Scholar 

  • Matheron, R. 1976. Contribution à l’étude écologique, systématique et physiologique des Chromatiaceae et des Chlorobiaceae isolées de sediments marins. Doctoral Thesis. University of Aix-Marseille.

    Google Scholar 

  • Matheron. R., and Baulaigue, R. 1972. Bactéries photosynthétiques sulfureuses marines. Assimilation des substances organiques et minérales, et influence de la teneur en chlorure de sodium du milieu de culture sur leur développement. Archiv für Mikrobiologie 86: 291–304.

    PubMed  CAS  Google Scholar 

  • May, D. S., and Stahl, J. B. 1967. The ecology of Chromatium in sewage ponds. Bulletin No. 303, Sanitary Engineering Section Report No. 36, Coll. Engin. Res. Div., Washington State Univ., Pullman WA.

    Google Scholar 

  • Mitsui, A. 1979. Biosaline research: The use of photosynthetic marine organisms in food and feed production, p. 177–215. In: Hollaender, A., Aller, I. C., Epstein, E., San Pietro, A., and Zaborsky, O. (ed.), The biosaline concept. Plenum Press, New York.

    Google Scholar 

  • Miyoshi, M. 1897. Studien über die Schwefelrasenbildung und die Schwefelbakterien der Thermen von Yumoto bei Nikko. Centralblatt für Bakteriologie. Parasitenkunde u. Infektionskrankheiten Abt. 23: 526–527.

    Google Scholar 

  • Molisch, H. 1907. Die Purpurbakterien nach neuen Untersuchungen. Jena: Gustav Fischer Verlag.

    Google Scholar 

  • Nicholson, J. A. M., Stolz, J. E, and Pierson, B. K. 1987. Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiology Ecology 45: 343–364.

    Google Scholar 

  • Overmann, J., and Pfennig, N. 1989. Pelodictyon phaeoclathratiforme sp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Archives of Microbiology 152: 401–416.

    Google Scholar 

  • Pfennig, N. 1962. Beobachtungen über das Schwärmen von Chromatium okenii. Archiv für Mikrobiologie 42: 9095

    Google Scholar 

  • Pfennig, N. 1965. Anreicherungskulturen für rote and grüne Schwelfelbakterien. Zentralblatt für Bakteriologic. Parasitenkunde. Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1:179–189, 503–504.

    Google Scholar 

  • Pfennig, N. 1967. Photosynthetic bacteria. Annual Review of Microbiology 21: 285–324.

    PubMed  CAS  Google Scholar 

  • Pfennig, N. 1970. Dark growth of phototrophic bacteria under microaerophilic conditions. Journal of General Microbiology 61: 11–111.

    Google Scholar 

  • Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12 requirimg member of the family Rhodospirillaceae. International Journal of Systematic Bacteriology 28: 283–288.

    Google Scholar 

  • Pfennig, N. 1989. Ecology of phototrophic purple and green sulfur bacteria, p. 97–116. In: Schlegel, H. G., Bowien, B. (ed.), Autotrophic bacteria. Science Tech Publ. Madison WI.: and Springer-Verlag New York.

    Google Scholar 

  • Pfennig, N., and Lippert. K. D. 1966. Über das Vitamin B1,-Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie 55: 245–256.

    CAS  Google Scholar 

  • Pfennig, N., and Trüper, H. G. 1971. New nomenclatural combinations in the phototrophic sulfur bacteria. International Journal of Systematic Bacteriology 21: 11–14.

    Google Scholar 

  • Pfennig, N., and Trüper, H. G. 1974. The phototrophic bacteria, pp. 24–64. In: Buchanan, R. E., and Gibbons, N. E. (ed.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Pfennig, N., and Trüper, H. G. 1977. The Rhodospirillales (phototrophic or photosynthetic bacteria, p. 119–130. In: Laskin, A. I., and Lechevalier, H. A. (ed.), CRC Handbook of microbiology, vol. I, organismic microbiology, 2nd ed. Cleveland: CRC Press.

    Google Scholar 

  • Puchkova, N. N., and Gorlenko. V. M. 1976. New brown chlorobacterium Prosthecochloris phaeoasteroidea. [In Russian, with English summary.] Mikrobiologiya 45: 655–660.

    CAS  Google Scholar 

  • Roelofsen, P. A. 1935. On the metabolism of the purple sulfur bacteria. Proceedings of the Royal Academy of Sciences, Amsterdam 37: 660–669.

    Google Scholar 

  • Ruttner, F. 1962. Grundriß der Limnologie, 3rd ed., pp. 171–172. Berlin: De Gruyter.

    Google Scholar 

  • Sahl, H. G. and Trüper, H. G. 1977. Enzymes of CO, fixation in Chromatiaceae. FEMS Microbiology Letters 2: 129–132.

    CAS  Google Scholar 

  • Schedel, M., Vanselow, M., and Trüper, H. G. 1979. Siroheme sulfite reductase isolated from Chromatiuni vinosum. Archives of Microbiology 121: 29–36.

    CAS  Google Scholar 

  • Schegg, E. 1971. Produktion und Destruktion in der trophogenen Schicht. Schweizerische Zeitschrift für Hydrologie 33: 427–532.

    Google Scholar 

  • Schlegel, H. G., and Pfennig. N. 1961. Die Anreicherungskultur einiger Schwefelpurpurbakterien. Archiv für Mikrobiologie 38: 1–39.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G. and Schneider, K. (ed). 1978. Hydrogenases: their catalytic activity, structure and function. E. Goltze, Göttingen. 453 pp.

    Google Scholar 

  • Schrammeck, J. 1934. Untersuchungen über die Phototaxis der Purpurbakterien. Beiträge zur Biologic der Pflanzen 22: 315–380.

    Google Scholar 

  • Schulz, E. 1937. Das Farbsteifensandwatt und seine Fauna, eine ökologisch biozönotische Untersuchung an der Nordsee. Kieler Meeresforschungen 1: 359–378.

    Google Scholar 

  • Schulz, E., and Meyer, H. 1939. Weitere Untersuchungen über das Farbstreifensandwatt. Kieler Meeresforschungen 3: 321–336.

    Google Scholar 

  • Schwenn, J. D. and Biere, M. 1979. APS-reductase activity in the chromatophores of Chromatium vinosum strain D. FEMS Microbiology Letters 6: 19–22.

    CAS  Google Scholar 

  • Siefert, E., and Pfennig, N. 1984. Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria. Archives of Microbiology 139: 100–101.

    CAS  Google Scholar 

  • Sletten, O., and Singer, R. H. 1971. Sulfur bacteria in red lagoons. Journal of the Water Pollution Control Federation 43: 2118–2122.

    CAS  Google Scholar 

  • Smith, A. J. 1965. The discriminative oxidation of the sulphur atoms of thiosulphate by a photosynthetic sulphur bacterium-Chromatium strain D. Biochemical Journal 94: 27 P.

    Google Scholar 

  • Smith, A. J. 1966. The role of tetrathionate in the oxidation of thiosulfate by Chromatium sp. strain D. Journal of General Microbiology 42: 371–380.

    PubMed  CAS  Google Scholar 

  • Sorokin, Yu. I. 1970. Interrelations between sulfur and carbon turnover in a meromictic lake. Archiv für Hydrobiologie 66: 391–446.

    Google Scholar 

  • Stackebrandt, E., Fowler, V. J. Schubert, W. and Imhoff, J. E. 1984. Towards a phylogeny of phototrophic purple sulfur bacteria-the genus Ectothiorhodospira. Archives of Microbiology 137: 366–370.

    CAS  Google Scholar 

  • Stal, L. J., van Gemerden, H., and Krumbein, W. 1985. Structure and development of a benthic marine microbial mat. FEMS Microbiology Ecology 31: 111–125.

    CAS  Google Scholar 

  • Steenbergen, C. L. M. and Korthals, H. J. 1982. Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnology and Oceanography 27: 883–895.

    CAS  Google Scholar 

  • Steudel, R. 1985. Neue Entwicklungen in der Chemie des Schwefels und des Selens. Nova Acta Leopoldina, Neue Folge 59: 231–246.

    CAS  Google Scholar 

  • Steudel, R. 1989. On the nature of the “elemental sulfur” (S°) produced by sulfur-oxidizing bacteria-a model for S° globules, p. 289–304. In: Schlegel, H. G., Bowien, B. (ed.), Autotrophic bacteria, Science Tech Publ. Madison WI: and Springer-Verlag NY.

    Google Scholar 

  • Steudel, R., Holdt, G., Göbel, T., and Hazeu, W. 1987. Chromatographische Trennung höherer Polythionate S„62- (n=3chrw(133)22) und deren Nachweis in Kulturen von Thiobacillus ferrooxidans; molekulare Zusammensetzung bakterieller Schwefelausscheidungen. Angewandte Chemie 99: 143–146.

    CAS  Google Scholar 

  • Stirn, J. 1971. Ecological consequences of marine pollution. Revue Internationale d’Oceanographic Medicale 24: 13–46.

    CAS  Google Scholar 

  • Strekus, T., Antanaitis, B. C., and Krasna, A. J. 1980. Characterization and stability of hydrogenase from Chromatium. Biochimica et Biophysica Acta 116: 1–9.

    Google Scholar 

  • Strzeszewski, B. 1913. Beitrag zur Kenntnis der Schwefelflora in der Umgebung von Krakau. Bulletin de l’Academie des Sciences de Cracovie, Serie 8, 309–334.

    Google Scholar 

  • Suckow, R. 1966. Schwefelmikrobengesellschaften der See-und Boddengewässer von Hiddensee. Zeitschrift für Allgemeine Mikrobiologie 6: 309–315.

    Google Scholar 

  • Szafer, W. 1910. Zur Kenntnis der Schwefelflora in der Umgebung von Lemberg. Bulletin de L’Academic des Sciences de Cracovie, Serie 8, 161–167.

    Google Scholar 

  • Taga, N. 1967. Microbial coloring of sea water in tidal pool, with special reference of massive development of phototrophic bacteria, p. 219–229. In: Information Bulletin on Planetology in Japan. Commemoration Number of Dr. Y. Matsue’s Sixtieth Birthday.

    Google Scholar 

  • Takahashi, M., and Ichimura, S. 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese lakes. Limnology and Oceanography. 13: 644–655.

    Google Scholar 

  • Then, J. 1984. Beiträge zur Sulfidoxidation durch Ectothiorhodospira abdelmalekii und Ectothiorhodospira halochloris. Doctoral thesis, University of Bonn.

    Google Scholar 

  • Then, J. and Trüper, H. G. 1983. Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytochrome c- 551. Archives of Microbiology 135: 254–258.

    CAS  Google Scholar 

  • Then, J. and Trüper, H. G. 1984. Utilization of sulfide and elemental sulfur by Ectothiorhodospira halochioris. Archives of Microbiology 139: 295–298.

    CAS  Google Scholar 

  • Thiele, H. H. 1968. Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek Journal of Microbiology and Serology 34: 350–356.

    CAS  Google Scholar 

  • Tindall, B. J., and Grant, W. D. 1986. The anoxygenic phototrophic bacteria, p. 115–155. In: Barnes, E. M., and Mead, G. C. (ed.), Anaerobic bacteria in habitats other than man. Oxford: Blackwell Science Publishing.

    Google Scholar 

  • Toohey, J. I. 1971. Purification of descobalt corrins from photosynthetic bacteria, p. 71–75. In: McCormick, D. B., and Wright, L. D. (ed.), Methods in enzymology, vol. 18. Academic Press, New York.

    Google Scholar 

  • Trüper, H. G. 1964. CO2 Fixierung und Intermediärstoffwechsel bei Chromatium okenii Perty. Archiv fur Mikrobiologie 49: 23–50.

    Google Scholar 

  • Trüper, H. G. 1970. Culture and isolation of phototrophic sulfur bacteria from the marine environment. Helgoländer wissenschaftliche Meeresuntersuchungen 20: 616.

    Google Scholar 

  • Trüper, H. G. 1981a. Photolithotrophic sulfur oxidation, p. 199–211. In: Bothe, H. and Trebst, A. (ed.), Biology of Inorganic Nitrogen and Sulfur. Springer-Verlag, Berlin.

    Google Scholar 

  • Trüper, H. G. 1981b. Versatility of carbon metabolism in the phototrophic bacteria, p. 116–121. In: Dalton, H. (ed.), Microbial growth on C compounds. Heyden, London

    Google Scholar 

  • Trüper, H. G. 1984. Phototrophic bacteria and their sulfur metabolism, p. 367–382. In: Müller, A. and Krebs, B. (ed.), Sulfur its significance for chemistry for the geo bio-and cosmophere and technology. Elsevier, Amsterdam.

    Google Scholar 

  • Trüper, H. G. 1989. Physiology and biochemistry of phototrophic bacteria, p. 267–282. In: Schlegel, H. G., and Bowien, B. (ed.), Autotrophic bacteria. Science Tech Publ Madison WI: and Springer-Verlag New York.

    Google Scholar 

  • Trüper, H. G. and Fischer, U. 1982. Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis. Philosophical Transactions of the Royal Society B 298: 529–542.

    Google Scholar 

  • Trüper, H. G., and Genovese. S. 1968. Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnology and Oceanography 13: 225–232.

    Google Scholar 

  • Trüper, H. G. and Peck, H. D. Jr. 1970. Formation of adenylysulfate in photosynthetic bacteria. Archiv für Mikrobiologie 73: 125–142.

    PubMed  Google Scholar 

  • Trüper, H. G. and Pfennig, N. 1966. Sulphur metabolism in Thiorhodaceae III Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek Journal of Microbiology and Serology 32: 261–276.

    Google Scholar 

  • Trüper, H. G. and Rogers, L. A. 1971. Purification and properties of adenylysulfate reductase from the phototrophic sulfur bacterium Thiocapsa roseopersicina. Journal of Bacteriology 108: 1112–1121.

    PubMed  PubMed Central  Google Scholar 

  • Trüper, H. G., and Yentsch. C. S. 1967. Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria. Journal of Bacteriology 94: 1255–1256.

    PubMed  PubMed Central  Google Scholar 

  • Ulbricht, H. 1984. Aspekte des Energiegewinns durch Substratphosphorylierung im Zuge der Sulfitoxidation bei Chromaticeae und Thiobacillus denitrificans. Doctoral thesis, University of Bonn.

    Google Scholar 

  • Utermöhl. H. 1925. Limnologische Phytoplanktonstudien. Archiv fur Hydrobiologie, Suppl. 5: 1–527.

    Google Scholar 

  • van Gemerden, H. 1968a. Utilization of reducing power in growing cultures of Chromatium. Arch. Mikrobiol. 64: 111–117.

    PubMed  Google Scholar 

  • van Gemerden, H. 1968b. On the ATP generation by Chro- matium in darkness. Arch. Mikrobiol. 64: 118–124.

    PubMed  Google Scholar 

  • van Gemerden, H. 1974. Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria. Microbial Ecology 1: 19–23.

    Google Scholar 

  • van Gemerden, H., and Beeftink, H. H. 1983. Ecology of phototrophic bacteria, p. 146–185. In: Ormerod, J. G. (ed.), The phototrophic bacteria: Anaerobic life in the light. Oxford: Blackwell Science Publishing.

    Google Scholar 

  • van Gemerden, H., Montesinos, E., Mas, J., and Guerrero, R. 1985. Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain). Limnology and Oceanography 30: 932–943.

    Google Scholar 

  • van Niel, C. B. 1931. On the morphology and physiology of the purple and green sulphur bacteria. Archiv fur Mikrobiologie 3: 1–112.

    Google Scholar 

  • van Niel, C. B. 1971. Techniques for the enrichment, isolation, and maintenance of the photosynthetic bacteria, p. 3–28. In: San Pietro, A. (ed.), Methods in enzymology, vol. 23, part A. New York London: Academic Press.

    Google Scholar 

  • Vignais, P. M., Colbeau, A., Willison, J. C., and Jouanneau, Y. 1985. Hydrogenase, nitrogenase, and hydrogen metabolism in photosynthetic bacteria. Advances in Microbial Physiology 26: 155–234.

    PubMed  CAS  Google Scholar 

  • Warming, E. 1875. Om nogle ved Danmarks kyster levende bacterier. Videnskabse Meddelinger Dansk Naturhistorisk Foreninge 20: 3–116.

    Google Scholar 

  • Wenke, T. L., and Vogt, J. C. 1981. Temporal changes in a pink feedlot lagoon. Appl. Environ. Microbiol. 41: 381–385.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Winogradsky, S. N. 1888. Zur Morphologie und Physiologie der Schwefelbakterien. Leipzig: Felix.

    Google Scholar 

  • Yaropolov, A. I., Malovik, V., Izumrudov, V. A., Zorin, N. A., Bachurin, S. O., Gogotov, I. N., and Varfolomeev, S. D. 1982. Immobilization of hydrogenase in semiconductor gels and its use in the electrooxidation of hydrogen at the anode of a biofuel cell. Appl. Biochem. Microbiol. (English translation from Russian) 18: 401–406.

    Google Scholar 

  • Yegunov, M. 1895. Sulfur bacteria of Odessa estuaries. Archiv Biologicheskii Nauk 1: 378–393.

    Google Scholar 

  • Zhukov, V. G. 1976. Formation of ribulose-1,5-diphosphate carboxylase by Thiocapsa roseopersicina in different growth conditions. Mikrobiologiya 45: 915–917.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pfennig, N., Trüper, H.G. (1992). The Family Chromatiaceae. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics