Skip to main content

The Genus Deleya

  • Chapter
The Prokaryotes

Abstract

The genus Deleya, along with the genus Halomonas, comprises the family Halomonadaceae (Franzmann et al., 1988). This family encompasses various halotolerant and moderately halophilic rod-like Gram-negative nonfermentative, chemoorganotrophs that require 75 mM to 200 mM NaC1 for growth. However, some Deleya strains grow optimally only in media containing at least 7.5% salts (1.3 M NaC1). “Salt-loving” is a universal feature of all strains belonging to the genera Deleya and Halomonas, and Deleya strains have been isolated from marine environments, solar salterns, saline soils, and salted food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Adams, J. N., J. Williams, and W. J. Payne. 1961. Agar-bacterium alginicum: the appropriate taxonomic designation forAlginomonas alginica. J. Bacteriol. 81: 162–163.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Akagawa, M., and K. Yamasato. 1989. Synonymy of Alcaligenes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus Deleya. Int. J. Syst. Bacteriol. 39: 462–466.

    Article  Google Scholar 

  • Austin, B., C. J. Rodgers, J. M. Forns, and R. R. Colwell. 1981. Alcaligenes faecalis subsp. homari subsp. nov., a new group of bacteria isolated from moribund lobsters. Int. J. Syst. Bacteriol. 31: 72–76.

    Article  Google Scholar 

  • Baumann, L., and P. Baumann. 1973. Enzymes of glucose catabolism in cell-free extracts of non fermentative marine eubacteria. Can. J. Microbiol. 19: 302–304.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, L., and P. Baumann. 1974. Regulation of aspartokinase activity in non fermentative, marine eubacteria. Arch. Microbiol. 95: 1–18.

    Article  CAS  Google Scholar 

  • Baumann, L., and R. Baumann. 1978. Studies of relationship among terrestrial Pseudomonas, Alcaligenes, and Enterobacteria by an immunological comparison of glutamine synthetase. Arch. Microbiol. 119: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, L., R Baumann, M. Mandel, and R. D. Allen. 1972. Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110: 402–429.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baumann, L., R. D. Bowditch, and R Baumann. 1983. Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. Int. J. Syst. Bacteriol. 33: 793–802.

    Article  Google Scholar 

  • Baumann, R, and L. Baumann. 1981. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes, p. 1302–1331. In: M. P. Starr, H. Stolp, H. G. Trüper, A. Bal-lows, and H. G. Schlegel (ed.), The prokaryotes. Springer-Verlag, Berlin.

    Google Scholar 

  • Baumann, R, L. Baumann, and M. Mandel. 1971. Taxonomy of marine bacteria: the genus Beneckea. J. Bacteriol. 107: 268–294.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bergey, D. H., F. C. Harrison, R. S. Breed, B. W. Hammer, and E. M. Huntoon. 1925. Bergey’s manual of determinative bacteriology, 2nd ed. Williams and Wilkins Baltimore.

    Google Scholar 

  • Bergey, D. H., E C. Harrison, R. S. Breed, B. W. Hammer, and E. M. Huntoon. 1930. Bergey’s manual of determinative bacteriology, 3rd ed. Williams and Wilkins Baltimore.

    Google Scholar 

  • Breed, R. S., E. G. D. Murray, and N. R. Smith. 1957. Bergey’s manual of determinative bacteriology, 7th ed. Williams and Wilkins Baltimore.

    Google Scholar 

  • Calvo, C., A. Garcia de la Paz, V. Bejar, E. Quesada, and A. Ramos-Cormenzana. 1988. Isolation and characterization of phage F9–11 from a lysogenic Deleya halophila strain. Cliff. Microbiol. 17: 49–53.

    CAS  Google Scholar 

  • Collins, M. D., H. N. M. Ross, B. J. Tindall, and W. D. Grant. 1981. Distribution of isoprenoid quinones in halophilic bacteria. J. Appl. Bacteriol. 50: 559–565.

    Article  CAS  Google Scholar 

  • De Ley, J. 1978. Modern molecular methods in bacterial taxonomy: evaluation, application, prospects, p. 347–357. In: Proceedings of the Fourth International Conference on Plant Pathology and Bacteriology vol. 1. Angers. Gibert-Clarey, Tours, France.

    Google Scholar 

  • De Ley, J., K. Kersters, J. Khan-Matsubara, and J. M. She-wan. 1970. Comparative D-gluconate metabolism and DNA base composition in Achromobacter and Alcali-genes. Antonie van Leeuwenhoek J. Microbiol. Serol. 36: 193–207.

    Google Scholar 

  • De Ley, J., P. Segers, K. Kersters, W. Mannheim, and A. Lievens. 1986. Intra-and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol. 36: 405–414.

    Article  Google Scholar 

  • del Moral, A., B. Prado, E. Quesada, T. Garcia, R. Ferrer, and A. Ramos-Cormenzana 1988. Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. J. Gen. Microbiol. 134: 733–741.

    Google Scholar 

  • del Moral, A., E. Quesada, and A. Ramos-Cormenzana. 1987. Distribution and types of bacteria isolated from an inland saltern. Ann. Inst. Pasteur (Microbiol.) 138: 59–66.

    Article  Google Scholar 

  • DeLong, E. E, L. Baumann, R. D. Bowditch, and P. Baumann. 1984. Evolutionary relationships of superoxide dismutases and glutamine synthetases from marine species of Alteromonas, Oceanospirillum, Pseudomonas and Deleya. Arch. Microbiol. 138: 170–178.

    Article  CAS  Google Scholar 

  • De Vos, R, and J. De Ley. 1983. Intra-and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33: 487–509.

    Article  Google Scholar 

  • De Vos, P, A. Van Landschoot, R Segers, R. Tytgat, M. Gillis, M. Bauwens, R. Rossau, M. Goor, B. Pot, K. Kersters, P. Lizzaraga, and J. De Ley. 1989. Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid: ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39: 35–49.

    Article  Google Scholar 

  • Elazari-Volcani, B. 1940. Studies on the microflora of the Dead Sea. Ph.D. dissertion, Hebrew University, Jerusalem, Israel.

    Google Scholar 

  • Eller, J., and W. J. Payne. 1960. Studies on bacterial utilization of uronic acids. IV. Alginolytic and mannuronic acid oxidizing isolates. J. Bacteriol. 80: 193–199.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ferrer, M. R., A. del Moral, E. Quesada, and A. RamosCormenzana. 1987. Growth rate and some physiological features of Deleya halophila CCM 3662 at different salt concentrations. Ann. Institut Pasteur (Microbiol.) 138: 49–57.

    CAS  Google Scholar 

  • Franzmann, R. D., H. R. Burton, and T. A. McMeekin. 1987. Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int. J. Syst. Bacteriol. 37: 27–34.

    Article  Google Scholar 

  • Franzmann, P. D., and B. J. Tindall. 1990. A chemotaxonomic study of members of the family Halomonadaceae. Syst. Appl. Microbiol. 13: 142–147.

    Article  CAS  Google Scholar 

  • Franzmann, P. D., U. Wehymeyer, and E. Stackebrandt. 1988. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the general Halomonas and Deleya. Syst. Appl. Microbiol. 11: 16–19.

    Article  Google Scholar 

  • Hendrie, M. S., A. J. Holding, and J. M. Shewan. 1974. Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected: status of the named species of Alcaligenes and Achromobacter. Int. J. Syst. Bacteriol. 24: 534–550.

    Article  Google Scholar 

  • Hof, T. 1935. An investigation of the micro-organisms commonly present in salted beans. Rec. Tray. Bot. Néerl. 32: 151–173.

    Google Scholar 

  • Kersters, K., and J. De Ley. 1980. Classification and identification of bacteria by electrophoresis of their proteins, p. 273–298. In: M. Goodfellow, and R. G. Board (ed.) Microbiological classification and identification. Academic Press, London.

    Google Scholar 

  • Kersters, K., and J. De Ley. 1984. Genus Alcaligenes, p. 361–373. In: N. R. Krieg and J. Holt (ed.), Kersters, K., and J. De Ley. 1. Williams and Wilkins Baltimore.

    Google Scholar 

  • MacLeod, R. A. 1968. On the role of inorganic ions in the physiology of marine bacteria. Adv. Microbiol. Sea 1: 95–126.

    CAS  Google Scholar 

  • Marquez M. C., A. Ventosa, and F. Ruiz-Berraquero. 1987. A taxonomic study of heterotrophic halophilic and nonhalophilic bacteria from a solar saltern. J. Gen. Microbiol. 133: 45–56.

    Google Scholar 

  • Monteoliva-Sanchez, M., M. R. Ferrer, A. Ramos-Cormenzana, E Quesada, and M. Monteoliva. 1988. Cellular fatty acid composition of Deleya halophila. effect of growth temperature and salt concentration. J. Gen. Microbiol. 134: 199–203.

    CAS  Google Scholar 

  • Monteoliva-Sanchez, M., and A. Ramos-Cormenzana. 1986. Effect of growth temperature and salt concentration on the fatty acid composition of Flavobacterium halmephilum CCM 2831. FEMS Microbiol. Lett. 33: 51–54.

    Article  CAS  Google Scholar 

  • Monteoliva-Sanchez, M., and A. Ramos-Cormenzana. 1987. Cellular fatty acid composition in moderately halophilic Gram-negative rods. J. Appl. Bacteriol. 62: 361–366.

    Article  CAS  Google Scholar 

  • Ohno, Y., I. Yano, and M. Masui. 1979. Effect of NaC1 concentration and temperatures on the phospholipid and fatty acid composition of a moderately halophilic bacterium, Pseudomonas halosaccharolytica. J. Biochem. 85: 413–421.

    PubMed  CAS  Google Scholar 

  • Palleroni, N. J. 1984. Genus I Pseudomonas, p. 141–199. In: N. R. Krieg and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore

    Google Scholar 

  • Quesada, E., V. Bejar, M. J. Valderrama, and A. RamosCormenzana. 1987. Growth characteristics and salt requirement of Deleya halophila in a defined medium. Curr. Microbiol. 16: 21–25.

    Article  CAS  Google Scholar 

  • Quesada, E., A. Ventosa, E Rodriguez-Valera, and A. Ramos-Cormenzana. 1982. Types and properties of some bacteria isolated from hypersaline soils. J. Appl. Bacteriol. 53: 155–161.

    Article  Google Scholar 

  • Quesada, E., A. Ventosa, F. Rodriguez-Valera, L. Megias, and A. Ramos-Cormenzana. 1983. Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J. Gen. Microbiol. 129: 2649–2657.

    Google Scholar 

  • Quesada, E., A. Ventosa, E. Ruiz-Berraquem, and A. Ramos-Cormenzana 1984. Deleya halophila, a new species of moderately halophilic bacteria. Int. J. Syst. Bacteriol. 34: 287–292.

    Article  CAS  Google Scholar 

  • Quigley, M. M., and R. R. Colwell. 1968. Proposal of a new species Pseudomonas bathycetes. Int. J. Syst. Bacteriol. 18: 241–252.

    Article  Google Scholar 

  • Sawyer, M. H., P. Baumann, and L. Baumann. 1977. Pathways of D-fructose and D-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina, and Alteromonas communis. Arch. Microbiol. 112: 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt, E., R. G. E. Murray, and H. G. Trüper. 1988. Proteobacteria classic nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38: 321–325.

    Google Scholar 

  • Van Landschoot A., and J. De Ley. 1983. Intra-and inter-generic similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.), and some other Gram-negative bacteria. J. Gen. Microbiol. 129: 3057–3074.

    Google Scholar 

  • Vreeland, R. H., C. D. Litchfield, E. L. Martin, and E. Elliot. 1980. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol. 30: 485–495.

    Article  CAS  Google Scholar 

  • Williams, A. K., and R. G. Eagon. 1962. Studies on the alginase of Agarbacterium alginicum. Can. J. Microbiol. 8: 649–654.

    Google Scholar 

  • Yamada, T., and I. Shiio. 1953. Effects of salt concentration on the respiration of a halotolerant bacterium. J. Biochem. 40: 327–337.

    CAS  Google Scholar 

  • ZoBell, C. E., and H. C. Upham. 1944. A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Oceanogr. Univ. Calif. 5: 239–292.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kersters, K. (1992). The Genus Deleya . In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics