Skip to main content

Sediment-Mediated Biological Disturbance and the Evolution of Marine Benthos

  • Chapter
Biotic Interactions in Recent and Fossil Benthic Communities

Part of the book series: Topics in Geobiology ((TGBI,volume 3))

Abstract

Disturbance, whether physically or biologically produced, has attracted much ecologic attention, both in the terrestrial (e.g., Bormann and Likens, 1979; Rome, 1982; Runkle, 1982) and marine realms (e.g., Ayling, 1981; Cowen et al., 1982; Knowlton et al., 1981; Littler et al., 1983; Menge and Lubchenco, 1981; Palumbi et al., 1982; Porter et al., 1981, 1982; Seapy and Littler, 1982; Shepherd, 1983; Smedes and Hurd, 1981; Suchanek, 1981; Taylor and Littler, 1982; Thistle, 1980, 1981; Woodley et al., 1981 Zajac and Whitlach, 1982). A particular focus has been biological disturbance of unconsolidated marine sediments (reviewed by Carney, 1981; Gray, 1974; Lee and Swartz, 1980; Rhoads, 1974; Rhoads and Boyer, 1982). Such disturbance is of unusual importance to paleontology because, unlike most ecological processes, it leaves a preservable record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberstadt, L. P., and Walker, K. R., 1976, A receptaculitid—echinoderm pioneer community in a Middle Ordovician reef, Lethaia 9: 261–272.

    Google Scholar 

  • Alexander, R. R., 1977a, Generic longevity of articulate brachiopods in relation to the mode of stabilization on the substrate, Palaeogeogr. Palaeoclimatol. Palaeoecol.21: 209–226.

    Google Scholar 

  • Alexander, R. R., 19776, Growth, morphology and ecology of Paleozoic and Mesozoic op-portunistic species of brachiopods from Idaho–Utah,J. Paleontol.51: 1133–1149.

    Google Scholar 

  • Alexander, R. R., 1981, Predation scars preserved in Chesterian brachiopods: Probable cul-prits and evolutionary consequences for the articulates, J. Paleontol.55: 192–203.

    Google Scholar 

  • Allen, J. A., and Sanders, H. L., 1982, Studies on the deep sea Protobranchia: The subfamily Spinulinae (family Nuculanidae), Bull. Mus. Comp. Zool. Harv. Univ. 150.

    Google Scholar 

  • Aller, R. C., 1977, The influence of macrobenthos on chemical diagenesis of marine sedi-ments, Ph.D. thesis, Yale University.

    Google Scholar 

  • Aller, R. C., 1978a, Experimental studies of changes produced by deposit feeders on pore water, sediment, and overlying water chemistry, Am. J. Sci.278: 1185–1234.

    CAS  Google Scholar 

  • Aller, R. C., 19786, The effects of animal–sediment interactions on geochemical processes near the sediment–water interface, in: Estuarine Interactions (M. L. Wiley, ed.), pp. 157–172, Academic Press, New York.

    Google Scholar 

  • Aller, R. C., 1980a, Diagenetic processes near the sediment–water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S, N, P), Adv. Geophys.22: 237–350.

    CAS  Google Scholar 

  • Aller, R. C., 1980b, Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment, Geochim. Cosmochim. Acta 44: 1955–1965.

    CAS  Google Scholar 

  • Aller, R. C., 1980c, Relationships of tube-dwelling benthos with sediment and over-lying water chemistry, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 285–308, University of South Carolina Press, Columbia.

    Google Scholar 

  • Aller, R. C., 1982a, Carbonate dissolution in nearshore terrigenous muds—The role of physical and biological reworking, J. Geol.90: 79–95.

    CAS  Google Scholar 

  • Aller, R. C., 1982b, The effects of macrobenthos on chemical properties of marine sediment and overlying water, in: Animal–Sediment Relations( P. L. McCall and M. J. S. Tevesz, eds.), pp. 53–102, Plenum Press, New York.

    Google Scholar 

  • Aller, R. C., and Benninger, L. K., 1981, Spatial and temporal patterns of dissolved ammonium, manganese and silica fluxes from bottom sediments of Long Island Sound, U.S.A., J. Mar. Res.39: 295–314.

    CAS  Google Scholar 

  • Aller, R. C., and Dodge, R. E., 1974. Animal–sediment relations in a tropical lagoon, Discovery Bay, Jamaica, J. Mar.Res.32: 209–232.

    Google Scholar 

  • Aller, R. C., and Yingst, J., 1978, Biogeochemistry of tube-dwellings: A study of the sedentary polychaete Amphitrite ornata (Leidy),J. Mar. Res.36: 201–254.

    CAS  Google Scholar 

  • Alpert, S. P., 1973, Bergaueria Prantl (Cambrian and Ordovician), a probable actinian trace fossil, J. Paleontol.47: 919–924.

    Google Scholar 

  • Alpert, S. P., 1974, Systematic review of the genus Skolithos, J. Paleontol.48: 661–669.

    Google Scholar 

  • Alpert, S. P., 1977, Trace fossils and the basal Cambrian boundary, in: Trace Fossils 2 ( T. P. Crimes and J. C. Harper, eds.), pp. 1–8, Seel House Press, Liverpool.

    Google Scholar 

  • Anderson, E. J., and Makurath, J. H.. 1973, Palaeoecology of Appalachian gypidulid brachiopods, Palaeontology 16: 381–389.

    Google Scholar 

  • Anderson, F. E., 1973, Observation of some sedimentary processes acting on a tidal flat, Mar. Geol.14: 101–116.

    Google Scholar 

  • Anger, K., Rogal, U., Schreiver, G.. and Valentin, C., 1977, In situ investigations on the echinoderm Asterias rubens as a predator of soft-bottom communities in the western Baltic Sea, Helgol. Wiss.Meeresunters.29: 439–459.

    Google Scholar 

  • Ansell, A. D., and Trevallion, A., 1970, Behavioral adaptations of intertidal molluscs from a tropical sandy beach, J. Exp. Mar. Biol. Ecol.4: 9–35.

    Google Scholar 

  • Ansell, A. D., and Trueman, E. R., 1968, The mechanism of burrowing in the anemone Pecchia hastata Gorse,J. Exp. Mar. Biol.Ecol.2: 124–134.

    Google Scholar 

  • Antic, D. D. J., 1980, Shell laminae and shell orientation in the Upper Silurian, Overton Formation, U.K., Palaeogeogr. Palaeoclimatol. Palaeoecol.32: 119–133.

    Google Scholar 

  • Arai, M. N., and McGugan, A., 1968, A problematical coelenterate from the Lower Cambrian, near Moraine Lake, Banff Area, Alberta, J. Paleontol.42: 205–209.

    Google Scholar 

  • Arai, M. N., and McGugan, A., 1969, A problematical Cambrian coelenterate ?, J. Paleontol.43: 93–94.

    Google Scholar 

  • Arduini, P., Pinna, G., and Teruzzi, G., 1981, Magaderaion sinemuriense n. g., n. sp., a new fossil enteroptneust of the Sinemurian of Ostento in Lombardy, Atti Soc. Ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano122: 104–108.

    Google Scholar 

  • Atkinson, R. J. A., Moore, P. G., and Morgan, P. J., 1982, The burrows and burrowing be- haviour of Maera loveni (Crustacea: Amphipoda), J. Zool., London198: 399–416.

    Google Scholar 

  • Ausich, W. I., 1977, Case study of some deltaic filter-feeding communities: Edwardsville Formation (Border Group) in Indiana, Geol. Soc. Am. Annu.Meet. Abstr. pp. 884–885.

    Google Scholar 

  • Ausich, W. I., and Bottjer, D. J., 1982, Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic, Science 216: 173–174.

    CAS  PubMed  Google Scholar 

  • Ausich, W. I., and Gurrola, R. A., 1979, Two boring organisms in a Lower Mississippian community of southern Indiana, J. Paleontol.53: 335–344.

    Google Scholar 

  • Ausich, W. I., Kammer, T. K., and Lane, N. G., 1979, Fossil communities of the Borden (Mississippian) Delta in Indiana and northern Kentucky, J. Paleontol.53: 1182–1196.

    Google Scholar 

  • Awramik, S. M., 1981, The pre-Phanerozoic biosphere: Three billion years of crises and opportunities, in: Biotic Crisis in Ecological and Evolutionary Time ( M. H. Nitecki, ed.), pp. 83–102, Academic Press, New York.

    Google Scholar 

  • Ayling, A. M., 1981, The role of biological disturbance in temperate subtidal encrusting communities, Ecology 62: 830–847.

    Google Scholar 

  • Baird, G. C., 1981, Submarine erosion on a gentle paleoslope: A study of two discontinuities in the New York Devonian, Lethaia 14: 105–122.

    Google Scholar 

  • Baker, J. R., 1929, On the zonation of some coral reef Holothuria, J. Ecol.17: 141–143.

    Google Scholar 

  • Bakus, G. J., 1968, Defensive mechanisms and ecology of some tropical holothurians, Mar. Biol.2: 23–32.

    Google Scholar 

  • Bakus, G. J., 1973, The biology and ecology of tropical holothurians, in: The Biology and Geology of Coral Reefs ( O. A. Jones and R. Endean, eds.), pp. 325–367, Academic Press, New York.

    Google Scholar 

  • Baldwin, C. T., 1977, Trace fossils of a Cambro-Ordovician storm dominated transgressive sequence from Brittany, France,J. Paleontol.51: 1–2.

    Google Scholar 

  • Balsam, W. L., and Vogel, S., 1973, Water movement in archeocyathids: Evidence and implications of passive flow in models, J. Paleontol.47: 979–984.

    Google Scholar 

  • Bambach, R. K., 1971, Adaptations in Grammysia obliqua, Lethaia 4: 169–183.

    Google Scholar 

  • Bambach, R. K., 1977, Species richness in marine benthic habitats through the Phanerozoic, Paleobiology 3: 152–167.

    Google Scholar 

  • Bambach, R. K., and Sepkoski, J. J., Jr., 1979, The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic, Geol. Soc. Am. Abstr. Progr. Ann. Mtg.,11: 383.

    Google Scholar 

  • Banks, N. L., 1970, Trace fossils from the Late Precambrian and Lower Cambrian of Finnmark, Norway, in: Trace Fossils( T. P. Crimes and J. C. Harper, eds.), pp. 19–42, Seel House Press, Liverpool.

    Google Scholar 

  • Barnes, R. D., 1968, 1974, Invertebrate Zoology, Saunders, Philadelphia.

    Google Scholar 

  • Bathurst, R. G. C., 1971, CarbonateSedimentsand Their Diagenesis, Elsevier, Amsterdam. Beerbower, J. R., 1981, A paleomicroecologic study of deposition and early diagenesis in a mid-Devonian shale, Geol. Soc. Am. Abstr. Progr. p. 406.

    Google Scholar 

  • Bell, B. M., and Frey, R. W., 1969, Observations on ecology and the feeding and burrowing mechanisms of Mellita quinquesperforata (Leske), J. Paleontol.43: 553–560.

    Google Scholar 

  • Bell, S. S., 1980, Meiofauna—macrofauna interactions in a high salt marsh habitat, Ecol. Monogr.50: 487–505.

    Google Scholar 

  • Bennet, J., 1968, The mud lobster, Aust. Mus. Mag. (Nat. Hist.),16: 22–25.

    Google Scholar 

  • Benton, M. J., and Gray, D. I., 1981, Lower Silurian shelf storm-induced turbidites in the Welsh Borders: Sediments, tool marks and trace fossils, J. Geol. Soc. London 138: 675–694.

    Google Scholar 

  • Bergstrom, J., 1969, Remarks on the appendages of trilobites, Lethaia 2: 395–414

    Google Scholar 

  • Bergstrom, J., 1973, Organization, life and systematics of trilobites, Fossils Strata 2: 1–69

    Google Scholar 

  • Berner, R. A., 1982, Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance, Am.J. Sci.282: 451–473.

    CAS  Google Scholar 

  • Bertram, G. C. L., 1936, Some aspects of the breakdown of coral at Ghardaqa, Red Sea, Proc. Zool. Soc. London, pp. 1011–1026.

    Google Scholar 

  • Black, L. F., 1980, The biodeposition cycle of a surface deposit-feeding bivalve, iMacoma balthica (L.), in: Estuarine Perspectives ( V. S. Kennedy, ed.), pp. 389–402, Academic Press, New York.

    Google Scholar 

  • Black, L. F., and Anderson, F. E., 1978, What is the role of pellet producers in estuarine tidal flat sedimentation?,Geol. Soc. Am. Abstr. Progr.3: 367.

    Google Scholar 

  • Blegvad, H., 1914, Food and conditions of nourishment among the communities of invertebrate animals found on or in the sea bottom in Danish water, Rep. Dan.Biol. Stn. Board Agric.Min. Fish. Copenhagen 22: 41–78.

    Google Scholar 

  • Bonem, R. M., 1982, Morphology and paleoecology of the Devonian rostroconch genus Bi-galea, J. Paleont.56: 1362–1374.

    Google Scholar 

  • Bonham, K., and Held, E. E., 1963, Ecological observations on the sea cucumbers Holothuria atra and H. leucospilota at Rongelap Atoll, Marshall Islands, Pac. Sci.17: 302–314.

    Google Scholar 

  • Boolootian, R. A. (ed.), Physiology of Echinodermata, Interscience, New York.

    Google Scholar 

  • Bormann, F. H., and Likens, G. E., 1979, Catastrophic disturbance and the steady state in northern hardwood forests, Am. Sci.67: 660–669.

    Google Scholar 

  • Bottjer, D. J., 1981, Structure of Upper Cretaceous chalk benthic communities, Palaeogeogr.Palaeoclimatol. Palaeoecol.34: 225–256.

    Google Scholar 

  • Bottjer, D. J., Roberts, C., and Hattin, D. E., 1978, Stratigraphic and ecologic significance of Pycnodonte kansasense, a new Lower Turonian oyster from the Greenhorn Limestone of Kansas,J. Paleontol.52: 1208–1218.

    Google Scholar 

  • Boucot, A. J., and Gray, J., 1982, Geologic factors correlating with the evolution of early land plants,J. Paleontol. 56(Suppl. to No. 2: 3.

    Google Scholar 

  • Bowen, Z. P., 1968, A guide to New Zealand Recent brachiopods, Tuatara 16: 127–150.

    Google Scholar 

  • Bowen, Z. P., Rhoads, D. C., and McAlester, A., 1974, Marine benthic communities in the Upper Devonian of New York, Lethaia 7: 93–120.

    Google Scholar 

  • Boynton, W. R., Kemp, W. M., and Osborne, C. G., 1980, Nutrient fluxes across the sediment—water interface in the turbid zone of a coastal plain estuary, in: Estuarine Perspectives ( V. S. Kennedy, ed.), pp. 93–109, Academic Press, New York.

    Google Scholar 

  • Bradley, J., 1981, Radionereites, Chondrites andPhycodes: Trace fossils of anthoptiloid sea pens, Pac. Geol.15: 1–16.

    Google Scholar 

  • Brafield, A. E., and Newell, G. E., 1961, The behaviour of Macoma balthica (L.), J. Mar. Biol. Assoc.U.K. 41: 81 - 87.

    Google Scholar 

  • Brasier, M. D., 1975, An outline history of seagrass communities, Palaeontology 18: 681–702.

    Google Scholar 

  • Brasier, M. D., 1979, The Cambrian radiation event, in:The Origins of Major Invertebrate Groups ( M. R. House, ed.), pp. 103–159, Academic Press, New York.

    Google Scholar 

  • Brenchley, G. A., 1978, On the regulation of marine infaunal organisms at the morphological level: The interactions between sediment stabilizers, destabilizers, and their sedimentary environment, Ph.D. thesis, Johns Hopkins University.

    Google Scholar 

  • Brenchley, G. A., 1981, Disturbance and community structure: An experimental study of bioturbation in marine soft bottom environments, J. Mar. Res.39: 767–790.

    Google Scholar 

  • Brenchley, G. A., 1982, Mechanisms of spatial competition in marine soft bottom communities, J. Exp. Mar. Biol. Ecol.60: 17–33.

    Google Scholar 

  • Brett, C. E., 1981, Terminology and functional morphology of attachment structures in pelmatozoan echinoderms, Lethaia 14: 343–370.

    Google Scholar 

  • Brett, C. E., and Liddell, W. D., 1978, Preservation and paleoecology of a Middle Ordovician hard ground community, Paleobiology 4: 329–348.

    Google Scholar 

  • Breum, O., 1970, Stimulation of burrowing activity by wave action in some marine bivalves, Ophelia 8: 197–207.

    Google Scholar 

  • Broadhead, T. W., and Strimple, H. L., 1978, Systematics and distribution of the Callocystidae (Echinodermata: Rhombifera), J. Paleontol.52: 164–177.

    Google Scholar 

  • Broadhurst, F. M., 1968, Large scale ripples in Silurian limestones, Lethaia1: 28–38.

    Google Scholar 

  • Bromley, R. G., 1975, Trace fossils at omission surfaces, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 309–428, Springer-Verlag, Berlin.

    Google Scholar 

  • Bromley, R. G., Curran, H. A., Frey, R. W., Gutschick, R. G., and Suttner, L. J., 1975, Problems in interpreting unusually large burrows, in: The Study of Trace Fossils( R. W. Frey, ed.), pp. 351–376, Springer-Verlag, Berlin.

    Google Scholar 

  • Brown, A. C., 1961, Physiological—ecological studies on two sandy-beach gastropoda from South Africa: Bullia digitalis Meuschen and Bullia laevissima (Gmelin),J. Morph. Okol. Tiere49: 629–657.

    Google Scholar 

  • Brown, A. C., 1971, The ecology of the sandy beaches of the Cape Peninsula, South Africa. Part 2. The mode of life of Bullia (Gastropoda: Prosobranchiata), Trans. R. Soc. S. Afr.39: 281–319.

    Google Scholar 

  • Brown, A. C., 1982, Towards an activity budget for the sandy beach whelk Bullia digitalis (Dillwyn), Malacologia 22: 681–683.

    Google Scholar 

  • Bubnova, N. P., 1971, Diet and assimilation of food by the detritus-feeding mollusk Portlandia arctica, Oceanology 11: 248–251.

    Google Scholar 

  • Bubnova, N. P., 1972, The nutrition of the detritus-feeding mollusks Macoma balthica (L.) and Portlandia arctica (Gray) and their influence on bottom sediments, Oceanology 12: 899–905.

    Google Scholar 

  • Buchanan, J. B., 1966, The biology of Echinocardium cordatum (Echinodermata: Spatangoidea) from different habitats,J. Mar. Biol. Assoc. U.K.46: 97–114.

    Google Scholar 

  • Bullivant, J. S., 1968, The rate of feeding of the bryozoan, Zoobotryon verticillatum, N.Z. J. Mar. Freshwater Res.22: 111–134.

    Google Scholar 

  • Burdon-Jones, C., 1962, The feeding mechanism of Balanoglossus gigas, Bol. Fac. Filos. Cienc. Let. Univ. Sao Paulo Ser. Zool.24: 255–279.

    Google Scholar 

  • Butler, A. J., and Brewster, F. J., 1979, Size distribution and growth of the fan-shell Pinna bicolor Gmelin (Mollusca: Eulamellibranchia) in South Australia, Aust. J. Mar. Freshwater Res.30: 25–39.

    Google Scholar 

  • Byers, C. W., 1977, Ichnofacies and paleoenvironments in the Upper Cambrian sandstones of Wisconsin, J. Paleontol. Suppl. to No. 2, p. 5.

    Google Scholar 

  • Cadée, G. C., 1975, Lunulitiform Bryozoa from the Guyana shelf, Neth. J. Sea Res.9: 320–343.

    Google Scholar 

  • Cadée, G. C., 1976, Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea, Neth. J. Sea Res,10: 440–460.

    Google Scholar 

  • Cadée, G. C., 1979, Sediment reworking by the polychaete Heteromastus filiformis on a tidal flat in the Dutch Wadden Sea, Neth. J. SeaRes.13: 441–456.

    Google Scholar 

  • Caine, E. A., 1974, Feeding of Ovalipes guadulpensis (Saussure) (Decapoda: Brachyura: Portunidae) and morphological adaptations to a burrowing existence, Biol. Bull.147: 550–559.

    Google Scholar 

  • Calkins, D. G., 1978, Feeding behavior and major prey species of the sea otter, Enhydra lutris, in Montague Strait, Prince William Sound, Alaska, Fish. Bull. (U.S.) 76: 125–131.

    Google Scholar 

  • Callender, E., and Hammond, D. E., 1982, Nutrient excha-ge across the sediment—water interface in the Potomac River estuary, Estuarine Coastal Shelf Sci.15: 395–413

    CAS  Google Scholar 

  • Calman, W. T., 1911, The Life of Crustacea, Methuen, London.

    Google Scholar 

  • Cammen, L., 1980a, A method for measuring ingestion of deposit feeders and its use with the polychaete Nereis succinea, Estuaries 3: 55–60.

    Google Scholar 

  • Cammen, L. M., 19806, Ingestion rate: An empirical model for aquatic deposit feeders and detritivores, Oecologia (Berlin) 44: 303–310.

    Google Scholar 

  • Capone, D. G., 1982, Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass Zostera marina, Mar. Ecol. Prog. Ser.10: 67–75.

    Google Scholar 

  • Capone, D. G., and Carpenter, E. J., 1982, Nitrogen fixation in the marine environment,Science 217: 1140 - 1142.

    CAS  PubMed  Google Scholar 

  • Capone, D. G., and Taylor, B. F., 1980, Microbial nitrogen cycling in a seagrass community, in: Estuarine Perspectives ( V. S. Kennedy, ed.), pp. 153–161, Academic Press, New York.

    Google Scholar 

  • Carey, A. G., 1981, A comparison of benthic infaunal abundance on two abyssal plains in the northeast Pacific Ocean, Deep-Sea Res.28A: 467–479.

    Google Scholar 

  • Carney, R. S., 1981, Bioturbation and biodeposition, in: Principles of Benthic Marine Paleoecology ( A. J. Boucot, ed.), pp. 357–399, Academic Press, New York.

    Google Scholar 

  • Carozzi, A. V., 1961, Reef petrography in the Beaverhill Lake Formation, Upper Devonian Swan Hills area, Alberta, Canada, J. Sediment. Petrol.31: 497–513.

    CAS  Google Scholar 

  • Carpenter, E. J., and McCarthy, J. J., (comments) and Rowe, G. T., (reply), 1978, Benthic nutrient regeneration and high rate of primary production in continental shelf waters, Nature (London) 274: 188–190.

    Google Scholar 

  • Carter, R. M., 1972, Adaptations of British Chalk Bivalvia,J. Paleontol. 46: 325–340.

    Google Scholar 

  • Chamberlain, C. K., and Robison, R. A., 1977, Cruziana biofacies in the upper Middle Cambrian of the central Great Basin,J Paleont. 51: 6.

    Google Scholar 

  • Chapman, G., and Newell, G., 1947, The role of the body fluid in relation to movement in soft bodied invertebrates. I. The burrowing of Arenicola, Proc. R. Soc. London Ser. B 134: 431–435.

    CAS  Google Scholar 

  • Chester, R. H., 1969, Contributions to the biology of Meoma ventricosa (Echinoidea: Spatangoida), Bull. Mar. Sci.19: 72–110.

    Google Scholar 

  • Chia, F. S., 1969, Some observations of the locomotion and feeding of the sand dollar, Dendraster excentricus,J. Exp. Mar. Biol. Ecol.3: 162–170.

    Google Scholar 

  • Chuang, S. H., 1962, Feeding mechanism of the echinoid, Ochestoma erythrogrammon Leu-kartRueppell, 1828, Biol. Bull.123: 80–85.

    Google Scholar 

  • Cisne, J. L., 1974, Evolution of the world fauna of aquatic free-living arthropods, Evolution 28: 337–366.

    Google Scholar 

  • Clark, R. B., 1981, Locomotion and the phylogeny of the Metazoa,Boll. Zool.48: 11–28.

    Google Scholar 

  • Clarkson, E. N. K., 1979, Invertebrate Palaeontology and Evolution, Allen & Unwin, London.

    Google Scholar 

  • Cloud, P., and Glaessner, M. F., 1982, The Ediacaran Period and System: Metazoa inherit the earth, Science 217: 783–792.

    CAS  PubMed  Google Scholar 

  • Coates, A. G., and Kauffman, E. G., 1973, Stratigraphy, paleontology and paleoenvironment of a Cretaceous coral thicket, Lamy, New Mexico, J. Paleontol.47: 953–968.

    Google Scholar 

  • Cochran, J. K., and Aller, R. C., 1979, Particle reworking in sediments from the New York Bight apex: Evidence from 234Th/238U disequilibrium, Estuarine Coastal Mar. Sci.9: 739–742.

    CAS  Google Scholar 

  • Cocks, L. R. M., 1979, New acrotretacean brachiopods from the Paleozoic of Britain and Austria, Palaeontology 22: 93–100.

    Google Scholar 

  • Conan, G., Roux, M., and Sibuet, M., 1981, A photographic survey of a population of the stalked crinoid Diplocrinus (Annacrinus) wyvillethomsoni ( Echinodermata) from the bathyal slope of the Bay of Biscay, Deep-Sea Res. 28A: 441–453.

    Google Scholar 

  • Conway Morris, S., 1979, The Burgess Shale (Middle Cambrian) fauna, Annu. Rev. Ecol. Syst.10: 327–349.

    Google Scholar 

  • Cook, P. L., 1963, Observations of live lunulitiform zooaria of Polyzoa, Cah. Biol. Mar.4: 407–413.

    Google Scholar 

  • Cook, P. L., 1981, The potential of minute bryozoan colonies in the analysis of deep sea sediments, Cah.Biol. Mar.22: 89–106.

    Google Scholar 

  • Copeland, M., 1922, Ciliary and muscular locomotion in the gastropod genusPolinices, Biol.Bull.42: 132–142.

    Google Scholar 

  • Cowen, R., 1972, The adaptive history of the brachiopods, Geol. Soc. Am. Abstr. Progr.4: 478–479.

    Google Scholar 

  • Cowen, R. K., Agegian, C. R., and Foster, M. S., 1982, The maintenance of community structure in a central California giant kelp forest,J. Exp. Mar. Biol. Ecol.64: 189–201

    Google Scholar 

  • Cowie, J., 1981,Ichnol. News12: 6.

    Google Scholar 

  • Cox, L. R., 1969, General features of Bivalvia, in: Treatise on Invertebrate Paleontology ( R. C. Moore, ed.), pp. N3 — N129, Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • Cox, M. M., and Middlemiss, F. A., 1978, Terebratulacea from the Cretaceous Shenley Limestone, Palaeontology 21: 411–441.

    Google Scholar 

  • Crane, J., 1975,Fiddler crabs of the world: Ocypodidae: Genus Uca. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Crimes, T. P., 1974, Colonization of the early ocean floor, Nature(London) 248: 328 - 330.

    Google Scholar 

  • Crimes, T. P., 1975, The stratigraphical significance of trace fossils, in: The Study of TraceFossils( R. W. Frey, ed.), pp. 109–130, Springer-Verlag, Berlin.

    Google Scholar 

  • Crimes, T. P., and Germs, G. J. B., 1982, Trace fossils from the Nama Group (Precambrian—Cambrian) of Southwest Africa (Namibia), J. Paleontol.56: 890–907.

    Google Scholar 

  • Crimes, T. P., Legg, I., Marcos, A., and Arboleya, D., 1977, ?Late Precambrian—Lower Cambrian trace fossils from Spain, in: TraceFossils2 (T. P. Crimes and J. C. Harper, eds.), pp. 91–138, Seel House Press, Liverpool.

    Google Scholar 

  • Croker, R. A., 1967, Niche diversity in five species of intertidal amphipods (Crustacea: Haustoriidae), Ecol. Monogr.37: 173–200.

    Google Scholar 

  • Crozier, W. J., 1918, The amount of bottom material ingested by holothurians (Stichopus), J. Exp. Zool.26: 379–389.

    CAS  Google Scholar 

  • Crozier, W. J., 1920, Notes on the bionomics of Mellita, Am. Nat.54: 435–442.

    Google Scholar 

  • Cullen, D., 1973, Bioturbation of superficial marine sediments by interstitial meiobenthos, Nature (London) 242: 323–324.

    Google Scholar 

  • Curran, H. A., and Frey, R. W., 1977, Pleistocene trace fossils from North Carolina (U.S.A.), and their Holocene analogues, in: Trace Fossils 2 ( T. P. Crimes and J. C. Harper, eds.), pp. 139–162, Seel House Press, Liverpool.

    Google Scholar 

  • Dales, R. P., 1952, The larval development and ecology of Thoracophelia mucronata (Tread-well), Biol. Bull.102: 232–242.

    Google Scholar 

  • Darby, D. G., 1982, The early vertebrate Astraspis, habitat based on a litnologic association, J. Paleont.56: 1187–1196.

    Google Scholar 

  • Davison, C., 1891, On the amount of sand brought up by lobworms to the surface, Geol. Mag.8: 489–493.

    Google Scholar 

  • Dayton, P., and Hessler, R., 1972, Role of biological disturbance in maintaining diversity in the deep sea,Deep-Sea Res.19: 199–208.

    Google Scholar 

  • DeLaune, R. D., and Patrick, W. H., Jr., 1980, Nitrogen and phosphorous cycling in a Gulf Coast salt marsh, in: Estuarine Perspectives ( V. S. Kennedy, ed.), pp. 143–151, Academic Press, New York.

    Google Scholar 

  • Demaison, G. J., and Moore, G. T., 1980, Anoxic environments and oil source bed genesis, Am. Assoc. Petrol. Geol. Bull.64: 1179–1209.

    CAS  Google Scholar 

  • Dembowski, J. B., 1926. Notes on the behaviour of the fiddler crab, Biol. Bull.50: 179–201

    Google Scholar 

  • Dobbs, F. C., 1983, Monitoring defecation activity of infaunal deposit feeders, Mar. Ecol.Prog. Ser 12: 47–50.

    Google Scholar 

  • Dobbs, F. C., and Whitlach, R. B., 1982, Aspects of deposit-feeding by the polychaete Clymenella torquata, Ophelia 21: 159–166.

    Google Scholar 

  • Doering, P. H., 1981, Observations on the behavior of Asterias forbesi feeding on Mercenaria mercenaria, Ophelia 20: 169–177.

    Google Scholar 

  • Doherty, P. J., 1979, A demographic study of a subtidal population of the New Zealand articulate brachiopod Terebratella inconspicua, Mar. Biol.52: 331–342.

    Google Scholar 

  • Dörjes, J., 1972, Georgia coastal region, Sapelo Island, U.S.A.: Sedimentology and biology. VII. Distribution and zonation of macrobenthic animals, Senckenbergiana iMarit.4: 183–216.

    Google Scholar 

  • Dörjes, J., and Hertweck, G., 1975, Recent biocoenoses and ichnoceonoses in shallow-water marine environments, in: The Study of TraceFossils( R. W. Frey, ed.), pp. 459–491, Springer-Verlag, Berlin.

    Google Scholar 

  • Dott, R. H., Jr., 1974, Cambrian tropical storm waves in Wisconsin, Geology 2: 243–246.

    Google Scholar 

  • Dragoli, A., 1961, Peculiar feeding habits in the Black Sea polychaete iMelinna palmata Grube, Dokl. Akad. NaukSSR Biol. Sci.138: 534–536 (Engl. Transi.).

    Google Scholar 

  • Dragoli, A. L., 1962, On the ecology of a Black Sea polychaete, Melinna palmata Grube: Vopr. Ekol. Vyssh. Shk. Moscow (Questions of ecology,Higher Schools) [pub.]5: 55–57

    Google Scholar 

  • Dravis, J. J., 1983, Hardened subtidal stromatolites, Bahamas, Science 219: 385–386.

    CAS  PubMed  Google Scholar 

  • Driscoll, E. G., 1969a, A possible cricoconarid biocoenose from the Middle Devonian, Mich. Acad.1: 135–139.

    Google Scholar 

  • Driscoll, E. G., 1969b, Animal—sediment relationships of the Coldwater and Marshall formations of Michigan, in: Stratigraphy and Palaeontology ( K. S. W. Campbell, ed.), pp. 337–352, ANU Press, Canberra.

    Google Scholar 

  • Driscoll, E. G., and Newton, G. B., 1969, A new species of the coral Syringopora from the Tensleep Formation (Pennsylvanian) of Montana,J. Paleontol.43: 531–534.

    Google Scholar 

  • Duncan, P. B., 1981, Sediment reworking by Balanoglossus auranticus in Bogue Sound, N.C., Am. Zool.21: 1020.

    Google Scholar 

  • Eagle, R. A., and Hardiman, P. A., 1977, Some observations on the relative abundance of species in a benthic community, in: Biology of Benthic Organisms ( B. F. Keegan, P. O’Ceidigh, and P. J. S. Boaden, eds.), pp. 197–208, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Ebert, T. A., and Dexter, D. M., 1975, A natural history study of Encope grandis and Mellita grantii, two sand dollars in the northern Gulf of California, Mexico, Mar. Biol.32: 397–407.

    Google Scholar 

  • Eckman, J. E., Nowell, A. R. M., and Jumars, P. A., 1981, Sediment destabilization by animal tubes, J. Mar. Res.39: 361–374.

    Google Scholar 

  • Edwards, S. F., and Welsh, B. L., 1982, Trophic dynamics of a mud snail (Ilyanassa obsoleta (Say)) population on an intertidal mud flat, Estuarine Coastal Shelf Sci.14: 663–686.

    CAS  Google Scholar 

  • Ehrenberg, K., 1929, Pelmatozoan root-forms (fixation), Bull. Am. Mus. Nat. Hist.59: 1–76.

    Google Scholar 

  • Ekdale, A. A., 1977, Abyssal trace fossils in worldwide deep sea drilling project cores, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 163–182, Seel House Press, Liverpool.

    Google Scholar 

  • Ekdale, A. A., 1980, Graphoglyptid burrows in modern deep sea sediments, Science 207: 304–306.

    CAS  PubMed  Google Scholar 

  • Elderfield, H., Luedtke, N., McCaffrey, R. J., and Bender, M., 1981a, Benthic flux studies in Narragansett Bay, Am. J. Sci.281: 768–787.

    CAS  Google Scholar 

  • Elderfield, H., McCaffrey, R. J., Luedtke, N., Bender, M., and Truesdale, V. W.. 1981b, Chem-ical diagenesis in Narragansett Bay sediments, Am. J. Sci.281: 1021–1055.

    CAS  Google Scholar 

  • Erdtmann, B. D., and Prezbindowski, D. R., 1974, Niagran (Middle Silurian) inter-reef fossil burial environments in Indiana, Neues Jahrb. Geol. Palaeontoi. Abh.144: 342–372.

    CAS  Google Scholar 

  • Ettensohn, F. R., 1980, Paragassizocrinus: Systematics, phvlogeny and ecology, J. Paleontol. 54: 978–1007.

    Google Scholar 

  • Ettensohn, F. R., 1981, A case for substrate influence on infrabasal-cone morphology of two Paleozoic stemless crinoid genera from eastern Kentucky, Southeast. Geol.22: 169–175.

    Google Scholar 

  • Fager, E. W., 1964, Marine sediments: Effects of a tube-building polychaete,Science 143: 356 - 359.

    CAS  PubMed  Google Scholar 

  • Fairbridge, R. W., and Jablonski, D. (eds.), 1979, TheEncyclopediaof Paleontology, Dowden, Hutchinson and Ross, Stroudsburg, Pa.

    Google Scholar 

  • Fankboner, P. V., 1981, A re-examination of mucus feeding by the sea cucumber Leptopentacta (Cucumaria) elongata, J. Mar. Biol. Assoc.U.K.61: 679 - 683.

    Google Scholar 

  • Farrow, G. E., Syvitski, J. P. M., and Tunnicliffe, V., 1983, Suspended particulate loading on the macrobenthos of a highly turbid fjord: Knight Inlet, British Columbia, Can. J. Fisheries Aquatic Sci.40: 273–288.

    Google Scholar 

  • Fedonkin, M. A., 1977, Precambrian–Cambrian ichnocoenoses of the east European platform, in: Trace Fossils 2 ( T. P. Crimes and J. C. Harper, eds.), pp. 183–194, Seel House Press, Liverpool.

    Google Scholar 

  • Fedonkin, M. A., 1982, Precambrian non-skeletal fauna and the earliest stages of metazoan evolution, J. Paleontol. Suppl. to No. 2, p. 9.

    Google Scholar 

  • Fell, H. B., 1966, The ecology of ophiuroids, in: Physiology of Echinodermata ( R. A. Boolootian, ed.), pp. 129–143, Interscience, New York.

    Google Scholar 

  • Fenchel, T., Kofoed, L. H., and Lappalainen, A., 1975, Particle size selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae, Mar. Biol. (Berlin),30: 119–128.

    Google Scholar 

  • Ferber, I., and Lawrence, J. M., 1976, Distribution, substratum preference and burrowing behavior of Lovenia elongata (Gray) (Echinoidea: Spatangoida) in the Gulf of Elat (’Aqaba), Red Sea, J. Exp. Mar. Biol. Ecol.22: 207–225.

    Google Scholar 

  • Findlay, S., and Tenore, K., 1982, Nitrogen source for a detritivore: Detritus substrate versus associated microbes,Science 218: 371 - 373.

    CAS  PubMed  Google Scholar 

  • Finks, R. M., 1970, The evolution and ecologic history of sponges during Paleozoic times, Zool. Soc. London Symp.25: 3–22.

    Google Scholar 

  • Fisher, T. R., Carlson, P. R., and Barber, R. T., 1982, Sediment nutrient regeneration in three North Carolina estuaries, Estuarine CoastalShelf Sci.14: 101–116.

    CAS  Google Scholar 

  • Flessa, K. W., and Bray, R. G., 1977, On the measurement of size-independent morphologic variability: An example using successive populations of a Devonian spiriferid brachiopod, Paleobiology 3: 350–359.

    Google Scholar 

  • Flessa, K. W., and Levinton, J. S., 1974, Phanerozoic diversity patterns: Tests for randomness, J. Geol.83: 239–248.

    Google Scholar 

  • Flessa, K. W., and Sepkoski, J. J., Jr., 1978, On the relationship between Phanerozoic diversity and changes in habitable area, Paleobiology 4: 359–366.

    Google Scholar 

  • Fox, D. L., Crane, S. C., and McConnaughey, B. H., 1948, A biochemical study of the marine annelid worm, Thoracophelia mucronata: Its food, biochromes and carotenoid metabolism,J. Mar. Res.7: 567–585.

    CAS  Google Scholar 

  • Frankenberg, D., Coles, S. L., and Johannes, R. E., 1967, The potential significance of Callianassa major fecal pellets, Limnol. Oceanogr.12: 113–120.

    Google Scholar 

  • Franzén, C., 1977, Crinoid holdfasts from the Silurian of Gotland, Lethaia 10: 219–234.

    Google Scholar 

  • Frey, R. W., 1970, The lebenspuren of some common marine invertebrates near Beaufort, North Carolina. II. Anemone burrows, J. Paleontol.44: 308–311.

    Google Scholar 

  • Frey, R. W., 1971, Ichnology—The study of fossil and Recent lebenspuren, in: TraceFossils(B. F. Perkins, ed.), pp. 91–125, SEPM field trip, School of Geoscience, Louisiana State Univ. Misc. Publ. 71–1.

    Google Scholar 

  • Frey, R. W., and Howard, J. D., 1969, A profile of biogenic sedimentary structures in a Holocene barrier island–salt marsh complex, Georgia, Trans. Gulf CoastAssoc. Geol. Soc.19: 427–444.

    Google Scholar 

  • Frey, R. W., and Mayou, T. V., 1971, Decapod burrows in Holocene barrier island beaches and washover fans, Georgia, Senckenbergiana Marit.3: 53–77.

    Google Scholar 

  • Frey, R. W., and Seilacher, A., 1980, Uniformity in marine invertebrate ichnology, Lethaia 13: 183–207.

    Google Scholar 

  • Fürsich, F. T., 1978, The influence of faunal condensation and mixing on the preservation of fossil benthic communities, Lethaia11: 243–250.

    Google Scholar 

  • Fürsich, F. T., and Hurst, J. M., 1981, Autecology of the Silurian brachiopod Sphaerirhynchiawilsoni(J. Sowerby, 1816),J. Paleontol.55: 805–809.

    Google Scholar 

  • Fuss, C. M., Jr., 1964, Observations on the burrowing behavior of the pink shrimp, Penaeus duorarum Berkenroad,Bull. Mar. Sci. Gulf Caribb.14: 62–73.

    Google Scholar 

  • Fuss, C. M., Jr., and Ogren, L. H., 1966, Factors affecting activity and burrowing habits of the pink shrimp, Penaeus duorarum Burkenroad, Biol. Bull.130: 170–191.

    Google Scholar 

  • Gallucci, V. F., and Hylleberg, J., 1976, A quantification of some aspects of growth in the bottom feeding bivalve Macoma nasuta, Veliger19: 59–67.

    Google Scholar 

  • Gardiner, J. S., 1903–1906, Fauna and geography of the Maldive and Saccadive archipelagoes, Cambridge University Press, London.

    Google Scholar 

  • Gardiner, J. S., 1931, Coral Reefs and Atolls, Macmillan & Co., London.

    Google Scholar 

  • Garrett, P., 1970, Phanerozoic stromatolites: Non-competitive ecologic restriction by grazing and burrowing animals, Science 169: 171–173.

    Google Scholar 

  • Germs, G. J. B., 1973, A reinterpretation of Rangea scheiderhoehni and the discovery of a related new fossil from the Nama Group, South West Africa, Lethaia 6: 1–10.

    Google Scholar 

  • Ghiold, J., 1982, Observations on the clypeasteroid Echinocyamus pusillus (O. F. Muller), J. Exp. Mar. Biol. Ecol.61: 57–74.

    Google Scholar 

  • Gilinsky, N. L., 1981, Stabilizing species selection: An example from the Archeogastropoda,Geol. Soc. Am. Abstr. Progr. p. 459.

    Google Scholar 

  • Gill, G. A., and Coates, A. G., 1977, Mobility, growth patterns and substrate in some fossil and Recent corals, Lethaia 10: 119–134.

    Google Scholar 

  • Gislén, T., 1924, Echinoderm studies. Chapter V. Ciliary currents on the surface of the body of echinoderms, Zool. Bidr. Uppsala9: 1–316.

    Google Scholar 

  • Gislén, T., 1940, Investigations on the ecology of Echiurus, LundsUniv. Arsskr. New Ser.36: 1–39.

    Google Scholar 

  • Glaessner, M. F., 1969, Trace fossils from the Precambrian and basal Cambrian, Lethaia 2: 369–393.

    Google Scholar 

  • Glaessner, M. F., and Wade, M., 1966, The Late Precambrian fossils from Ediacara, South Australia, Palaeontology 9: 599–628.

    Google Scholar 

  • Glasby, G. P., 1977, Why manganese nodules remain at the sediment–water interface, N.Z. J. Sci.20: 187–190.

    CAS  Google Scholar 

  • Glynn, P. W., 1974, Rolling stones among the Scleractinia: Mobile coralliths in the Gulf of Panama, in: Proc. 2ndInt. Coral Reef Symp. pp. 183–198, Great Barrier Reef Committee, Brisbane.

    Google Scholar 

  • Goldberg, E. D., 1971, River–ocean interactions, in: Fertility oftheSea, Vol. 1 ( J. D. Costlow, ed.), pp. 143–156, Gordon & Breach, New York.

    Google Scholar 

  • Goldring, R., 1967, The significance of certain trace-fossil ranges, in: The Fossil Record (W. B. Harland etal., eds.), pp. 37–39, Geological Society of London, London.

    Google Scholar 

  • Goodwin, P. W., and Anderson, E. J., 1974, Associated physical and biogenic structures in environmental subdivision of a Cambrian tidal sand body,J. Geol.82: 79.

    Google Scholar 

  • Gordon, D. C., 1966, The effects of the deposit-feeding polychaete Pectinaria gouldii on the intertidal sediments of Barnstable Harbor, Limnol. Oceanogr.11: 327–332.

    Google Scholar 

  • Goreau, T. F., and Yonge, C. M., 1968, Coral community on muddy sand, Nature (London) 217: 421–423.

    Google Scholar 

  • Gould, S. J., and Calloway, C. B., 1980, Clams and brachiopods—Ships that pass in the night, Paleobiology 6: 383–396.

    Google Scholar 

  • Gould, S. J., and Eldredge, N., 1977, Punctuated equilibria: The tempo and mode of evolution reconsidered, Paleobiology 3: 115–151.

    Google Scholar 

  • Gould, S. J., and Vrba, E. S., 1982, Exaption—A missing term in the science of form, Paleobiology 8: 4–15.

    Google Scholar 

  • Grant, D. C., 1965, Specific diversity in the infauna of an intertidal sand community, Ph.D. Thesis, Yale Univ., New Haven.

    Google Scholar 

  • Grant, R. E., 1966, Spine arrangement and life habits of the productoid brachiopod Waagenoconcha, J. Paleontol.40: 1063–1069.

    Google Scholar 

  • Grant, R. E., 1971, Brachiopods in the Permian reef environment of West Texas, Proc. North Am. Paleontol. Cony. J.1: 1444–1481.

    Google Scholar 

  • Grant, W. D., Boyer, L. F., and Sanford, L. P., 1982, The effect of bioturbation on the initiation of motion of intertidal sands, J. Mar.Res.40: 659–677.

    Google Scholar 

  • Grassle, J. F., Sanders, H. L., Hessler, R. R., Rowe, G. T., and McClellan, T., 1975, Pattern and zonation: A study of the bathyal megafauna using the research submerisible Alvin, Deep-Sea Res.22: 457–481.

    Google Scholar 

  • Gray, J. S., 1974, Animal–sediment relationships, Oceanogr. Mar. Biol. Annu. Rev.12: 223–261.

    Google Scholar 

  • Greely, R., 1967, Natural orientation of lunulitiform bryozoans, Geol. Soc.Am. Bull.78: 1179–1182.

    Google Scholar 

  • Green, J., 1961, A Biology of Crustacea, Witherby, London.

    Google Scholar 

  • Gregory, M. R., Ballance, P. F., Gibson, G. W., and Ayling, A. M., 1979, On how some rays (Elasmobranchia) excavate feeding depressions by jetting water, J. Sediment. Petrol.49: 1125–1130.

    Google Scholar 

  • Guinasso, N. L., and Schink, D. R., 1975, Quantitative estimates of biological mixing rates in abyssal sediments,J. Geophys. Res.80: 3032–3043.

    Google Scholar 

  • Guppy, H. B., 1882, On coral-eating habits of holothurians, Nature (London) 27: 7–8.

    Google Scholar 

  • Gust, G., and Harrison, J. T., 1981, Biological pumps at the sediment–water interface: Me-chanistic evaluation of the alpheid shrimp Alpheus mackayi and its irrigation pattern, Mar. Biol.64: 71–78.

    Google Scholar 

  • Hagmeier, A., and Hinrichs, J., 1931, Bemerkungen über die Ökologie von Branchiostoma lanceolatum (Pallas) und das Sediment seines Wohnortes, Senckenbergiana 13: 255–267.

    Google Scholar 

  • Hailstone, T. S., and Stephenson, W., 1961, The biology of Callianassa (Trypaea) australiensis Dana 1852 (Crustacea, Thalassinidea),Univ. Queensland, Pap. Dep. Zool.1: 259–285.

    Google Scholar 

  • Halleck, M., 1973, Crinoids, hardgrounds and community succession: The Silurian Laurel–Waldron contact in south Indiana, Lethaia 6: 239–252.

    Google Scholar 

  • Hammond, L. S., 1981, An analysis of grain size modification in biogenic carbonate sediments by deposit-feeding holothurians and echinoids (Echinodermata), Limnol. Oceanogr.26: 898–906.

    CAS  Google Scholar 

  • Hammond, L. S., 1982a, Patterns of feeding and activity in deposit-feeding holothurians and echinoids (Echinodermata) from a shallow back-reef lagoon, Discovery Bay, Jamaica, Bull. Mar. Sci.32: 549–571.

    Google Scholar 

  • Hammond, L. S., 1982, Analysis of grain-size selection by deposit-feeding holothurians and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica, Mar. Ecol. Prog. Ser.8: 25–36.

    Google Scholar 

  • Hammond, L. S., 1983, Nutrition of deposit-feeding holothurians and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica, Mar. Ecol. Prog. Ser.10: 297–305.

    Google Scholar 

  • Paleontol. Hammond, R. A., 1970, The burrowing of Priapulus caudatus, J. Zool. (London) 162: 469–480.

    Google Scholar 

  • Hampson, G. (photographer), 1978, Mud-dwelling creatures of the deep. Oceanus 21: 47.

    Google Scholar 

  • Handfield, R. C., and McKinney, F. K., 1975, Form and function in an atypical archeocyathid, J. Paleontol.49: 799–807.

    Google Scholar 

  • Hanson, R. B., Tenore, K. R., Bishop, S., Chamberlain, C., Pamatmat, M. M., and Tietjen, J., 1981, Benthic enrichment in the Georgia Bight related to Gulf Stream intrusions and estuarine outwelling, J. Mar. Res.39: 417–441.

    CAS  Google Scholar 

  • Harland, T. L., 1981, Middle Ordovician reefs of Norway, Lethaia 14: 169–188.

    Google Scholar 

  • Harland, W. B., et al. (ads.), 1967, The Fossil Record, Geological Society of London, London.

    Google Scholar 

  • Harrington, J. W., 1970, Paleontology of the Cortland area, in: Field Trip Guide Book (W. G. Heaslip, ed.), pp. G1—G2, N.Y. State Geol. Assoc. 42nd Annu. Meet., Cortland.

    Google Scholar 

  • Hart, T. J., 1930, Preliminary notes on the bionomics of the amphipod Corophium volutator Pallas, J. Mar. Biol. Assoc.U.K. 16: 761–789.

    Google Scholar 

  • Hatanaka, M., 1939, A study of Molpadia roretzii, Sci. Rep. Töhoku Univ. Ser.414: 155–190.

    Google Scholar 

  • Hauksson, E., 1979, Feeding biology of Stichopus tremulus, a deposit feeding holothurian, Sarsia 64: 155–160.

    Google Scholar 

  • Hay, M. E., 1981, Herbivory, algal distribution, and the maintenance of between-habitat diversity on a tropical fringing reef, Am. Nat.118: 520–540.

    Google Scholar 

  • Healy, E. A., and Wells, G. P., 1959, Three new lugworms (Arenicolidae, Polychaeta) from the North Pacific area, Proc. Zool. Soc. London133: 315–335.

    Google Scholar 

  • Heckel, P. H., 1974, Carbonate buildups in the geological record: A review, in: Reefs in Time and Space (L. F. Laporte, ed.), Soc. Econ. Paleontol. Mineral. Spec. Publ.18: 90–154.

    Google Scholar 

  • Heezen, B. C., and Hollister, C. D., 1971, The Face of the Deep, Oxford University Press, London.

    Google Scholar 

  • Henriksen, K., Hansen, J. I., and Blackburn, T. H., 1980, The influence of benthic infauna on exchange rates of inorganic nitrogen between sediment and water, Ophelia (Suppl.) 1: 249–256.

    CAS  Google Scholar 

  • Heslinga, G. A., Perron, F. E., and Orak, O., 1983, Mass culture of giant clams (f. Tridacnidae) in Palau, Aquaculture (in press).

    Google Scholar 

  • Hill, D., 1972, Archaeocyatha, in: Treatise on Invertebrate Paleontology, Part E, Vol. 1 (C. Teichert, ed.), Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • Hill, G. W., 1979, Biogenic sedimentary structures produced by the mole crab Lepidopa websteri Benedict, Tex. J. Sci.31: 43–51.

    Google Scholar 

  • Hill, G. W., and Hunter, R. E., 1976, Interaction of biological and geological processes in the beach and nearshore environments, northern Padre Island, Texas, in: Beach and Near-shore Sedimentation (R. A. Davis and R. L. Ethington, eds.), Soc. Econ.Paleontol. Mineral. Spec. Publ.24: 169–187.

    Google Scholar 

  • Hines, A. H., and Loughlin, T. R., 1980, Observations of sea otters digging for clams at Monterey Harbor, California, Fish. Bull.78: 159–163.

    Google Scholar 

  • Hobson, K. D., 1967, The feeding and ecology of two North Pacific Abarenicola species (Arenicolidae, Polychaeta),Biol. Bull.133: 343–354.

    Google Scholar 

  • Hollister, C. D., 1978, Selection of “animal sponges and flowers of the deep sea,” Oceanus 21: 26.

    Google Scholar 

  • Hollister, C. D., Heezen, B. C., and Nafe, K. E., 1975, Animai traces on the deep-sea floor, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 493–510, Springer-Verlag, Berlin.

    Google Scholar 

  • Hopkinson, C. S., and Wetzel, R. L., 1982, In situ measurements of nutrient and oxygen fluxes in a coastal marine benthic community, Mar.Ecol. Prog. Ser.10: 29–35

    CAS  Google Scholar 

  • Hoover, P. R., 1981, Paleontology, taphonomy, and paleoecology of the Palmarito Formation ( Permian of Venezuela ), Bull. Am. Paleontol. 80.

    Google Scholar 

  • Hornell, J., 1909, Report upon the anatomy of Placuna placenta with notes upon its distribution and economic uses, Report to the Government of Baroda on the marine zoology of Okhamandel in Kattiatlar [India]1: 43–97.

    Google Scholar 

  • Horst, C. J. van der, 1940, The Enteroptneusta from Inyack Island, Delagoa Bay,Ann. South African Mus.32: 293–380.

    Google Scholar 

  • Howard, J. D., 1968, X-Ray radiography for examination of burrowing in sediments by marine invertebrate organisms, Sedimentology 11: 249–258.

    Google Scholar 

  • Howard, J. D., 1971, Amphipod bioturbate textures in Recent and Pleistocene beach sediments, in: RecentAdvancesin Paleoecology and Ichnology, Am. Geol. Inst. Short Course Lecture Notes, pp. 213–223.

    Google Scholar 

  • Howard, J. D., and Dörjes, J., 1972, Animal—sediment relationships in two beach related tidal flats: Sapelo Island, Georgia, J. Sediment. Petrol. 42: 608–623.

    Google Scholar 

  • Howard, J. D., and Elders, C. A., 1970, Burrowing patterns of haustoriid amphipods from Sapelo Island, Georgia, in: Trace Fossils ( T. P. Crimes and J. C. Harper, eds.), pp. 243–262, Seel House Press, Liverpool.

    Google Scholar 

  • Howard, J. D., Mayou, T., and Heard, R., 1977, Biogenic sedimentary structure formed by rays,J. Sed. Pet.47: 339–346.

    Google Scholar 

  • Howell, B. F., 1962, Worms, in: Treatise of Invertebrate Paleontology (R. C. Moore, ed.), v.W., pp. 144–177, Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • Hughes, R. N., 1969, A study of feeding in Scrobicularia plana, J. Mar. Biol. Assoc.U.K. 49: 805 - 823.

    Google Scholar 

  • Hughes, T. G., 1973, Deposit feeding in Abra tennis (Bivalvia; Tellinacea), J. Zool. London 171: 499–512.

    Google Scholar 

  • Hughes, T. G., 1979, Mode of life and feeding in maldanid polychaetes from St. Margaret’s Bay, Nova Scotia, J. Fish. Res. Board Can.36: 1503–1507.

    Google Scholar 

  • Hurst, J. M., 1978, A phenetic strategy model for dalmanellid brachiopods, Palaeontology 21: 535–554.

    Google Scholar 

  • Hylleberg, J., 1975a, Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms, Ophelia 14: 113–137.

    Google Scholar 

  • Hylleberg, J., 1975b, The effect of salinity and temperature on egestion in mud snails (Gas-tropoda: Hydrobiidae), Oecologia (Berlin) 21: 279–289.

    Google Scholar 

  • Hylleberg, J., and Gallucci, V., 1975, Selectivity in feeding by the deposit-feeding bivalve Macoma nasuta, Mar. Biol.32: 167–178.

    Google Scholar 

  • Hylleberg, J., and Henriksen, K., 1980, The central role of bioturbation in sediment mineralization and element recycling, Ophelia (Suppl.)1: 1–16.

    CAS  Google Scholar 

  • Ikeda, H., 1939, Studies on the pseudofasciole of the Scutellids (Echinoidea, Scutellidae),J. Dep. Agric., Kyushu Imp. Univ.6: 41–93.

    Google Scholar 

  • Ikeda, H., 1941, Function of the lunules of Astriclypeus as observed in the righting movement (Echinoidea), Annot. Zool. Jpn.20: 79–83.

    Google Scholar 

  • Isaacson, P. E., and Curran, H. A., 1981, Anatomy of an Early Devonian carbonate buildup, Central New York, J. Paleontol.55: 1225–1236.

    Google Scholar 

  • Isaacson, P. E., and Perry, D. G., 1977, Biogeography and morphological conservatism of Tropidoleptus (Brachiopoda, Orthida) during the Devonian, J. Paleontol.51: 1108–1122.

    Google Scholar 

  • Jackson, J. B. C., 1977, Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies, Am. Nat.111: 743–767.

    Google Scholar 

  • Jackson, J. B. C., Goreau, T. F., and Hartman. W. D., 1971, Recent brachiopod—coralline sponge communities and their paleoecological significance, Science 173: 623–625.

    CAS  PubMed  Google Scholar 

  • Jacobsen, V., 1967, Feeding of the lugwormArenicolamarina (L.): Quantitative studies, Ophelia4: 91–109.

    Google Scholar 

  • Jarman, P. J., 1966, The status of the dugong (Dugong dugon Müller), Kenya 1961, East Afr.Wildl. J.,4: 82–88.

    Google Scholar 

  • Jell, P. A., 1974, Faunal provinces and planetary reconstruction of the Middle Cambrian, J. Geol.82: 319–350.

    Google Scholar 

  • Johnson, M. E., 1977, Succession and replacement in the development of Silurian brachiopod populations, Lethaia 10: 83–93.

    Google Scholar 

  • Johnson, R. G., 1964, The community approach to paleoecology, in: Approaches to Paleoe-cology ( J. Imbrie and N. D. Newell, eds.), pp. 107–134, Wiley, New York.

    Google Scholar 

  • Johnson, R. G., 1965, Temperature variation in the infaunal environment of a sand flat, Limnol. Oceanogr.10: 114–120.

    Google Scholar 

  • Johnson, R. G., 1967, Salinity of interstitial water in a sandy beach, Limnol. Oceanogr.12: 17.

    Google Scholar 

  • Jones, B., 1982, Paleobiology of the Upper Silurian brachiopod Atrypoidea, J. Paleontol.56: 912–923.

    Google Scholar 

  • Jones, D., and Thompson, I., 1977, Echiura from the Pennsylvanian Essex fauna of northern Illinois, Lethaia 10: 317–325.

    Google Scholar 

  • Jordan, C. F., 1982, Amazon rain forests,Am. Sci.70: 394–401.

    Google Scholar 

  • Jorgensen, C. B., 1966,Biologyof Suspension Feeding, Pergamon, Elmsford, N.Y. Jorgensen, C. B., 1975, Comparative physiology of suspension feeding, Annu.Rev. Physiol. 37: 57 - 79.

    Google Scholar 

  • Jumars, P. A., 1978, Spatial autocorrelation with RUM (remote underwater manipulator): Vertical and horizontal structure of a bathyal benthic community, Deep-Sea Res.25: 589–604.

    Google Scholar 

  • Jumars, P. A., and Fauchauld, K., 1977, Between-community contrasts in polychaete feeding strategies, in: Ecology of Maine Benthos ( B. C. Coull, ed.), pp. 1–20, University of South Carolina Press, Columbia.

    Google Scholar 

  • Jumars, P. A., and Hessler, R., 1976, Hadal community structure: Implications from the Aleutian Trench, J. Mar. Res.34: 547–560.

    Google Scholar 

  • Kantsky, N., and Wallentinus, I., 1980, Nutrient release from a Baltic Mytilus—red algal community and its role in benthic and pelagic productivity, Ophelia (Suppl.) 1: 17–30

    Google Scholar 

  • Kapp, U. S., 1974, Mode of growth of Middle Chazyan (Ordovician) stromatoporoids, Ver-mont, J. Paleontol.48: 1235–1240.

    Google Scholar 

  • Kastendiek, J., 1982, Factors determining the distribution of the sea pansy Renilla kollikeri in a subtidal sand-bottom habitat, Oecologia(Berlin) 52: 340 - 347.

    Google Scholar 

  • Kauffman, E. G., 1974, Cretaceous of the Western Interior United States: A study in community evolution, in: Principles of Benthic Community Analysis (A. M. Ziegler, K. R. Walker, E. J. Anderson, E. G. Kaufmann, R. N. Ginsburg, and N. P. James, eds.) Sedimentia (Comp. Sediment. Lab. Univ. Miami)4: 125–1214.

    Google Scholar 

  • Kazmierczak, J., and Pszczolkowski, A., 1969, Burrows of Enteroptneusta in the Muschelkalk (Middle Triassic) of the Holy Cross Mountains, Poland. Acta Palaeontol.Pol.14: 299–324.

    Google Scholar 

  • Kenk, R., 1944, Ecological observations on two Puerto Rican echinoderms,Mellitaiota and Astropecten marginatus, Biol. Bull.,87: 177–187.

    Google Scholar 

  • Kier, P. M., 1982, Rapid evolution in echinoids, Palaeontology25: 1–9.

    Google Scholar 

  • Kier, P. M., and Grant, R. E., 1965, Echinoid distribution and habits, Key Largo Coral Reef Preserve, Florida, Smithson. Misc.Collect. 149 (6).

    Google Scholar 

  • Kiorboe, T., Mohlenberg, F., and Nohr, O., 1981, Effect of suspended bottom material on growth and energetics in Mytilus edulis, Mar. Biol.61: 283–288.

    Google Scholar 

  • Kisseleva, M. I., and Vityunk, D. M., 1970, The feeding of Arenicola grubii (Arenicolidae) in the Black Sea, Zool. Zh.49: 219–223.

    Google Scholar 

  • Kitchell, J. A., 1979, Deep-sea foraging pathways: An analysis of randomness and resource exploitation, Paleobiology 5: 107–125.

    Google Scholar 

  • Kitchell, J. A., Kitchell, J. F., Johnson, G. J., and Hunkins. K. L., 1978, Abyssal traces and megafauna: Comparison of productivity, diversity and density in the Arctic and Antarctic, Paleobiology 4: 171–180.

    Google Scholar 

  • Klovan, J. E., 1964, Facies analysis of the Redwater reef complex, Alberta, Canada, Bull. Can. Petrol. Geol.12: 1–100.

    Google Scholar 

  • Knight-Jones, E. W., 1953, Feeding in Saccoglossus (Enteroptneusta). Proc. Zool. Soc. London 123: 637–654.

    Google Scholar 

  • Knowlton, N., Lang, J. C., Rooney. M. C., and Clifford, P., 1981, Evidence for delayed mortality in hurricane-damaged Jamaican staghorn corals, Nature (London) 294: 251–252.

    Google Scholar 

  • Kobluk, D. R., James, N. P., and Pemberton, S. G., 1978, Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the Lower Paleozoic, Paleo-biology 4: 163–170.

    Google Scholar 

  • Koch, W. F., II, and Boucot, A. J., 1982, Temperature fluctuations in the Devonian Eastern Americas realm, J. Paleontol.56: 240–243.

    Google Scholar 

  • Kornicker, L. S., and Purdy, E. G., 1957, A Bahamian faecal-pellet sediment, J. Sediment. Petrol.27: 126–128.

    Google Scholar 

  • Kraeuter, J., 1976, Biodeposition by salt-marsh invertebrates, Mar. Biol.35: 215–223

    Google Scholar 

  • Kreisa, R. D., 1981, Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia, J. Sediment. Petrol.51: 823–848.

    Google Scholar 

  • Krzysztof, B., and Brunton, D. L., 1971, Some trilobite resting and crawling traces, Lethaia 4: 303–319.

    Google Scholar 

  • Kudenov, J. D., 1982, Rates of seasonal sediment reworking in Axiothella rubrocincta (Polychaeta: Maldanidae), Mar. Biol.70: 181–186.

    Google Scholar 

  • Kukalovâ-Peck, J., 1973, A phylogenetic tree of the animal kingdom (including orders and higher categories), Natl. Mus. Can. Publ. Zool. No. 8.

    Google Scholar 

  • LaBarbera, M., 1977, Brachiopod orientation to water movement. 1. Theory, laboratory behavior, and field orientations, Paleobiology 3: 270–287.

    Google Scholar 

  • LaBarbera, M., 1978, Brachiopod orientation to water movement: Functional morphology, Lethaia 11: 67–79.

    Google Scholar 

  • LaBarbera, M., 1981, The ecology of Mesozoic Gryphaea, Exogyra, and Ilymatogyra (Bivalvia: Mollusca) in a modern ocean, Paleobiology 7: 510–526.

    Google Scholar 

  • LaBarbera, M., 1982, Water flow patterns in and around three species of articulate brachiopods, J. Exp. Mar. Biol. Ecol.55: 185–206.

    Google Scholar 

  • Lane, N. G., 1973, Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian: Indiana), Univ. Calif. Publ. Geol. Sci.99: 1–141.

    Google Scholar 

  • Lane, J. M., and Lawrence, J. M., 1980, Seasonal variation in body growth, density and distribution of a population of sand dollars, Mellita quinquesperforata ( Leske ), Bull. Mar. Sci. 30: 871–882.

    Google Scholar 

  • Lane, J. M., and Lawrence, J. M.. 1982, Food, feeding and absorption efficiencies of the sand dollar,Mellitaquinquesperforata (Leske), Estuarine, Coastal, and Shelf Sci.14: 421431.

    Google Scholar 

  • Lane, N. G., and Burke, J. J., 1976, Arm movement and feeding mode of inadunate crinoids with biserial muscular arm articulations, Paleobiology 2: 202–208.

    Google Scholar 

  • Laughton, A. S., 1963, Microtopography, in: The Sea, Vol. 3 ( M. N. Hill. ed.), pp. 437–472, Wiley, New York.

    Google Scholar 

  • Lawrence, J. M., and Murdoch, J., 1977, The effect of particle size frequency distribution on the substratum on the burrowing ability of Chiridota rigida (Semper.) (Echinodermata: Holothuroidea), Mar.Behay. Physiol.4: 305–311.

    Google Scholar 

  • Lee, H., II, and Swartz, R. C., 1980. Biological processes affecting the distribution of pollutants in marine sediments. Part II. Biodeposition and bioturbation, in: Contaminants and Sediments ( R. A. Baker, ed.). pp. 555–606, Ann Arbor Science Publishers, Ann Arbor Mich.

    Google Scholar 

  • Levinton, J. S., 1974, Trophic group and evolution in bivalve molluscs, Palaeontology 17: 579–585.

    Google Scholar 

  • Levinton, J. S., 1977, Ecology of shallow water deposit-feeding communities, Quisset Harbor

    Google Scholar 

  • Massachusetts, in: Ecology of Marine Benthos (B. C. Coull, ed.), pp. 191–227, University of South Carolina Press, Columbia.

    Google Scholar 

  • Levinton, J. S., and Bambach, R. K., 1970, Some ecological aspects of bivalve mortality patterns, Am.J. Sci. 268: 97 - 112.

    Google Scholar 

  • Levinton, J. S., and Bambach, R. K., 1975, A comparative study of Silurian and Recent deposit-feeding bivalve communities, Paleobiology 1: 97–124.

    Google Scholar 

  • Levinton, J. S., and Lopez, G., 1977, A model of renewable resources and limitation of deposit-feeding benthic populations, Oecologia (Berlin) 31: 177–190.

    Google Scholar 

  • Linke, O., 1939, Die Biota des Jadebusenwattes,Helgol. Wiss. Meeresunters.1: 201–348.

    Google Scholar 

  • Lipps, J. H., Ronan, T. E., Jr., and DeLaca, T. E., 1979, Life below the Ross Ice Shelf, Antarctica,Science 203: 447 - 449.

    CAS  PubMed  Google Scholar 

  • Littler, M. M., Martz, D. R., and Littler, D. S., 1983, Effects of recurrent sand deposition on rocky intertidal organisms: importance of substrate heterogeneity in a fluctuating environment, Mar. Ecol. ProgressSer.11: 129–139.

    Google Scholar 

  • Lopez, G. R., and Cheng, I.-J., 1982, Ingestion selectivity of sedimentary organic matter by the deposit-feeder Nucula annulata (Bivalvia: Nuculidae), Mar. Ecol. Prog. Ser.8: 279–282.

    Google Scholar 

  • Lopez, G. R., Levinton, J. S., and Slobodkin, L. B., 1977, The effect of grazing by the detritivore Orchestia grillis on Spartina litter and its associated microbial community, Oecologia (Berlin)30: 111–127.

    Google Scholar 

  • Ludbrook, N. H., 1962, Scaphopoda, in: Treatise on Invertebrate Paleontology (R. C. Moore, ed.), Mollusco I, pp. I37 — I41, Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • McCall, P., 1977, Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound, J. Mar. Res.35: 221–266.

    Google Scholar 

  • McCall, P. L., 1978, Spatial—temporal distributions of Long Island Sound infauna: The role of bottom disturbance in a nearshore marine habitat, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 191–219, Academic Press, New York.

    Google Scholar 

  • McGhee, G. R., 1976, Late Devonian benthic marine communities of the central Appalachian Allegheny Front, Lethaia 9: 111–136.

    Google Scholar 

  • McGhee, G. R., Jr., 1981, Evolutionary replacement of ecological equivalents in Late Devonian benthic marine communities, Palaeogeogr. Palaeoclimatol. Palaeoecol.34: 267–283.

    Google Scholar 

  • MacGinitie, G. E., 1934, The natural history of Callianassa californiensis, Am. Midl. Nat.15: 166–177.

    Google Scholar 

  • MacGinitie, G. E., 1935, Ecological aspects of a California marine estuary. Am. Midl. Nat.16: 629–765.

    Google Scholar 

  • MacGinitie, G. E., and MacGinitie, N., 1949, Natural History of MarineAnimals, McGraw-Hill, New York.

    Google Scholar 

  • McIntyre, A. D., 1968, The microfauna and macrofauna of some tropical beaches, J. Zool. London 156: 377–392.

    Google Scholar 

  • McKerrow, W. S., 1978,TheEcologyofFossils, MIT Press, Cambridge, Mass.

    Google Scholar 

  • McKinney, F. K., 1977a, Functional interpretation of lyre-shaped Bryozoa, Paleobiology3: 90–97.

    Google Scholar 

  • McKinney, F. K., 19776, Paraboloid colony bases in Paleozoic stenolaemate bryozoans, Lethaia 10: 209–217.

    Google Scholar 

  • McKinney, F. K., 1979, Some paleoenvironments of the coiled fenestrate bryozoan Archimedes, in:Advances inBryozoology ( G. P. Larwood and M. B. Abbott, eds.), pp. 321–336, Academic Press, New York.

    Google Scholar 

  • McKinney, F. K., and Gault, H. W., 1980, Paleoenvironments of Late Mississippian fenestrate bryozoans, eastern United States, Lethaia 13: 127–146.

    Google Scholar 

  • McLean, D. M., 1978, Land Boras: The major Late Phanerozoic atmospheric carbon dioxide/oxygen control, Science 200: 1060–1062.

    CAS  PubMed  Google Scholar 

  • Macnae, W., and Kalk, M., 1962, The fauna and flora of sand flats at Inhaca Island, Moçambique,J. Anim. Ecol.31: 93–128.

    Google Scholar 

  • Macurda, D. B., and Meyer, D. L., 1976, The morphology and life habits of the abyssal crinoid Bathycrinus aldrichianus Wyville Thompson and its paleontological implications, J. Paleontol.50: 647–667.

    Google Scholar 

  • Makurath, J. H., 1977, Marine faunal assemblages in the Silurian—Devonian Keyser Limestone of the central Appalachians, Lethaia 10: 235–255.

    Google Scholar 

  • Manceüido, M. O., and Walley, C. D., 1979, Functional morphology and ontogenetic variation in the Callovian brachiopod Septirhynchia from Tunisia, Palaeontology 22: 317–337.

    Google Scholar 

  • Mancini, E. A., 1978, Origin of the Grayson micromorph fauna (Upper Cretaceous) of north-central Texas, J. Paleontol.52: 1294–1314.

    Google Scholar 

  • Mangum, C. P., 1964a, Studies on speciation in maldanid polychaetes of the North American Atlantic Coast. II. Distribution and competitive interaction of five sympatric species, Limnol. Oceanogr.9: 12–26.

    Google Scholar 

  • Mangum, C. P., 1964b, Activity patterns in metabolism and ecology of polychaetes, Comp. Biochem. Physiol.11: 239–256.

    CAS  Google Scholar 

  • Mangum, D. C., 1970, Burrowing behavior of the sea anemone Phyllactis, Biol. Bull.138: 316–325.

    Google Scholar 

  • Manten, A. A., 1971, SilurianReefsof Gotland, Elsevier, Amsterdam.

    Google Scholar 

  • Marshall, S. M., and Orr, A. P., 1931, Sedimentation on Low Isle reef and its relation to coral growth, Great Barrier Reef Exped. Sci. Rep.1: 93–133.

    Google Scholar 

  • Mauzey, K. P., Birkeland, C., and Dayton, P. K., 1968, Feeding behavior of asteroids and escape responses of their prey in the Puget Sound region, Ecology 49: 603–619.

    Google Scholar 

  • Mayor, A. G., 1917, Efficacy of holothurians dissolving limestone, CarnegieInst. Washington Yearb.16: 186–187.

    Google Scholar 

  • Mayor, A. G., 1924, Causes which produce stable conditions in the depths of the floors of Pacific fringing reef-flats, CarnegieInst. Washington (Tortugas Lab) Dept. Mar. Biol.19: 27–36.

    Google Scholar 

  • Meadows, P. S., 1964, Experiments on substrate selection by Corophium volutator (Pallas): Depth selection and pópulation density, J. Exp. Biol.41: 677–687.

    Google Scholar 

  • Meadows, P. S., and Reid, A., 1966, The behavior of Corophium volutator (Crustacea: Amphipoda),J. Zool. Soc. London 150: 387–399.

    Google Scholar 

  • Menge, B. A., and Lubchenco, J., 1981, Community organization in temperate and tropical intertidal habitats: Prey refuges in relation to consumer pressure gradients,Ecol. Monogr.51: 429–450.

    Google Scholar 

  • Merrill, R. J., and Hobson, E. S., 1970, Field observations of Dendraster excentricus, a sand dollar of western North America, Am.Midl. Nat.83: 595–624.

    Google Scholar 

  • Meyer, D. L., and Macurda, D. B., Jr., 1977, Adaptive radiation of the comatulid crinoids, Paleobiology 3: 74–82.

    Google Scholar 

  • Mileikovsky, S. A., 1974, On predation of pelagic larvae and early juveniles of marine bottom invertebrates by adult benthic invertebrates and their passing alive through their predators, Mar. Biol.26: 303–312.

    Google Scholar 

  • Millendorf, S. A., 1979, The functional morphology and life habits of the Devonian blastoid Eleutherocrinus cassedayi Shumard and Yandell, J. Paleontol.53: 553–561.

    Google Scholar 

  • Miller, T. E., 1982, Community diversity and interactions between the size and frequency of disturbance, Am. Nat.120: 533–536.

    Google Scholar 

  • Milne, L. J., and Milne, M. G., 1946, Notes on the behavior of the ghost crab, Am. Nat.80: 362–380.

    Google Scholar 

  • Milovidova, N. Y., and Kiryukhina, L. N., 1981, Distribution of macrozoobenthos in connection with properties of bottom sediments in the Karadag area (the Black Sea), Ekol. i\foria (Kiev) 7: 25–33.

    Google Scholar 

  • Mohlenberg, F., and Kiorboe, T.. 1981, Growth and energetics in Spisula subtruncata (DaCosta) and the effect of suspended bottom material, Ophelia 20: 79–90.

    Google Scholar 

  • Moore, D. G., and Scruton, P. C., 1957, Minor internal structures of some Recent uncon-solidated sediments, Am. Assoc. Petrol. Geol. Bull.41: 2723–2751.

    Google Scholar 

  • Moore, R. C., Teichert, C., and Robinson, R. A. (eds.), 1953–1981, Treatise on Invertebrate Paleontology, Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • Morelock, J., 1982, Bioturbation of carbonate reef sands, in: National GeographicResearchReports, v. 14, ( P. H. Oehrer, J. S. Lea, and N. L. Powards, eds.), National Geographic Soc., Washington, D.C., pp. 479–486.

    Google Scholar 

  • Morris, B., Barnes, J., Brown, F., and Markham, J., 1977, The Bermuda marine environment, Bermuda Biol. Stn.Spec. Publ. No. 15, 120 pp.

    Google Scholar 

  • Morton, B., 1977, The biology and functional morphology of Modiolus metcalfei (Bivalvia: Mytilacea) from the Singapore mangrove, Malacologia16: 501–517.

    Google Scholar 

  • Morton, J. E., 1959, The habits and feeding organs of Dentalium entalis, J. Mar. Biol. Assoc.U.K. 38: 225 - 238.

    Google Scholar 

  • Mosher, C., 1980, Distribution of Holothuria arenicola Semper in the Bahamas with observations on habitat, behavior, and feeding activity (Echinodermata: Holothuroidea), Bull. Mar. Sci.30: 1–12.

    Google Scholar 

  • Mundy, D. J. C., 1982, A note on the predation of brachiopods from the Dinantian reef limestones of Cracoe, North Yorkshire,Trans. Leeds Geol. Assoc.,9: 73–83.

    Google Scholar 

  • Murai, M., Goshima, S., and Nakasone, Y., 1982, Some behavioral characteristics related to food supply and soil texture of burrowing habits observed on Uca vocansvocansandU. lactea perplexa, Mar. Biol.66: 191–197.

    Google Scholar 

  • Murray, J. W., 1973, Distribution and Ecology of Living Benthic Foraminiferids, Crane, Russak, New York.

    Google Scholar 

  • Myers, A. C., 1977a, Sediment processing in a marine subtidal sandy bottom community. I. Physical aspects, J. Mar. Res.35: 609 - 632.

    Google Scholar 

  • Myers, A. C., 1977b, Sediment processing in a marine subtidal sandy bottom community. II. Biological consequences,J. Mar. Res.35: 633–647.

    Google Scholar 

  • Myers, A. C., 1979, Summer and winter burrows of a mantis shrimp, Squilla empusa, in Narragansett Bay, Rhode Island (U.S.A.), Estuarine Coastal Mar. Sci.8: 87–98.

    Google Scholar 

  • Nerini, M., 1983, The feeding ecology of the gray whale: a review, in The Gray Whale: Eschrictius robustus (M. L. Jones, S. Swartz, and J. S. Leatherwood, eds.), Academic Press, New York (in press).

    Google Scholar 

  • Nerini, M. K., and Oliver, J. S., 1983, Gray whales and the structure of the Bering Sea benthos, Oecologia, in press.

    Google Scholar 

  • Newell, N. D., 1957, Paleoecology of Permian reefs in Guadalupe Mountains area, Geol. Soc. Am.Mem.67: 407–436.

    Google Scholar 

  • Newell, N. D., 1967, Revolutions in the history of life,Geol. Soc. Am. Spec. Pap.89: 63–91

    Google Scholar 

  • Nichols, D., 1959, Changes in the chalk heart-urchin Micraster interpreted in relation to living forms, Philos. Trans. R. Soc. London Ser. B 242: 347–437.

    Google Scholar 

  • Nichols, D., 1962, Echinoderms. 4th ed., Hutchinson, London.

    Google Scholar 

  • Nichols, F., 1974, Sediment turnover by a deposit-feeding polychaete, Limnol. Oceanogr.19: 945–950.

    Google Scholar 

  • Nicol, D., 1978, Some characteristics of colonial animals, Fla. Sci.41: 214–217.

    Google Scholar 

  • Nicol, D., 1981, A survey of deposit-feeding animals, Fla. Sci.44: 123–126.

    Google Scholar 

  • Nicolaisen, W., and Kanneworff, E., 1969, On the burrowing and feeding habits of the am-phipods Bethyporeia pilosa Lindstrom and B. sarsia Watkin, Ophelia 6: 231–250.

    Google Scholar 

  • Nielsen, M. V., and Kofoed, L. H., 1982, Selective feeding and episammic browsing by the deposit-feeding amphipod Coophium volutotor, Mar. Ecol. Prog. Ser.,10: 81–88.

    Google Scholar 

  • Nitecki, M. H., 1973, North American Silurian receptaculitid algae, Fieldiana Geol. 28.

    Google Scholar 

  • Nixon, S. W., Kelly, J. R., Furnas. B. N., Oviatt. C. A., and Hale, S. S., 1980, Phosphorus regeneration and the metabolism of coastal marine bottom communities, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 219–242, University of South Carolina Press, Columbia.

    Google Scholar 

  • Nowell, A. R. M., Jumars, P. A., and Eckman, J. E., 1981, Effects of biological activity on the entrainment of marine sediments, Mar.Geol.42: 133–153.

    Google Scholar 

  • Ockelmann, K. W., and Vahl, O., 1970, On the biology of the polychaete Glycera alba, especially its burrowing and feeding, Ophelia 8: 275–294.

    Google Scholar 

  • Oelofsen, B. W., and Loock, J. C., 1981a, A fossil cephalochordate from the Early Permian White Hill Formation of South Africa, S. Afr. J. Sci.77: 178–180.

    Google Scholar 

  • Oelofsen, B. W., and Loock, J. C., 1981b, A first record of a fossil cephalochordate, Palaeontol. Afr.24: 17.

    Google Scholar 

  • Oliver, W., 1951, Middle Devonian coral beds of central New York,Am. J. Sci.249: 705–728.

    Google Scholar 

  • Olson, R. J., 1980, Nitrate and ammonium uptake in Antarctic waters, Limnol. Oceanogr.25: 1064–1074.

    CAS  Google Scholar 

  • Ono, Y., 1965, On the distribution of ocypoid crabs in the estuary,Mem. Fac. Sci. KyushuUniv., Ser. E (Biol.)4: 1–60.

    Google Scholar 

  • Orth, R. J., 1975, Destruction of eelgrass, Zostera marina, by the cownose ray, Bhinoptera bonasus, in the Chesapeake Bay, Chesapeake Sci.16: 206–208.

    Google Scholar 

  • Orth, R. J., 1977, The importance of sediment stability in seagrass communities, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 281–300, University of South Carolina Press, Columbia.

    Google Scholar 

  • Osgood, R. A., 1975, The paleontological significance of trace fossils, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 87–108, Springer-Verlag, Berlin.

    Google Scholar 

  • Ott, J. A., Fuchs, B., Fuchs, R., and Malasek, A., 1976, Observations on the biology of Callianassa stebbingi Borrodaille and Upogebia litoralis Risso and their effect upon the sediment, Senk. Marit.8: 61–79.

    Google Scholar 

  • Packard, A., 1972, Cephalopods and fish: The limits of convergence, Biol. Rev.47: 241–307.

    CAS  Google Scholar 

  • Paine, R. T., 1969, The sediment occupied by Recent lingulid brachiopods and some pa-leoecological implications, Palaeogeogr. Palaeoclimatol. Palaeoecol.7: 21–31.

    Google Scholar 

  • Paine, R. T., 1974, Intertidal community structure: Experimental studies on the relationship between a dominant competitor and its principal predator, Oecologia(Berlin) 15: 93 - 120.

    Google Scholar 

  • Paine, R. T., 1976, Size-limited predation: An observational and experimental approach with the Mytilus—Pisaster interaction, Ecology 57: 858–873.

    Google Scholar 

  • Palmer, T. J., 1982, Cambrian to Cretaceous changes in hardground communities, Lethaia 15: 309–323.

    Google Scholar 

  • Palmer, T. J., and Palmer, C. D., 1977, Faunal distribution and colonization strategy in a Middle Ordovician hardground community, Lethaia 10: 179–266.

    Google Scholar 

  • Palumbi, S. R., and Jackson, J. B. C., 1982, Ecology of cryptic coral reef communities. II. Recovery from small disturbance events by encrusting Bryozoa: The influence of “host” species and lesion size, J. Exp. Mar. Biol. Ecol.64: 103–115.

    Google Scholar 

  • Parker, G. H., and Van Alstyne, M. A., 1932, Locomotor organs of Echinarachnius parma, Biol.Bull.62: 195–200.

    Google Scholar 

  • Paul, C. R. C., 1967, The British Silurian Cystoids, Bull. Br. Mus. (Nat. Hist.) Geol.13(6)

    Google Scholar 

  • Paul, C. R. C., 1977, Evolution of primitive echinoderms, in: Patterns of Evolution ( A. Hallam, ed.), pp. 123–158, Elsevier, Amsterdam

    Google Scholar 

  • Pawson, D. L., 1980, Holothuoridea, in: Echinoderms: Notes fora Short Course (T. W. Broad-head and J. A. Waters, eds.), Univ. Tenn. Stud. Geol. No. 3, pp. 175–189.

    Google Scholar 

  • Pearse, A. S., 1912, The habits of fiddler crabs, Phillippine J. Sci.,7D: 113–132.

    Google Scholar 

  • Pearse, A. S., Humm, H. J., and Wharton, G. W.. 1942, Ecology of sand beaches at Beaufort, N.C., Ecol. Monogr.12: 135–190.

    CAS  Google Scholar 

  • Peebles, F., and Fox, D. L., 1933, The structure, functions, and general reactions of the marine sipunculid worm, Dendrostoma zostericola, Scripps Inst. Univ. Calif. Tech. Ser.3: 201–224.

    Google Scholar 

  • Peel, J. S., 1981, Shell damage and repair: A rare Silurian example,Bull. Am. Malacol. Union p. 31.

    Google Scholar 

  • Pemberton, S. G., 1980, Alteration of mass physical properties in fine-grained sediments of the Strait of Canso, Nova Scotia, Geol. Soc.Amer. Ann. Mtg., Abs. w. Prog.12: 497

    Google Scholar 

  • Pemberton, S. G., Risk, M. J., and Buckley, D. E., 1976, Supershrimp: Deep bioturbation in the Strait of Canso, Nova Scotia,Science 192: 790 - 791.

    CAS  PubMed  Google Scholar 

  • Pemberton, S. G., Flach, P. D., and Mossop, G. D., 1982, Trace fossils from the Athabasca Oil Sands, Alberta, Canada, Science 217: 825–827.

    CAS  PubMed  Google Scholar 

  • Peng, T.-H., Broecker, W. S., and Berger, W. H., 1978, Rates of benthic mixing in deep-sea sediment as determined by radioactive tracers, Quat. Res. (N.Y.) 11: 141–149.

    Google Scholar 

  • Peterson, C. H., 1977, Competitive organization of the soft-bottom macrobenthic commun-ities of southern California lagoons, Mar. Biol.43: 343–359.

    Google Scholar 

  • Peterson, C. H., 1980, Approaches to the study of competition in benthic communities in soft sediments, in: Estuarine Perspectives ( V. S. Kennedy, ed.), pp. 291–302, Academic Press, New York.

    Google Scholar 

  • Pickerill, R. K., 1980, Phanerozoic flysch trace fossil diversity—Observations based on an Ordovician flysch ichnofauna from the Aroostook–Matapedia Carbonate Belt of northern New Brunswick, Can.J. Earth Sci.17: 1259–1270.

    Google Scholar 

  • Pickerill, R. K., and Brenchley, P. J., 1979, Carodoc marine benthic communities of the South Berwyn Hills, North Wales, Palaeontology 22: 229–264.

    Google Scholar 

  • Pickett, T. E., Craft, J. C., and Smith, K., 1971, Cretaceous burrows—Chesapeake and Delaware Canal, Delaware, J. Paleontol.45: 209–211.

    Google Scholar 

  • Piper, D. J. W., and Marshall, N. F., 1969, Bioturbation of Holocene sediments of La Jolla deep sea fan, California, J. Sediment. Petrol. 39: 601 - 606.

    Google Scholar 

  • Pojeta, J., and Runnegar, B., 1974, Fordilla troyensis and the early history of the pelecypod mollusks, Am. Sci.62: 706–711.

    Google Scholar 

  • Pojeta, J., Jr., and Runnegar, B., 1976, The paleontology of rostroconch mollusks and the early history of the phylum Mollusca,U.S. Geol. Surv. Prof. Pap. 968.

    Google Scholar 

  • Pojeta, J., Jr., and Runnegar, B., 1979, Rhytiodentalium kentuckyensis, a new genus and new species of Ordovician scaphopod, and the early history of scaphopod molluscs, J. Paleontol.53: 530–541.

    Google Scholar 

  • Porter, J. W., Woodley, J. D., Smith, G. J., Neige!, J. E., Battey, J. F., and Dallmeyer, D. G., 1981, Population trends among Jamaican reef corals, Nature (London) 294: 249–250.

    Google Scholar 

  • Porter, J. W., Battey, J. F., and Smith, G. J., 1982. Perturbation and changes in coral reef communities, Proc. Natl. Acad.Sci. USA 79: 1678–1681.

    CAS  PubMed  Google Scholar 

  • Powell, E. N., 1977, Particle size selection and sediment reworking in a funnel feeder, Leptosynaptatenuis(Holothuroidea, Synaptidae), Int. Rev. Gesamten Hydrobiol.62: 385–408.

    Google Scholar 

  • Pratt, B. R., 1982, Stromatolite decline—A reconsideration, Geology 10: 512–515.

    Google Scholar 

  • Propp, M. V., Tarasoff, V. G., Cherbadgi, I. I., and Lootzik, N. V., 1980, Benthic–pelagic oxygen and nutrient exchange in a coastal region of the Sea of Japan, in: MarineBenthicDynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 265–284, University of South Carolina Press, Columbia.

    Google Scholar 

  • Pryor, W., 1975, Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments, Geol. Soc. Am. Bull.86: 1244–1254.

    CAS  Google Scholar 

  • Purdy, E. G., 1964, Sediments as substrates, in: Approaches to Paleoecology ( J. Imbrie and N. Newell, eds.), pp. 238–271, Wiley, New York.

    Google Scholar 

  • Purser, B. H. (ed.), 1973, The Persian Gulf, Springer-Verlag, Berlin.

    Google Scholar 

  • Raup, D. M., 1977, Species diversity in the Phanerozoic, systematists follow the fossils, Paleobiology 3: 328–329.

    Google Scholar 

  • Raup, D. M., 1979, Size of the Permo-Triassic bottleneck and its evolutionary implications, Science 206: 217–218.

    CAS  PubMed  Google Scholar 

  • Raup, D. M., 1981a, Introduction: What is a crisis?, in: Biotic Crises in Ecological and Ev-olutionary Time ( M. H. Nitecki, ed.), pp. 1–12, Academic Press, New York.

    Google Scholar 

  • Raup, D. M., 1981b, Extinction: Bad genes bad luck?, Acta Geol. Hisp.16: 25–33.

    Google Scholar 

  • Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S., 1973, Stochastic models of phylogeny and the evolution of diversity, J. Geol.81: 525–542.

    Google Scholar 

  • Reidenauer, J. A., and Thistle, D., 1981, Response of a soft-bottom harpacticoid community to stingray (Dasyatis sabina) disturbance, Mar. Biol.65: 261–267.

    Google Scholar 

  • Reise, K., 1977a, Predation pressure and community structure of an intertidal soft-bottom fauna, in: Biology of Benthic Organisms ( B. F. Keegan, P. O. Ceidigh, and P. J. S. Boaden, eds.), pp. 513–520, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Reise, K., 1977b, Predator exclusion experiments in an intertidal mud flat, Helgol. Wiss. Meeresunters.30: 263–271.

    Google Scholar 

  • Reise, K., 1978, Experiments on epibenthic predation in the Waden Sea, Helgol.Wiss. Meeresunters.31: 55–101.

    Google Scholar 

  • Reiswig, H. M., 1974, Water transport, respiration and energetics of three tropical marine sponges, J. Exp. Mar. Biol. Ecol.14: 231–249.

    Google Scholar 

  • Renaud-Mornant, J., and Helléouet, M. N., 1977, Rapport micro-méiobenthos et Halodeema atra (Holothuroidea) dans un lagon Polynisien (Tiahuara, Moorea, ile de la Société), Bull. Mus. Natl. Hist. Nat. Paris (Zool.)331: 853–865.

    Google Scholar 

  • Rex, M. A., 1976, Biological accommodation in deep-sea benthos: Comparative evidence of the importance of predation and productivity, Deep-SeaRes.23: 975–987.

    Google Scholar 

  • Reyment, R. A., 1966, Studies on Nigerian Upper Cretaceous and Lower Tertiary Ostracoda, Part 3, Acta Univ. Stockholm. Contrib. Geol. 14.

    Google Scholar 

  • Rhoads, D. C., 1963, Rates of sediment reworking by Yoldia limatula in Buzzards Bay, Massachusetts, and Long Island Sound, J. Sediment. Petrol.33: 723–727.

    Google Scholar 

  • Rhoads, D. C., 1967, Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts, J. Geol.75: 461–476.

    Google Scholar 

  • Rhoads, D. C., 1970, Mass properties, stability and ecology of marine muds related to burrowing activity, in: TraceFossils( T. P. Crimes and J. C. Harper, eds.), pp. 391–406, Seel House Press, Liverpool.

    Google Scholar 

  • Rhoads, D. C., 1973, The influence of deposit-feeding benthos on water turbidity and nutrient recycling, Am. J. Sci.273: 1–22.

    Google Scholar 

  • Rhoads, D. C., 1974, Organism—sediment relations on the muddy seafloor, Oceanogr. Mar. Biol. Annu. Rev.12: 263–300.

    CAS  Google Scholar 

  • Rhoads, D. C., 1975, The paleoecological and environmental significance of trace fossils, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 147–160, Springer-Verlag, Berlin.

    Google Scholar 

  • Rhoads, D. C., and Boyer, L. F., 1982, The effects of marine benthos on physical properties of sediments: A successional perspective, in: Animal—SedimentRelations( P. L. McCall and M. J. S. Tevesz, eds.), pp. 3–52, Plenum Press, New York.

    Google Scholar 

  • Rhoads, D. C., and Morse, J. W., 1971, Evolutionary and ecological significance of oxygen-deficient marine basins, Lethaia 4: 413–428.

    Google Scholar 

  • Rhoads, D. C., and Stanley, D. J., 1965, Biogenic graded bedding, J. Sediment. Petrol.35: 956–963.

    Google Scholar 

  • Rhoads, D. C., and Young, D. K., 1970, The influence of deposit-feeding organisms on sed-iment stability and community trophic structure, J. Mar. Res.28: 150–178.

    Google Scholar 

  • Rhoads, D. C., and Young, D. K., 1971, Animal—sediment relations in Cape Cod Bay, Massachusetts. II. Reworking by Molpadia oolitica (Holothuroidea), Mar. Biol.11: 255–261.

    Google Scholar 

  • Rhoads, D. C., Speeden, I. G., and Waage, K. M., 1972, Trophic group analysis of Upper Cretaceous (Maestrichtian) bivalve assemblages from South Dakota, Am. Assoc. Petrol. Geol. Bull.56: 1100–1113.

    Google Scholar 

  • Rhoads, D. C., Tenore, K., and Browne, M., 1975, The role of resuspended bottom mud in nutrient cycles of shallow embayments, Estuarine Res.1: 563–579.

    Google Scholar 

  • Rhoads, D. C., Aller, R. C., and Goldhaber, M. B., 1977, The influence of colonizing benthos on physical properties and chemical diagenesis of the estuarine seafloor, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 113–138, University of South Carolina Press, Columbia.

    Google Scholar 

  • Rhoads, D. C., McCall, P. L., and Yingst, J. Y., 1978, Disturbance and production on the estuarine seafloor, Am. Sci.66: 577–586.

    Google Scholar 

  • Rhodes, F. H. T., 1967, Permo-Triassic extinction, in: The FossilRecord(W. B. Harlandetal., eds.), pp. 57–76, Geological Society of London, London.

    Google Scholar 

  • Richards, R. P., 1972, Autecology of Richmondian brachiopods (Late Ordovician of Indiana and Ohio), J. Paleontol.46: 386–405.

    Google Scholar 

  • Richards, R. P., and Bambach, R. K., 1975, Population dynamics of some Paleozoic bra-chiopods and their paleoecological significance, J. Paleontol.49: 775–798.

    Google Scholar 

  • Richardson, J. R., 1981, Brachiopods in mud: Resolution of a dilemma, Science 211: 1161–1163.

    CAS  PubMed  Google Scholar 

  • Richardson, J. R., and Watson, J. E., 1975, Form and function in a Recent free-living brachiopod Magadina cumingi, Paleobiology 1: 379–387.

    Google Scholar 

  • Richardson, M. D., and Young, D. K., 1980, Geo-acoustic model and bioturbation, Mar.Geol.38: 205–218.

    Google Scholar 

  • Riding, R., 1982, Cyanophyte calcification and changes in ocean chemistry, Nature (London) 299: 814–815.

    Google Scholar 

  • Rigby, J. K., 1978, Porifera of the Middle Cambrian Wheeler Shale, from the Wheeler Amphitheater, House Range, in western Utah, J. Paleontol.52: 1325–1345.

    Google Scholar 

  • Rigby, J. K., Hannum, C., and Frest, T. J., 1979, Hexactinellid sponges from the Silurian Waldron Shale in southeastern Indiana,J. Paleontol.53: 542–549.

    Google Scholar 

  • Ringold, P., 1979, Burrowing, root mat density, and the distribution of fiddler crabs in the eastern United States, J. Exp. Mar. Biol. Ecol.36: 11–21.

    Google Scholar 

  • Risk, M. J., and Moffat, J. S., 1977, Sedimentological significance of fecal pellets of Tacoma balthica in the Minas Basin Bay, Bay of Fundy, J. Sediment. Petrol.47: 1425–1436.

    Google Scholar 

  • Risk, M. J., Venter, R. D., Pemberton, S. G., and Buckley, D. E., 1978, Computer simulation and sedimentological implications of burrowing by Axius serratus, Can. J. Earth Sci.15: 1370–1374.

    Google Scholar 

  • Robertson, J. R., and Pfeiffer, W. J., 1982, Deposit-feeding by the ghost crab Ocypode quadrata (Fabricius), J. Exp. Mar. Biol. Ecol.56: 165–177.

    Google Scholar 

  • Rodriguez, J., and Gutschick, R. C., 1982, A new shallow water Schizophoria from the Lea-thern Formation (Late Famennian), northeastern Utah,J. Paleont.52: 1346–1355.

    Google Scholar 

  • Roe, P., 1976, Life history and predator—prey interactions of the nemertean Paranemertes peregrina Coe, Biol.Bull.150: 80–106.

    Google Scholar 

  • Rohr, D. M., 1976, Silurian predator brings in the brachiopod Dicaelosia from the Canadian Arctic,J. Paleontol.50: 1175–1179.

    Google Scholar 

  • Rohr, D. M., and Packard, J., 1982, Spine-bearing gastropods from the Silurian of Canada,J. Paleontol.56: 324–334.

    Google Scholar 

  • Rollins, H. B., Carothers, M., and Donahue, J., 1979, Transgression, regression and fossil community succession, Lethaia 12: 59–104.

    Google Scholar 

  • Romer, A. S., 1966, Vertebrate Paleontology, 3rd ed., University of Chicago Press, Chicago. Romme, W. H., 1982, Fire and landscape diversity in subalpine forests of Yellowstone National Park, Ecol. Monogr.52:199–221.

    Google Scholar 

  • Ronan, T. E., 1975, Structural and paleoecological aspects of a modern marine soft-sediment community: An experimental field study, Ph.D. thesis, University of California, Davis.

    Google Scholar 

  • Ronan, T. E., 1977, Formation and paleontologic recognition of structures caused by marine annelids, Paleobiology 3: 389–403.

    Google Scholar 

  • Rosewater, J., 1965, The family Tridacnidae in the Indo-Pacific,Indo-Pac. Mollusco 1: 347–394.

    Google Scholar 

  • Rowe, A., 1974, The effects of the benthic fauna on the physical properties of deep-sea sediments, in: Deep-SeaSediments( A. Inderbitzen, ed.), pp. 381–400, Plenum Press, New York.

    Google Scholar 

  • Rowe, G. T., and Smith, K. L., Jr., 1977, Benthic—pelagic coupling in the Mid-Atlantic Bight. in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 55–65, University of South Carolina Press, Columbia.

    Google Scholar 

  • Rowe, G. T., Clifford, C. H., Smith, K. L., Jr., and Hamilton, P. L., 1975, Benthic nutrient regeneration and its coupling to primary productivity in coastal waters, Nature (London) 255: 215–217.

    CAS  Google Scholar 

  • Rubenstein, D. I., and Koehl, M. A. R., 1977, The mechanisms of filter feeding: Some theoretical considerations, Am. Nat.111: 981–994.

    Google Scholar 

  • Rudwick, M. J. S., 1970, LivingandFossil Brachiopods, Hutchinson, London.

    Google Scholar 

  • Runkle, J. R., 1982, Patterns of disturbance in some old-growth mesic forests of eastern North America, Ecology 63: 1533–1546.

    Google Scholar 

  • Runnegar, B., and Pojeta, J., Jr., 1974, Molluscan phylogeny: The paleontological viewpoint, Science 186: 311–317.

    CAS  PubMed  Google Scholar 

  • Salsman, G. G., and Tolbert, W. H., 1965, Observations on the sand dollar, Mellita quinquesperforata, Limnol. Oceanogr.10: 152–155.

    Google Scholar 

  • Sander, F., 1981, A preliminary assessment of the main causative mechanisms of the “island mass” effect of Barbados, Mar. Biol.64: 199–205.

    Google Scholar 

  • Sanders, H., 1960, Benthic studies in Buzzards Bay. III. The structure of the soft-bottom community, Limnol. Oceanogr.5: 138–153.

    Google Scholar 

  • Schäfer, W., 1956, Wirkungen der Benthos-Organismen auf den jungen Schichtverband, Senckenbergiana Lethaea 37: 183–263.

    Google Scholar 

  • Schäfer, W., 1972, Ecology and Palaeoecology of Marine Environments (G. Y. Craig, ed., I. Oertel, transi.), University of Chicago Press, Chicago.

    Google Scholar 

  • Scheibling, R. E., 1982, Habitat utilization and bioturbation by Oreaster reticulatus (Asteroidea) and Meoma ventricosa ( Echinoidea) in a subtidal sand patch, Bull. Mar. Sci. 32: 624–629.

    Google Scholar 

  • Schindel, D. E., 1980, Microstratigraphic sampling and the limits of paleontologic resolution, Paleobiology 6: 408–426.

    Google Scholar 

  • Schindel, D. E., Vermeij, G. J., and Zipser, E., 1982, Frequencies of repaired shell fractures among the Pennsylvanian gastropods of north central Texas, J. Paleontol. 56: 729–740.

    Google Scholar 

  • Schindewolf, O. H., 1958, Würmer und Korallen als Synöken zur Kenntnis der Systeme Aspidosiphon/Heteropsammia, und Hicetes/Pleurodictyum, Abh. Math.-Naturwiss. KI., Akad. wiss. Lit. Mainz (1959)6: 259–328.

    Google Scholar 

  • Schink, D. R., and Guinasso, N. L., Jr., 1977, Effects of bioturbation on sediment—seawater interaction, Mar. Geol.23: 133–154.

    CAS  Google Scholar 

  • Schopf, T. J. M., 1977, Patterns and themes of evolution among the Bryozoa, in: Patterns of Evolution ( A. Hallam, ed.), pp. 159–207, Elsevier, Amsterdam.

    Google Scholar 

  • Schopf, T. J. M., 1979a, Fossil communities: Review of The Ecology of Fossils (W. S. McKerrow, ed.), MIT Press, Cambridge, Mass., Science 203: 999–1000.

    Google Scholar 

  • Schopf, T. J. M., 1979b, Evolving paleontological views on deterministic and stochastic approaches, Paleobiology 5: 337–352.

    Google Scholar 

  • Schopf, T. J. M., 1980, Paleoceanography, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Schuhmacher, H., 1979, Experimentalle Untersuchungen zur Anpassung von Fungiiden (Scleractimia, Fungiidae) an unterschiedliche Sedimentations-und Bodenverhaltnisse, Int.Rev. Gesamten Hydrobiol.64: 207–243.

    Google Scholar 

  • Schwartz, B., and Safir, S. R., 1915, Natural History and Behavior of Fiddler Crabs, Cold Spring Harbor Monographs V III, Brooklyn Inst. of Arts and Sciences, Brooklyn, NY.

    Google Scholar 

  • Scoffin, T. P., Alexandersson, E. T., Bowes, G. E., Clokie, J. J., Farrow, G. E., and Milliman, J. D., 1980, Recent, temperate, subphotic carbonate deposition: Rockall Bank, northeastern Atlantic, J.Sediment. Petrol.50: 331–356.

    Google Scholar 

  • Scott, A. C., 1982, The development of Late Paleozoic terrestrial ecosystems,J. Paleontol. 56 (Suppl. to No. 2): 25.

    Google Scholar 

  • Seapy, R. R., and Littler, M. M., 1982, Population and species diversity fluctuations in a rocky intertidal community relative to severe aerial exposure and sediment burial, Mar. Biol.71: 87–96.

    Google Scholar 

  • Segerstrâle, S. G., 1960, Fluctuations in the abundance of benthic animals in the Baltic area, Commentat. Biol. Soc. Sci. Fenn.23: 1–19.

    Google Scholar 

  • Segerstrâle, S. G., 1962, Investigations on Baltic populations of the bivalve Macoma balthica (L.). Part II. What are the reasons for the periodic failure of recruitment and the scarcity of Macoma in the deeper waters of the inner Baltic?, Commentat. Biol. Soc. Sci.Fenn.24: 1–26.

    Google Scholar 

  • Seilacher, A., 1964, Biogenic sedimentary structures, in: Approaches to Paleoecology ( J. Imbrie and N. Newell, eds.), pp. 296–316, Wiley, New York.

    Google Scholar 

  • Seilacher, A., 1970, Cruziana stratigraphy of “non-fossiliferous” Paleozoic sandstones, in: TraceFossils( T. P. Crimes and J. C. Harper, eds.), pp. 447–476, Seel House Press, Liverpool.

    Google Scholar 

  • Seilacher, A., 1977a, Evolution of trace fossil communities, in: Patterns of Evolution ( A. Hallam, ed.), pp. 359–376, Elsevier, Amsterdam.

    Google Scholar 

  • Seilacher, A., 1977b, Pattern analysis of Paleodictyon and related trace fossils, in: TraceFossils2 ( T. P. Crimes and J. C. Harper, eds.), pp. 289–334, Seel House Press, Liverpool.

    Google Scholar 

  • Seilacher, A., 1978a, Evolution of trace fossil communities in the deep sea,NeuesJahrb. Geol. Palaeontol. Abh.157: 251–255.

    Google Scholar 

  • Seilacher, A., 1978b, Palaeontol. Assoc. Circ. No. 94, p. 5.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1976, Species diversity in the Phanerozoic: Species—area effects, Paleo-biology 2: 298–303.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1979, A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria, Paleobiology 5: 222–251.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1981a, The uniqueness of the Cambrian fauna, in: Short Papers for the Second International Symposium on the Cambrian System (M. E. Taylor, ed.), U.S. Geol. Surv. Open-File Rep. 81–743, pp. 203–207.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1981b, A factor analytic description of the Phanerozoic marine fossic record, Paleobiology 7: 36–53.

    Google Scholar 

  • Sepkoski, J. J., Jr., 1982a, Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna, in:Cyclicand Event Stratification ( G. Einsele and A. Seilacher, eds.), pp. 371–385, Springer-Verlag, Berlin.

    Google Scholar 

  • Sepkoski, J. J., Jr., 19826, Macro-extinction,J. Paleontol.56: 25–26.

    Google Scholar 

  • Sepkoski, J. J., Jr., and Miller, A. I., 1982a, Large-scale patterns of community evolution in the Paleozoic oceans, Geol. Soc. Am. Abstr. Progr.14(5): 287.

    Google Scholar 

  • Sepkoski, J. J., Jr., and Miller, A. I., 1982b, Cladographic ecology and the study of Paleozoic marine faunas, Am. Assoc. Adv. Sci. Proc. p. 46.

    Google Scholar 

  • Sepkoski, J. J., Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W., 1981, Phanerozoic marine diversity and the fossil record, Nature (London) 293: 435–437.

    Google Scholar 

  • Sheehan, P. M., 1977, Species diversity in the Phanerozoic: A reflection of labor by systematists, Paleobiology 3: 325–329.

    Google Scholar 

  • Shepherd, S. A., 1983, The epifauna of megaripples: Species adaptations and population responses to disturbance, Australian J. Ecol.8: 3–8.

    Google Scholar 

  • Shick, J. M., Edwards, K. C., and Dearborn, J. H., 1981, Physiological ecology of the deposit-feeding sea star Ctenodiscus crispatus: Ciliated surfaces and animal–sediment interactions, Mar. Ecol. Prog. Ser.5: 165–184.

    Google Scholar 

  • Shiells, K. A. J., 1968, Kochiproductus coronatus. sp. nov. from the Scottish Visean and a possible mechanical advantage of its flange structure, Trans. R. Soc. Edinburgh 67: 447–507.

    Google Scholar 

  • Shimek, S. J., 1977, The underwater foraging habits of the sea otter, Enhydra lutris, California Fish and Game 63: 120–122.

    Google Scholar 

  • Shinn, E. A., 1968, Burrowing in Recent lime sediment of Florida and the Bahamas, J. Paleontol.42: 879–894.

    Google Scholar 

  • Shumway, S. E., 1982, Oxygen consumption in brachiopods and the possible role of punctae, J. Exp. Mar. Biol. Ecol.58: 207–220.

    Google Scholar 

  • Signor, P., 1981, Life mode and shell form in high spired gastropods, Geol. Soc.Am. Abstr. Progr. p. 554.

    Google Scholar 

  • Silén, L., 1980, Colony-substrate relationships in Scrupocellariidae (Bryozoa, Cheilostomata). Zoologica Scripta 9: 211–217.

    Google Scholar 

  • Simpson, G. G., 1953, The Major Features of Evolution, Columbia University Press, New York.

    Google Scholar 

  • Sloss, L. L., 1958, Paleontologic and lithologic associations,J. Paleontol.32: 715–729.

    Google Scholar 

  • Smedes, G. W., and Hurd, L. E., 1981, An empirical test of community stability: Resistance of a fouling community to a biological patch-forming disturbance, Ecology 62: 1561–1572.

    Google Scholar 

  • Smith, A. B., and Crimes, T. P., 1983, Trace fossils formed by heart urchins—a study of Scolicia and related traces, Lethaia 16: 79–92.

    Google Scholar 

  • Smith, A. L., 1980, The role of the Pacific sand dollar, Dendraster excentricus, in intertidal benthic community structure, Ph.D. thesis, University of Alberta, Edmonton.

    Google Scholar 

  • Smith, A. L., 1981, Comparison of macrofaunal invertebrates in sand dollar (Dendraster excentricus) beds and in adjacent areas free of sand dollars, Mar. Biol.65: 191–198.

    Google Scholar 

  • Smith, C. A. F., III, 1977, Diversity associations as stochastic variables, Paleobiology 3: 41–48.

    Google Scholar 

  • Smith, D. W., 1980, An evaluation of marsh nitrogen fixation, in: Estuarine Perspectives ( V. S. Kennedy, ed.), pp. 135–151, Academic Press, New York.

    Google Scholar 

  • Smith, L. S., 1961, Clam digging behavior in the starfish Pisaster brevispinus (Stimpson, 1857), Behavior 18: 148–153.

    Google Scholar 

  • Smosna, R. A., and Warshauer, S. M., 1979, A very early Devonian patch reef and its ecological setting, J.Paleont,53: 142–152.

    Google Scholar 

  • Sohl, N., 1969, The fossil record of shell boring by snails, Am. Zool.9: 725–734.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J., 1969, Biometry, Freeman, San Francisco.

    Google Scholar 

  • Sokolov, B. S., 1973, Vendian of northern Eurasia, in: ArcticGeology( M. G. Pitcher, ed.), pp. 204–218, Am. Assoc. Petrol. Geol., Tulsa.

    Google Scholar 

  • Sokolov, B. S., 1976, Precambrian Metazoa and the Vendian–Cambrian boundary, Paleontol. J.10: 1–13.

    Google Scholar 

  • Sorauf, J. E., 1978, Upper Devonian Pachyphyllum (rugose coral) from New York State, J. Paleontol.52: 818–829.

    Google Scholar 

  • Sparks, D. K., Hoare, R. D., and Kesling, R. V., 1980, Epizoans on the brachiopod Paraspirifer bownockeri ( Stewart) from the Middle Devonian of Ohio, Univ. Mich. Mus. Paleontol. Pap. Paleontol. No. 23.

    Google Scholar 

  • Spencer, R. S., 1978, Paleoecologic response and cyclothemic phase of Chonetinella flemingi and C. alata from the Pennsylvanian of Kansas,J. Paleontol.52: 1356–1374.

    Google Scholar 

  • Spjeldnaes, N., 1974, Silurian bryozoans which grew in the shade, Doc. Lab. Geol. Fac. Sci. Lyon. H.S.3: 415–424.

    Google Scholar 

  • Stanley, D. W., and Hobbie, J. E., 1981, Nitrogen recycling in a North Carolina coastal river, Limnol. Oceanogr.26: 30–42.

    CAS  Google Scholar 

  • Stanley, G. D., Jr., 1977, The paleoecology of Subulites: A gastropod in the Middle Ordovician of central Tennessee,J. Paleontol.51: 161–168.

    Google Scholar 

  • Stanley, G. D., Jr., 1981, Early history of scleractinian corals and its geological consequences, Geology 9: 507–511.

    Google Scholar 

  • Stanley, S. M., 1968, Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—A consequence of mantle fusion and siphon formation, J. Paleontol.42: 214–229.

    Google Scholar 

  • Stanley, S. M., 1970, Relation of shell form to life habits of the Bivalvia (Mollusca),Geol. Soc. Am. Mem. 125.

    Google Scholar 

  • Stanley, S. M., 1972, Functional morphology and evolution of byssally attached bivalve mollusks,J. Paleontol.46: 165–212.

    Google Scholar 

  • Stanley, S. M., 1973, An ecological theory for the sudden origin of multicellular life in the Late Precambrian, Proc. Natl. Acad. Sci.USA 72: 646 - 650.

    Google Scholar 

  • Stanley, S. M., 1976, Fossil data and the Precambrian–Cambrian evolutionary transition, Am.J. Sci.276: 56–76.

    Google Scholar 

  • Stanley, S. M., 1977, Trends, rates, and patterns of evolution in the Bivalvia, in: Patterns of Evolution( A. Hallam, ed.), pp. 209–250, Elsevier, Amsterdam.

    Google Scholar 

  • Stanley, S. M., 1979, Macroevolution: Pattern and Process, Freeman, San Francisco.

    Google Scholar 

  • Stanley, S. M., Signor, P. W., III, Lidgaard, S., and Karr, A. F., 1981, Natural clades differ from “random” clades: Simulations and analyses, Paleobiology 7: 115–127.

    Google Scholar 

  • Stauffer, R. C., 1937, Changes in the invertebrate community of a lagoon after disappearance of the eel grass, Ecology 18: 427–431.

    Google Scholar 

  • Steele-Petrovic, H. M., 1975, An explanation for the tolerance of brachiopods and relative intolerance of filter-feeding bivalves for soft muddy bottoms, J. Paleontol.49: 552–556.

    Google Scholar 

  • Steele-Petrovic, H. M., 1979, The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities, Palaeontology 22: 101–134.

    Google Scholar 

  • Stevens, B. A., 1929, Ecological observations on Callianassidae of Puget Sound, Ecology 10: 399–405.

    Google Scholar 

  • Stewart, I. R., 1981, Population structure of articulate brachiopod species from soft and hard substrates, N.Z.J. Zool.8: 197–207.

    Google Scholar 

  • Stoakes, F. A., 1980, Nature and control of shale basin fill and its effect on reef growth and termination: Upper Devonian Duvernay and Ireton formations of Alberta, Canada, Bull. Can. Petrol. Geol.28: 345–410.

    Google Scholar 

  • Stoner, A. W., 1980, The role of seagrass biomass in the organization of benthic macrofaunal assemblages, Bull. mar. Sci.30: 537–551.

    Google Scholar 

  • van Straaten, L. M. J. U., 1950, Environment of formation and facies of the Wadden Sea sediments, Tijdschrift van het Nederlandsch aardrijkskkundig Genootschap 67: 94–108.

    Google Scholar 

  • Suchanek, T. H., 1981, The role of disturbance in the evolution of life history strategies in the intertidal mussels Mytilusedulisand Mytilus californianus, Oecologia (Berlin)50: 143–152.

    Google Scholar 

  • Surlyk, F., 1972, Morphological adaptations and population structures of the Danish Chalk brachiopods (Maastrichtian, Upper Cretaceous),K. Dan. Vidensk. Selsk.Biol. Skr.19: 157.

    Google Scholar 

  • Surlyk, F., 1973, Autecology and taxonomy of two Upper Cretaceous craniacean brachiopods, Bull. Geol. Soc. Den.22: 219–243.

    Google Scholar 

  • Surlyk, F., 1979, Brave new world: Review of Ecology of Fossils (W. S. McKerrow, ed.), MIT Press, Cambridge, Mass., Paleobiology5:444–446.

    Google Scholar 

  • Swartz, R. C., and Lee, H., II, 1980, Biological processes affecting the distribution of pollutants in marine sediments. Part I. Accumulations, trophic transfer, biodegradation and migration, in: Contaminants and Sediments, vol. 2, Analysis, Chemistry, Biology ( R. A. Baker, ed.), pp. 533–553, Ann Arbor Science, Ann Arbor, Mich.

    Google Scholar 

  • Swinbanks, D. D., 1981, Sediment reworking and the biogenic formation of clay laminae by Abarenicola pacifica,J. Sediment. Petrol.51: 1137–1145.

    Google Scholar 

  • Taghon, G. L., 1981, Beyond selection: Optimal ingestion rate as a function of food value, Am. Nat.118: 202–214.

    Google Scholar 

  • Taghon, G. L., 1982, Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating, Oecologia.52: 295–304.

    Google Scholar 

  • Taghon, G. L., Self, R. L., and Jumars, P. A., 1978, Predicting particle selection by deposit feeders: A model and its implications, Limnol. Oceanogr.23: 752–759.

    Google Scholar 

  • Tao, L., 1930, Notes on the ecology and the physiology of Caudina chilensis (Müller) in Mutsu Bay, Proc. 4th Pac. Sci. Congr.3: 7–11.

    Google Scholar 

  • Taylor, P. R., and Littler, M. M., 1982, The roles of compensatory mortality, physical disturbance and substrate retention in the development and organization of a sand-influenced rocky-intertidal community, Ecology 63: 135–146.

    Google Scholar 

  • Tenore, K. R., 1977, Food chain pathways in detrital feeding benthic communities: A review, with new observations on sediment resuspension and detrital recycling, in: Ecology of Marine Benthos ( B. C. Coull, ed.), pp. 37–53, University of South Carolina Press, Columbia.

    Google Scholar 

  • Tenore, K. R., 1983, What controls the availability to animals of detritus derived from vascular plants: organic nitrogen enrichment or caloric availability, Mar. Ecol.-Prog. Ser.10: 307–309.

    Google Scholar 

  • Tenore, K. R., Cammen, L., Findlay, S. E. G., and Phillips, N., 1982, Perspectives of research on detritus: Do factors controlling the availability of detritus to macroconsumers depend on its source ?, J. Mar. Res.40: 473–490.

    CAS  Google Scholar 

  • Tevesz, M. J. S., and McCall, P. L., 1976, Primitive life habits and adaptive significance of the pelecypod form, Paleobiology 2: 183–190.

    Google Scholar 

  • Thayer, C. W., 1974a, Marine paleoecology in the Upper Devonian of New York, Lethaia 7: 121–155.

    Google Scholar 

  • Thayer, C. W., 1974b, Environmental and evolutionary stability in bivalve mollusks, Science 186: 828–830.

    CAS  PubMed  Google Scholar 

  • Thayer, C. W., 1975, Morphological adaptations of benthic invertebrates of soft substrata, J. Mar. Res.33: 177–189.

    Google Scholar 

  • Thayer, C. W., 1979, Biological bulldozers and the evolution of marine benthic communities, Science,203: 458–461.

    CAS  PubMed  Google Scholar 

  • Thayer, C. W., 1980, Recent articulate brachiopods: the effects of predation and competition for space. Abstr. Progr. Geol. Soc. Amer. p. 86.

    Google Scholar 

  • Thayer, C. W., 1981a, Ecology of living brachiopods, in:Lophophorates: Notes for a Short Course (T. W. Broadhead, ed.),Univ. Tenn. Dept. Geol. Sci. Stud. Geol.5: 110–126.

    Google Scholar 

  • Thayer, C. W., 1981b, Bioturbation and the non-stochastic evolution of the marine benthos, Geol. Soc. Am. Abstr. Progr. p. 565.

    Google Scholar 

  • Thayer, C. W., and Steele-Petrovic, H. M., 1975, Burrowing of the lingulid brachiopod Clot-tidia pyramidata: Its ecologic and paleoecologic significance, Lethaia 8: 209–221.

    Google Scholar 

  • Thistle, D., 1980, The response of a harpacticord copepod community to small-scale natural disturbance, J. Mar. Res.38: 381–395.

    Google Scholar 

  • Thistle, D., 1981, Natural physical disturbances and communities of marine soft bottoms, Mar. Ecol. Prog. Ser.6: 223–228.

    Google Scholar 

  • Thomas, M. L. H., 1968, Overwintering of American lobsters, Homarus americanus, in bur- rows in Bideford River, Prince Edward Island, J. Fish. Res. Bd. Can.25: 2725–2727.

    Google Scholar 

  • Thomson, K. S., 1969, The environment and distribution of Paleozoic sarcopterygian fishes, Am.J. Sci.267: 457–464.

    Google Scholar 

  • Thorson, G., 1966, Some factors influencing the recruitment and establishment of marine benthic communities, Neth.J. SeaRes. 3: 267 - 293.

    Google Scholar 

  • Thulborn, R. A., 1982, Liassic plesiosaur embryos reinterpreted as shrimp burrows, Palaeontology 25: 351–359.

    Google Scholar 

  • Timko, P. L., 1976, Sand dollars as suspension feeders: A new description of feeding inDendrasterexcentricus, Biol. Bull.151: 247–259.

    Google Scholar 

  • Tipper, J. C., 1975, Lower Silurian animal communities—Three case histories, Lethaia 8: 287–299.

    Google Scholar 

  • Trench, R. K., Wethey, D. S., and Porter, J. W., 1981, Observations on the symbiosis with zooxanthellae among the Tridacnidae, Biol.Bull.161: 180–198.

    Google Scholar 

  • Trueman, E. R., 1968a, The burrowing process of Dentalium (Scaphopoda), J. Zool. London 154: 19–27.

    Google Scholar 

  • Trueman, E. R., 1968, The mechanism of burrowing of some naticid gastropods in comparison with that of other molluscs, J. Exp. Biol.48: 663–678.

    Google Scholar 

  • Trueman, E. R., 1970, The mechanism of burrowing of the mole crab Emerita,J. Exp. Biol.53: 701–710.

    Google Scholar 

  • Turekian, K. K., Cochran, J. K., and DeMaster, D. J., 1978, Bioturbation in deep-sea deposits: Rates and consequences, Oceanus 21: 34–41.

    Google Scholar 

  • Turk, T. R., and Risk, M. J., 1981, Effect of sedimentation on infaunal invertebrate populations of Cobequid Bay, Bay of Fundy, Can. J.Fish. Aquat. Sci.38: 642–648.

    Google Scholar 

  • Turmel, R., and Swanson, R., 1976, The development of Rodriguez Bank, a Holocene mud-bank in the Florida reef tract,J. Sediment. Petrol.46: 497–518.

    Google Scholar 

  • Ubaghs, G., 1953, Classe des Crinoïdes, in: Traité de Paléontologie ( J. Piveteau, ed.), Vol. 3, pp. 658–773, Masson, Paris.

    Google Scholar 

  • Valentine, J. W., 1973, Evolutionary Paleoecology oftheMarine Biosphere, Prentice–Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Valentine, J. W., Foin, T. C., and Peart, D., 1978, A provincial model of Phanerozoic diversity, Paleobiology 4: 55–66.

    Google Scholar 

  • Valiela, I., Koumjian, L., Swain, T., Teal, J. M., and Hobbie, J. E., 1979, Cinnamic acid inhibition of detritus feeding, Nature (London) 280: 55–57.

    CAS  Google Scholar 

  • VanBlaricom, G. R., 1978, Disturbance, predation, and resource allocation in a high-energy sublittoral sand-bottom ecosystem: Experimental analyses of critical structuring processes for the infaunal community, Ph.D. dissertation, University of California, San Diego.

    Google Scholar 

  • VanBlaricoin, G. R., 1982, Experimental analysis of structural regulation in a marine sand community exposed to oceanic swell,Ecol. Monogr.52: 283–305.

    Google Scholar 

  • Vaughan, T. W., and Wells, J. W., 1943, Revision of the suborders, families, and genera of the Scleractinia,Geol. Soc. Am. Spec. Pap. 44.

    Google Scholar 

  • Veltischeva, I. F., and Karzinkin, G. S., 1970, The use of radio-active carbon 14C in studying the feeding of bottom invertebrates, Publications of theAll-UnionScientific Research Institute ofMarine Fisheriesand Oceanography(VNIRO) 69: 85 - 95.

    Google Scholar 

  • Vermeij, G. J., 1977, The Mesozoic marine revolution: Evidence from snails, predators and grazers, Paleobiology 3: 245–258.

    Google Scholar 

  • Vermeij, G. J., Schindel, D. E., and Zipser,E., 1981, Predation through geological time: Evidence from gastropod shell repair, Science 214: 1024–1026.

    Google Scholar 

  • Virnstein, R. W., 1977, The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay, Ecology 58: 1199–1217.

    Google Scholar 

  • Virnstein, R. W., 1979, Predation on estuarine infauna: Response patterns of component species, Estuaries 2: 69–86.

    Google Scholar 

  • Virnstein, R. W., 1980, Measuring effects of predation on benthic communities in soft sediments, in: Estuarine Perspectives ( V. S. Kennedy, ed.), pp. 281–290, Academic Press, New York.

    Google Scholar 

  • Vogel, K., and Gutmann, W. F., 1980, The derivation of pelecypods: Role of biomechanics, physiology and environment, Lethaia 13: 269–275.

    Google Scholar 

  • Vogel, S., 1981, Life in Moving Fluids, Grant Press, Boston.

    Google Scholar 

  • Vogel, S., and Bretz, W. L., 1972, Interfacial organisms: Passive ventilation in the velocity gradients near surfaces,Science 175: 210 - 211.

    CAS  PubMed  Google Scholar 

  • Waage, K. M., 1968, The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, Peabody Mus. Nat. Hist. Yale Univ. Bull. 27.

    Google Scholar 

  • Walker, K. R., and Alberstadt, L. P., 1975, Ecological succession as an aspect of structure in fossil communities, Paleobiology 1: 238–257.

    Google Scholar 

  • Walker, K. R., and Parker, W. C., 1976, Population structure of a pioneer and a later stage species in an Ordovician ecological succession, Paleobiology 2: 191–201.

    Google Scholar 

  • Warme, J. E., 1967, Graded bedding in the Recent sediments of Mugu Lagoon, California, J. Sediment. Petrol.37: 540–547.

    Google Scholar 

  • Waterhouse, J. B., and Bonham-Carter, G. F., 1975, Global distribution and character of Permian biomes based on brachiopod assemblages, Can. J. Earth Sci.12: 1085–1146.

    Google Scholar 

  • Watkin, E. E., 1939, A revision of the amphipod genus Bathyporeia Lindstrom,J. Mar. Biol.Assn. U.K. 23: 211 - 236.

    Google Scholar 

  • Watkins, R., 1974, Carboniferous brachiopods from northern California,J. Paleontol.48: 304325.

    Google Scholar 

  • Watkins, R., 1978, Bivalve ecology in a Silurian shelf environment, Lethaia 11: 41–56.

    Google Scholar 

  • Watkins, R., 1979, Benthic community organization in the Ludlow Series of the Welsh Borderland, Bull. Br. Mus. ( Nat. Hist.) Geol. 31.

    Google Scholar 

  • Watkins, R., and Hurst, F., 1977, Community relations of Silurian crinoids at Dudley, England, Paleobiology 3: 207–217.

    Google Scholar 

  • Weaver, P. P. E., and Schultheiss, P. J., 1983, Vertical open burrows in deep-sea sediments 2m in length. Nature 301: 329–331.

    Google Scholar 

  • Webb, K. L., DuPaul, W. D., and D’Elia, C. F., 1977, Biomass and nutrient flux measurements on Holothurie atra populations on windward reef flats at Enewetak, Marshall Islands, Proc. 3rd Int. Symp. Coral Reefs1: 409–416.

    CAS  Google Scholar 

  • Webby, B. D., 1977, Trace-fossil assemblages in Early Palaeozoic quartz-rich clastics of western New South Wales, J. Paleontol. Suppl. to No. 2, p. 30.

    Google Scholar 

  • Weihe, S. C., and Gray, I. E., 1968, Observations on the biology of the sand dollar iMellita quinquesperforata (Leske), J. Elisha Mitchell Sci. Soc.84: 315–327.

    Google Scholar 

  • Weiser, W., Grabner, M., and Koch, F., 1981, Distribution and migrations of two cerithid snails on a sand flat in Bermuda. I. Patterns of distribution and responses to ecological factors. II. Factors determining migration in the sediment, Mar. Ecol.2: 51–75.

    Google Scholar 

  • Wenz, W., 1940, Gastropoda: Handbuch der Paldozoologie (reprinted 1961 ), Borntraeger, Berlin.

    Google Scholar 

  • West, R. R., 1976, Comparison of seven lingulid communities, in: Structure and Classification of Paleocommunities, ( R. W. Scott and R. R. West, eds.), Dowden, Hutchinson and Ross, Stroudsburg, PA., pp. 171–192.

    Google Scholar 

  • West, R. R., 1977, Organism—substrate relations, terminology for ecology and paleoecology, Lethaia 10: 71–82.

    Google Scholar 

  • West, R. R., 1981, Ichnol.News12.

    Google Scholar 

  • Wetzel, A., and Werner, F., 1981, Morphology and ecological significance of Zoophycos in deep-sea sediments off N.W. Africa, Palaeogeogr. Palaeoclimatol., Palaeoecol.32: 185–212.

    Google Scholar 

  • Whitlach, R. B., and Weinberg, J. R., 1982, Factors influencing particle selection and feeding rate in the polychaete Cistenides (Pectenaria) gouldii. Mar. Biol.71: 33–40.

    Google Scholar 

  • Whittington, H. B., 1978, What trace fossils may be ascribed to the activity of trilobites?, Palaeontol. Assoc. Circ.94a: 7.

    Google Scholar 

  • Whittington, H. B., 1979, Early arthropods, their appendages and relationships, in: The Origins of Major Invertebrate Groups ( M. R. House, ed.), pp. 253–268, Academic Press, New York.

    Google Scholar 

  • Wicks, S. R., 1980, Evidence of nitrogen-fixing bacteria on seagrasses, Caribb. J. Sci.15: 149–152.

    Google Scholar 

  • Wieczorek, L, 1980, Relations between stromatolites and burrowing organisms, Am.Assoc. Petrol.Geol. Bull.64: 803 (abstr.).

    Google Scholar 

  • Wikander, P. B., 1980a, Quantitative aspects of deposit feeding in Abranitida(Müller) and A.longicallus(Sacchi) (Bivalvia, Tellinacea), Sarsia66: 35–48.

    Google Scholar 

  • Wikander, P. B., 19806, Biometry and behavior in Abranitida(Müller) and A. longicallus (Sacchi) (Bivalvia, Tellinacea), Sarsia65: 255–268.

    Google Scholar 

  • Willan, R. C., 1981, Soft-bottom assemblages of Paterson Inlet, Stewart Island,N.Z. J. Zool.8: 229–248.

    Google Scholar 

  • Williams, A., 1965, Stratigraphic distribution, in: Treatise on Invertebrate Paleontology ( R. C. Moore, ed.), pp. H237 — H250, Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • Williams, A., and Rowell, A. J., 1965, Evolution and phylogeny, in: Treatise on Invertebrate Paleontology ( R. C. Moore, ed.), pp. H164 - H199, Geological Society of America and University of Kansas, Lawrence.

    Google Scholar 

  • Williams, A. B., 1965, Marine decapod crustaceans of the Carolinas,U.S. Fish Wildl. Serv.Fish. Bull. 65: 1–298.

    Google Scholar 

  • Wilson, W. H., Jr., 1981, Sediment-mediated interactions in a densely populated infaunal assemblage: The effects of the polychaete Abarenicola pacifica, J. Mar. Res.39: 735–748.

    Google Scholar 

  • Wiltse, W. I., 1980, Effects of Polinices duplicatus (Gastropoda: Naticidae) on infaunal com-munity structure at Barnstable Harbor, Massachusetts, U.S.A., Mar. Biol.56: 301–310.

    Google Scholar 

  • Winston, J. E., and Anderson, F. E., 1971, Bioturbation of sediments in a northern temperateestuary, Mar. Geol.10: 39–49.

    Google Scholar 

  • Woodin, S. A., 1974, Polychaete abundance patterns in a marine soft-sediment environment: The importance of biological interactions, Ecol. Monogr.44: 171–187.

    Google Scholar 

  • Woodin, S. A., 1976, Adult—larval interactions in dense infaunal assemblages: Patterns of abundance,J. Mar. Res.34: 25–41.

    Google Scholar 

  • Woodin, S. A., 1978, Refuges, disturbance and community structure: A marine soft-bottom example, Ecology 59: 274–284.

    Google Scholar 

  • Woodin, S. A., 1981, Disturbance and community structure in a shallow water sand flat, Ecology 62: 1052–1066.

    Google Scholar 

  • Woodin, S. A., and Jackson, J. B. C., 1979, Interphyletic competition among marine benthos, Am. Zool.19: 1029–1043.

    Google Scholar 

  • Woodley, J. D., 1975, The behaviour of some amphiurid brittle-stars,J. Exp. Mar. Biol. Ecol.18: 29–46.

    Google Scholar 

  • Woodley, J. D., Chornesky, E. A., Clifford, P. A., Jackson, J. B. C., Kaufman, L. S., Knowlton, N., Lang, J. C., Pearson, M. P., Porter, J. W., Rooney, M. C., Rylaarsdam, K. W., Tunnicliffe, V. J., Wahle, C. M., Wulff, J. L., Curtis, A. S. G., Dallmeyer, M. D., Jupp, B. P., Koehl, M. A. R., Neisel, J., and Sides, E. M., 1981, Hurricane Allen’s impact on Jamaican coral reefs,Science 214: 749 - 755.

    CAS  PubMed  Google Scholar 

  • Worsley, D., and Broadhurst, F. M., 1975, An environmental study of Silurian atrypid communities, Lethaia 8: 271–286.

    Google Scholar 

  • Yamanouchi, T., 1927, Some preliminary notes on the behavior of the holothurian, Caudinachilensis(J. Müller), Sci. Rep. Tôhoku Univ. Ser.42: 85–91.

    Google Scholar 

  • Yamanouchi, T., 1929a, Notes on the behavior of the holothurian Caudina chilensis (J. Müller), Sci. Rep. Res. Inst. Tôhoku Univ. (Biol.)4: 73–115.

    Google Scholar 

  • Yamanouchi, T., 19296, Statistical study on Caudina chilensis (J. Müller), Sci. Rep. Res. Inst. Tôhoku (Biol.)4: 335–359.

    Google Scholar 

  • Yamanouti, T., 1939, Ecological and physiological studies on the holo-thurians in the coral reef of Palao Islands, Palao Trop. Biol. Stn. Stud.1: 603–635

    Google Scholar 

  • Yancey, T. E., 1982, The alatoconchid bivalves: Permian analogs of modern tridacnid clams,J. Paleont.56(suppl. to No. 2): 183.

    Google Scholar 

  • Yingst, J. Y., 1982, Factors influencing rates of sediment ingestion by Parastichopus parvimensis (Clark), an epibenthic deposit-feeding holothurian, Estuarine Coastal Shelf Sci.14: 119–134.

    Google Scholar 

  • Yochelson, E. L., 1971, A new Late Devonian gastropod and its bearing on problems of open coiling and septation, Smithson. Contrib. Paleobiol.3: 231–241.

    Google Scholar 

  • Yochelson, E. L., 1978, An alternative approach to the interpretation of the phylogeny of ancient mollusks, Malacologia 17: 165–191.

    Google Scholar 

  • Yonge, C. M., 1935, Studies on the biology of Tortugas corals. I. Observations on Maeandra areolata Linn, Carnegie Inst. Washington Publ.452: 185–198.

    Google Scholar 

  • Yonge, C. M., 1980, Functional morphology and evolution in the Tridacnidae (Mollusca: Bivalvia: Cardiacea), Rec. Aust. Mus.33: 735–777.

    Google Scholar 

  • Young, A., 1980, Larval and post-larval development of the window-pane shell, Placuna placenta L. (Bivalvia: Placunidae) with a discussion of its natural settlement, Veliger 23: 141–148.

    Google Scholar 

  • Young, D. K., 1971, Effects of infauna on the sediment and seston of a subtidal environment, Vie Milieu Suppl.22: 557–571.

    Google Scholar 

  • Young, D. K., Buzas, M. A., and Young, M. W., 1976, Species densities of macrobenthos associated with seagrasses: A field experimental study of predation, J. Mar. Res.34: 577-592.

    Google Scholar 

  • Zajac, R. N., and Whitlach, R. B., 1982, Responses of estuarine infauna to disturbance. I. Spatial and temporal variation of initial recolonization. II. Spatial and temporal variation of succession. Mar. Ecol. Prog. Ser.10: 1–27.

    Google Scholar 

  • Zeitzschel, B., 1980, Sediment—water interactions in nutrient dynamics, in: Marine Benthic Dynamics ( K. R. Tenore and B. C. Coull, eds.), pp. 195–218, University of South Carolina Press, Columbia.

    Google Scholar 

  • Ziegler, A. M., 1965, Silurian marine communities and their environmental significance, Nature (London) 207: 270–272.

    Google Scholar 

  • Zuckerkandl, E., 1950, Coelomic pressures in Sipunculus nudus, Biol. Bull.98: 161–173.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thayer, C.W. (1983). Sediment-Mediated Biological Disturbance and the Evolution of Marine Benthos. In: Tevesz, M.J.S., McCall, P.L. (eds) Biotic Interactions in Recent and Fossil Benthic Communities. Topics in Geobiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0740-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0740-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0742-7

  • Online ISBN: 978-1-4757-0740-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics