Skip to main content

Central Generation of Locomotion in Vertebrates

  • Chapter
Neural Control of Locomotion

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 18))

Abstract

Different evidence is presented showing that the detailed pattern of locomotion is generated centrally by spinal α-γ-linked circuits. Data concerning rhythmic interneuronal activity related to the spinal generator for locomotion will be discussed.

Names published in alphabetical order (Presenter: S. Grillner)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andén, N.-E., Jukes, M.G.M., Lundberg, A. and Vyklicky, L., (1966a) The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiol. Scand. 67, 373–386.

    Google Scholar 

  • Andén, N.-E., Jukes, M.G.M. and Lundberg, A., (1966b) The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiol. Scand. 67, 387–397.

    Google Scholar 

  • Bergmans, J. and Grillner, S., (1968) Changes in dynamic sensitivity of muscle spindle primary endings induced by DOPA. Acta Physiol. Scand. 74, 629–636.

    Google Scholar 

  • Bergmans, J. and Grillner, S., (1969) Reciprocal control of spontaneous activity and reflex effects in static and dynamic ymotoneurones revealed by an injection of DOPA. Acta Physiol. Scand. 77, 106–124.

    Google Scholar 

  • Boisson, M. and Chalazonitis, N., (1973) Réactivites bioélectriques propres d’un neurone géant sécrétoire (Aplysia depilans). C.R. Acad. Sci. Paris, 276, 1025–1028.

    Google Scholar 

  • Brown, T.G., (1911) The intrinsic factors in the act of progression in the mammal. Proc. R. Soc. B. 84, 308–319.

    Google Scholar 

  • Brown, T.G., (1913) The phenomenon of “narcosis progression” in mammals. Proc. R. Soc. B. 86, 140–164.

    Google Scholar 

  • Brown, T.G., (1914) On the nature of the fundamental activity of

    Google Scholar 

  • the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48, 18–46.

    Google Scholar 

  • Budakova, N.N., (1973) Stepping movements in the spinal cat due to DOPA administration. Fiziol. Zh. ( USSR ). 59, 1190–1198.

    Google Scholar 

  • Chalazonitis, N. and Ducreux, C., (1971) Stabilization par la dopamine de l’oscillabilité normale d’une neuromembrane type (Soma neuronigue à ondessalves: Aplysia et Helix). C.R. Soc. Biol. Paris. 165, 1350–1353.

    Google Scholar 

  • Chalazonitis, N. and Morales, T., (1971) Dépolarisation par l’oubaine des motoneurones normalement au artificiellement oscillant (Aplysia). C.R. Soc. Biol. Paris. 165, 1923–1928.

    Google Scholar 

  • Engberg, I. and Lundberg, A., (1969) An electromyographic analysis of muscular activity in the hindlimb of the cat during un- restrained locomotion. Acta Physiol. Scand. 75. 614–630.

    Google Scholar 

  • Feldman, A.G. and Orlovsky, G.N., (1975) Activity of interneurons mediating reciprocal Ia inhibition during locomotion. Brain Res. 84, 181–194.

    Article  Google Scholar 

  • Forssberg, H. and Grillner, S., (1973) The locomotion of the acute spinal cat injected with Clonidine i.v. Brain Res. 50, 184186.

    Google Scholar 

  • Forssberg, H., Grillner, S. and Rossignol, S., (1975) Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 85, 103–107.

    Article  Google Scholar 

  • Forssberg, H., Grillner, S. and Sjöström, A., (1975) The locomotor capacity of chronic spinal cat (In preparation).

    Google Scholar 

  • Fu, T.-C., Jankowska, E. and Lundberg, A., (1975) Reciprocal Ia inhibition during the late reflexes evoked from the flexor reflex afferents after DOPA. Brain Res. 85, 99–102.

    Article  Google Scholar 

  • Gray, J. and Sand, A., (1936) The locomotory rhythm of the dogfish (Scyllium canicula). J. Exp. Biol. 13, 200–209.

    Google Scholar 

  • Grillner, S., (1969a) Supraspinal and segmental control of static and dynamic y-motoneurones in the cat. Acta Physiol. Scand. Suppl. 327, 1–34.

    Google Scholar 

  • Grillner, S., (1969b) The influence of DOPA on the static and the dynamic fusimotor activity to the triceps surae of the spinal cat. Acta Physiol. Scand. 77, 490–509.

    Google Scholar 

  • Grillner, S. and Hongo, T., (1972) “Vestibulospinal effects on motoneurones and interneurones in the lumbosacral cord,” In Basic Aspects of Central Vestibular Mechanisms. (Brodal, A. and Pompeiano, O., eds.), Elsevier Publ. Co. Progr. in Brain Res. 37, 243–262.

    Google Scholar 

  • Grillner, S., (1973) “Locomotion in the spinal cat,” In Control of Posture and Locomotion. (Stein, R.B., Pearson, K.G., Smith, R.S. and Redford, J.B., eds.), Plenum Press, New York, (515535).

    Google Scholar 

  • Grillner, S., (1974) On the generation of locomotion in the spinal dogfish. Exp. Brain Res. 20, 459–470.

    Google Scholar 

  • Grillner, S. and Zangger, P., (1974) Locomotor movements generated by the deafferented spinal cord. Acta Physiol. Scand. 91, 38–39A.

    Google Scholar 

  • Grillner, S., (1975) Locomotion in vertebrates - central mechanisms and reflex interaction. Physiol. Rev. 55, 247–304.

    Google Scholar 

  • Grillner, S., Perret, C. and Zangger, P., (1975) Central generation of locomotion of the spinal dogfish. Brain Research. (In press).

    Google Scholar 

  • Grillner, S. and Zangger, P., (1975) How detailed is the central pattern generation for locomotion? Brain Res. 88, 367–371.

    Article  Google Scholar 

  • Gurfinkel, V.S. and Shik, M.L., (1973) “The control of posture and locomotion,” In Motor Control. (Gydikov, A.A., Tankov, N.T., Kosarov, D.S., eds.), Plenum Press, New York, (217–234).

    Google Scholar 

  • Harcombe-Smith, E. and Wyman, R.J., (1970) Diagonal locomotion in de-afferented toads. J. Exp. Biol. 53, 255–263.

    Google Scholar 

  • Hart, B.L., (1971) Facilitation by Strychnine of reflex walking in spinal dogs. Physiology and Behaviour. 6, 627–628.

    Article  Google Scholar 

  • Holst, E. von, (1935) Erregungsbildung und Erregungsleitung im Fischrückenmark. Pflügers Arch. ges. Physiol. 235, 345–359.

    Google Scholar 

  • Hongo, T., Jankowska, E. and Lundberg, A., (1969) The rubrospinal tract, II. Facilitation of interneuronal transmission in reflex paths to motoneurones. Exp. Brain Res. 7, 365.

    Google Scholar 

  • Hultborn, H., (1972) Convergence on interneurones in the reciprocal la inhibitory pathway to motoneurones. Acta Physiol. Scand. Suppl. 375, 1–42.

    Google Scholar 

  • Hultborn, H., Illert, M. and Santini, M., (1974) Disynaptic la inhibition of the interneurones mediating the reciprocal Ia inhibition of motoneurones. Acta Physiol. Scand. 91, 14–16A.

    Google Scholar 

  • Jankowska, E., Jukes, M.G.M., Lund, S. and Lundberg, A., (1967a) The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha moto-neurones of flexors and extensors. Acta Physiol. Scand. 70, 369–388.

    Google Scholar 

  • Jankowska, E., Jukes, M.G.M., Lund, S. and Lundberg, A., (1967b) The effect of DOPA on the spinal cord. 6. Halfcentre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70, 389–402.

    Google Scholar 

  • Lawrence, D.G. and Kuypers, H.G.J.M., (1968a) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain. 91, 1–14.

    Google Scholar 

  • Lawrence, D.G. and Kuypers, H.G.J.M., (1968b) The functional organization of the motor system in the monkey. IT. The effects of lesions of the descending brainstem pathways. Brain. 91, 15–36.

    Google Scholar 

  • Lundberg, A., (1969) Reflex control of stepping. The Nansen Memorial Lecture V. Universitetsforlaget, Oslo.,(1–42).

    Google Scholar 

  • Lundberg, A., (1970) “The excitatory control of the Ia inhibitory pathway,” In Excitatory Synaptic Mechanisms. (Andersen, P. and Jansen, J.K.S., eds.), Universitetsforlaget, Oslo, (333–340).

    Google Scholar 

  • Matthews, P.B.C., (1962) The differentiation of two types of fusi-motor fibre by their effects on the dynamic response of muscle spindle primary endings. Quart. J. Exp. Physiol. 47, 324–333.

    Google Scholar 

  • Maynard, D.M., (1972) Simpler networks. Ann. N.Y. Acad. Sci. 193, 59–72.

    Google Scholar 

  • Mendelson, M., (1971) Oscillator neurons in crustacean ganglia. Science. 171, 1170–1173.

    Article  Google Scholar 

  • Miller, S. and Van der Burg, J., (1973) “The function of long propriospinal pathways in the co-ordination of quadrupedal stepping in the cat,” In Control of Posture and Locomotion. (Stein, R.B. et al., eds.), Plenum Press, New York, (561–577).

    Google Scholar 

  • Mulloney, B. and Selverston, A.I., (1974a) Organization of the stomatogastric ganglion of the spiny lobster. I. Neurons driving the lateral teeth. J. Comp. Physiol. 91, 1–32.

    Google Scholar 

  • Mulloney, B. and Selverston, A.I., (1974b) Organization of the stomatogastric ganglion of the spiny lobster. III. Coordination of the two subsets of the gastric system. J. Comp. Physiol. 91, 53–78.

    Google Scholar 

  • Orlovsky, G.N., (1972a) The effect of different descending systems on flexor and extensor activity during locomotion. Brain Res. 40, 359–371.

    Article  Google Scholar 

  • Orlovsky, G.N., (1972b) Activity of rubrospinal neurons during locomotion. Brain Res. 46, 99–112.

    Article  Google Scholar 

  • Orlovsky, G.N., (1972c) Activity of vestibulospinal neurons during locomotion. Brain Res. 46, 85–98.

    Article  Google Scholar 

  • Orlovsky, G.N. and Feldman, A.G., (1972) Classification of lumbosacral neurons according to their discharge patterns during evoked locomotion. Nejrcfisiologia. 4, 410–417 ( In Russian ). ( English version of same journal, 311–317 ).

    Google Scholar 

  • Pearson, K.G., Fourtner, C.R., and Wong, R.K., (1973) “Nervous control of walking in the cockroach,” In Control of Posture and Locomotion. (Stein, R.B. et al., eds.), Plenum Press, New York, (495–514).

    Google Scholar 

  • Pearson, K.G. and Fourtner, C.R., (1975) Nonspiking interneurones in walking system of cockroach. J. Neurophysiol. 38, 33–52.

    Google Scholar 

  • Perkel, D.H. and Mulloney, B., (1974) Motor pattern production in reciprocally inhibitory neurons exhibiting post-inhibitory rebound. Science. 185, 181–183.

    Article  Google Scholar 

  • Perret, C. and Buser, P., (1972) Static and dynamic fusimotor activity during locomotor movements in the cat. Brain Res. 40, 165–169.

    Article  Google Scholar 

  • Perret, C., (1973) Analyse des méchanismes d’une activité de type locomoteur chez le chat. Thèse de doct., Université de Paris VI, Paris.

    Google Scholar 

  • Perret, C. and Berthoz, A., (1974) Evidence of static and dynamic fusimotor action on the spindle response to sinusoidal stretch during locomotor activity in the cat. Exp. Brain Res. 18, 178–188.

    Google Scholar 

  • Rossignol, S., Grillner, S. and Forssberg, H., (1975) Factors of importance for the initiation of flexion during walking. Neuroscience Abstracts. 1, 181.

    Google Scholar 

  • Selverston, A.I., (1974) Structural and functional basis of motor pattern generation in the somatogastric ganglion of the lobster. Am. Zool. 14, 957–972.

    Google Scholar 

  • Selverston, A.I. and Mulloney, B., (1974) Organization of the stomatogastric ganglion of the spiny lobster. II. Neurons driving the medial tooth. J. Comp. Physiol. 91, 33–51.

    Google Scholar 

  • Severin, F.V., Orlovsky, G.N. and Shik, M.L., (1967) Work of the muscle receptors during controlled locomotion. Biofizika. 12, 575–586. (Eng. transi.).

    Google Scholar 

  • Severin, F.V., (1970) The role of the gamma motor system in the activation of the extensor alpha motor neurones during controlled locomotion. Biofizika. 15, 1138–1145. (Eng. transl.).

    Google Scholar 

  • Shik, M.L., Severin, F.V. and Orlovsky, G.N., (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biofizika. 11, 659–666. (English version of same journal), (756–765).

    Google Scholar 

  • Shik, M.L., Severin, F.V. and Orlovsky, G.N., (1967) Structures of the brain stem responsible for evoked locomotion. Fiziol. Zh. USSR. 12, 660–668.

    Google Scholar 

  • Shurrager, P.S. and Dykman, R.A., (1951) Walking spinal carnivores. J. Comp. Physiol. Psychol. 44, 252–262.

    Google Scholar 

  • Sjóström, A. and Zangger, P., (1975) a-y-linkage in the spinal generator for locomotion in the cat. Acta Physiol. Scand. 94, 130–132.

    Google Scholar 

  • Stein, P.S.G., (1974) Neural control of interappendage phase during locomotion. Am. Zool. 14, 1003–1016.

    Google Scholar 

  • Székely, G., (1968) “Development of limb movements: Embryological, physiological and model studies,” In Ciba Foundation Symposium on Growth of the Nervous System. (Wolstenholme, G.E.W. and O’Connor, M., eds.), J. & A. Churchill Ltd. London, (77–93).

    Google Scholar 

  • Székely, G., Czéh, G. and Voros, G., (1969) The activity pattern of limb muscles in freely moving normal and deafferented newts. Exp. Brain Res. 9, 53–62.

    Google Scholar 

  • Viala, G. and Buser, P., (1969) Activités locomotrices rythmique stéréotypées chez le lapin sous anesthésie légère. Exp. Brain Res. 8, 346–363.

    Google Scholar 

  • Viala, D. and Buser, P., (1971) Modalités d’obtention de locomoteurs chez le lapin spinal par traitements pharmacologiques (DOPA, 5-HTP, d’amphétamine). Brain Res. 35, 151–165.

    Article  Google Scholar 

  • Wilson, D.M., (1964) “The origin of the flight-motor command in grasshoppers,” In Neuronal Theory and Modeling. (Reiss, R.F., ed.), Stanford Univ. Press, Stanford, (331–345).

    Google Scholar 

  • Wilson, D.M. and Waldron, I., (1968) Models for the generation of the motor output pattern in flying locust. Proc. IEEE. 56, 1058–1064.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edgerton, V.R., Grillner, S., Sjöström, A., Zangger, P. (1976). Central Generation of Locomotion in Vertebrates. In: Herman, R.M., Grillner, S., Stein, P.S.G., Stuart, D.G. (eds) Neural Control of Locomotion. Advances in Behavioral Biology, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0964-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0964-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0966-7

  • Online ISBN: 978-1-4757-0964-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics