Skip to main content

Iron Transformations by Freshwater Bacteria

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 9))

Abstract

Although the bacteria involved in the iron cycle have been recognized since the last century, they have received scant attention compared with those responsible for the cycling of carbon, nitrogen, and sulfur. This is hardly surprising; although iron forms 5% by weight of the earth’s crust and is of considerable economic importance, the involvement of bacteria in the global iron cycle is of little quantitative significance (Nealson, 1983). In the presence of oxygen and at near neutral pH, conditions which prevail over much of this planet, the oxidation of iron and its precipitation and deposition as the ferric form, Fe(III), is essentially a chemical process. The reaction is, however, dependent on pH, ferrous iron [Fe(II)] concentration, temperature, and ionic strength of the solution. In a freshwater system where the last two components were relatively stable, Davison and Seed (1983) found no evidence for biological mediation of the reaction. Given a solubility product of 10−38 M for Fe(OH)3 and therefore a probable maximum concentration of free Fe(III) at neutrality of 10−17 M what, then, is the likely involvement of bacteria in the iron cycle of freshwater systems?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akers, H. A., 1981, The effect of waterlogging on the quantity of microbial iron chelators (siderophores) in soil, Soil Sci. 132: 150–152.

    Google Scholar 

  • Akers, H. A., 1983, Isolation of the siderophore schizokinen from soil of rice fields, Appl. Environ. Microbiol. 45: 1704–1706.

    Google Scholar 

  • Anderson, M. A., and Morel, F. M., 1980, Uptake of Fe(II) by a diatom in oxic culture medium, Mar. Biol. Lett. 1: 263–268.

    Google Scholar 

  • Anderson, M. A., and Morel, F. M., 1982, The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii, Limnol. Oceanogr. 27: 789–813.

    Google Scholar 

  • Archibald, F., 1983, Lactobacillus plantarum, an organism not requiring iron, FEMS Microbiol. Lett. 19: 29–32.

    Google Scholar 

  • Aristovskaya, T. V., 1974, Genus Seliberia, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 160, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Aristovskaya, T. V., and Hirsch, P., 1974, Genus Pedomicrobium, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 150–153, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Balashova, V. V., and Zavarzin, G. A., 1979, Anaerobic reduction of ferric iron by hydrogen bacteria, Microbiology 48: 733–778.

    Google Scholar 

  • Blakemore, R. P., 1975, Magnetotactic bacteria, Science 190: 377–399.

    PubMed  CAS  Google Scholar 

  • Blakemore, R. P., Maratea, D., and Wolfe, R. S., 1979, Isolation and pure culture of a freshwater magnetotactic spirillum in chemically defined medium, J. Bacteriol. 140: 720729.

    Google Scholar 

  • Boone, D. R., and Bryant, M. P., 1980, Propionate degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov. from methanogenic ecosystems, Appl. Environ. Microbiol. 40: 626–632.

    Google Scholar 

  • Bradley, G., Gaylarde, C. C., and Johnston, J. M., 1984, A selective interaction between ferrous ions and lipopolysaccharide in Desulfovibrio vulgaris, J. Gen. Microbiol. 130: 441–444.

    Google Scholar 

  • Brand, L. E., Sunda, W. G., and Guillard, R. R. L., 1983, Limitations of marine phytoplankton reproductive rates by zinc, manganese and iron, Limnol. Oceanogr. 28: 1182–1198.

    Google Scholar 

  • Brock, T. D., 1978, The poisoned control in biogeochemical investigations, in: Environmental Biogeochemistry and Geomicrobiology (W. E. Krumbein, ed.), Vol. 3, pp. 717725, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Brock, T. D., and Gustafson, J., 1976, Ferric iron reduction by sulfur-and iron-oxidizing bacteria, Appl. Environ. Microbiol. 32: 567–571.

    Google Scholar 

  • Caldwell, D. E., and Caldwell, S. J., 1980, Fine structure of in situ microbial iron deposits, Geomicrobiol. J. 2: 39–53.

    Google Scholar 

  • Cameron, A. J., and Liss, P. S., 1984, The stabilization of “dissolved” iron in freshwaters, Water Res. 18: 179–185.

    CAS  Google Scholar 

  • Chart, H., and Trust, T. J., 1983, Acquisition of iron by Aeromonas salmonicida, J. Bacteriol. 156: 758–764.

    Google Scholar 

  • Collienne, R. H., 1983, Photoreduction of iron in the epilimnion of acidic lakes, Limnol. Oceanogr. 28: 83–100.

    Google Scholar 

  • Cowen, J. P., and Silver, M. W., 1984, The association of iron and manganese with bacteria on marine macroparticulate material, Science 224: 1340–1342.

    PubMed  CAS  Google Scholar 

  • Cullimore, D. R., and McCann, A. E., 1977, The identification, cultivation and control of iron bacteria in ground water, in: Aquatic Microbiology ( F. A. Skinner and J. M. She-wan, eds.), pp. 219–261, Academic Press, London.

    Google Scholar 

  • Cunningham, C. R., and Davison, W., 1980, An opto-electronic sediment detector and its use in the chemical micro-profiling of lakes, Freshwater Biol. 10: 413–418.

    Google Scholar 

  • Davison, W., and Seed, G., 1983, The kinetics of the oxidation of ferrous iron in synthetic and natural waters, Geochim. Cosmochim. Acta 47: 67–79.

    Google Scholar 

  • Davison, W., and Tipping, E., 1984, Treading in Mortimer’s footsteps: The geochemical cycling of iron and manganese in Esthwaite Water, Freshwater Biol. Assoc. Annu. Rep. 52: 91–101.

    Google Scholar 

  • Davison, W., Heaney, S. I., Tailing, J. F., and Rigg, E., 1981, Seasonal transformation and movements of iron in a productive English lake with deep-water anoxia, Schweiz. Z. HydrobioL 42: 196–224.

    Google Scholar 

  • DeCastro, A. F., and Ehrlich, H. L., 1970, Reduction of iron oxide minerals by a marine Bacillus. Antonie van Leeuwenhoek J. Microbiol. Serol. 36: 317–327.

    Google Scholar 

  • Dondero, N. C., 1975, The Sphaerotilus-Leptothrix group, Annu. Rev. Microbiol. 29: 407, 428.

    Google Scholar 

  • Drake, C. H., 1965, Occurrence of Siderocapsa treubii in certain waters of Niederrhein, Gewass. Abwass. 39 /40: 41–63.

    Google Scholar 

  • Dubinina, G. A., 1976, Ecology of freshwater iron bacteria, Biol. Bull. 3: 473–489.

    Google Scholar 

  • Dubinina, G. A., and Kuznetsov, S. I., 1976, The ecological and morphological character-istics of microorganisms in Lesnaya Lamba ( Karelia ), Int. Rev. Ges. Hydrobiol. 61: 1–19.

    Google Scholar 

  • Dubinina, G. A., and Zhdanov, A. V., 1975, Recognition of the iron bacteria “Siderocapsa” as arthrobacters and description of Arthrobacter siderocapsulatus sp. nov., Int. J. Syst. Bacteriol. 25: 340–350.

    Google Scholar 

  • Entsch, B., Sim, R. G., and Hatcher, B. G., 1983, Indications from photosynthetic components that iron is a limiting nutrient in primary producers on coral reefs, Mar. Biol. 73: 17–30.

    Google Scholar 

  • Evanylo, L. P., Kadis, S., and Maudsley, J. R., 1984, Siderophore production by Proteus mirabilis, Can. J. Microbiol. 30: 1046–1051.

    Google Scholar 

  • Finden, D. A. S., Tipping, E., Jaworski, G. H. M., and Reynolds, C. S., 1984, Light-induced reduction of natural iron ( III) oxide and its relevance to phytoplankton, Nature 309: 783–784.

    Google Scholar 

  • Francko, D. A., and Heath, R. T., 1982, UV-sensitive complex phosphorus: Associaton with dissolved humic material and iron in a bog lake, Limnol. Oceanogr. 27: 564–569.

    Google Scholar 

  • Frankel, R. B., and Blakemore, R. P., 1984, Precipitation of Fe3O4 in magnetotactic bacteria, Phil. Trans. R. Soc. Lond. B 304: 567–574.

    Google Scholar 

  • Frolund, A., 1977, The seasonal variation of the neuston of a small pond, Bot. Tidsskrift. 72: 45–56.

    Google Scholar 

  • Gebers, R., 1981, Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Aristovskaya, Int. J. Syst. Bacteriol. 31: 302–316.

    Google Scholar 

  • Ghiorse, W. C., and Chapnick, S. D., 1983, Metal-depositing bacteria and the distribution of manganese and iron in swamp waters, Ecol. Bull. ( Stockholm ) 35: 367–376.

    Google Scholar 

  • Ghiorse, W. C., and Hirsch, P., 1978, Iron and manganese deposition by budding bacteria, in: Environmental Biogeochemistry and Geomicrobiology ( W. E. Krumbein, ed.), Vol. 3, pp. 897–909, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Ghiorse, W. C., and Hirsch, P., 1979, An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria, Arch. Microbiol. 123: 213–226.

    Google Scholar 

  • Gorlenko, V. M., Dubinina, G. A., and Kuznetsov, S. I., 1983, The ecology of aquatic microorganisms, in: Die Binnengewässer. Einzeldarstellugen aus der Limnologie and ihren Nachbargebieten, ( H.-J. Elster and W. Ohle, eds.), pp. 1–252, E. Schweizerbart’sche, Stuttgart.

    Google Scholar 

  • Gregory, E., Perry, R. S., and Staley, J. T., 1980, Characterization, distribution and significance of Metallogenium in Lake Washington, Microb. Ecol. 6: 125–140.

    Google Scholar 

  • Hanert, H., 1968, Investigations on isolation, physiology, and morphology of Gallionella ferruginea Ehrenberg, Arch. Mikrobiol. 60: 348–376.

    Google Scholar 

  • Hanert, H. 1970, Structure and growth of Gallionella ferruginea Ehrenberg in its natural habitat during the first 6 h of development, Arch. Mikrobiol. 75: 10–24.

    Google Scholar 

  • Hanert, H., 1974, In vivo kinetics of individual development of Gallionella ferruginea in batch culture, Arch. Microbio!. 96: 58–74.

    Google Scholar 

  • Hanert, H., 1981a, The genus Gallionella, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 509–515, Springer-Verlag, Berlin.

    Google Scholar 

  • Hanert, H., 198 lb, The genus Siderocapsa (and other iron-or manganese-oxidizing Eubacteria, in: The Prokaryotes (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 1049–1059, Springer-Verlag, Berlin.

    Google Scholar 

  • Heldal, M., and Tumyr, 0., 1983, Gallionella from metalimnion in an eutrophic lake: Morphology and X-ray energy-dispersive microanalysis of apical cells and stalks, Can. J. Microbiol. 29: 303–308.

    Google Scholar 

  • Hirsch, P., 1968, Biology of budding bacteria IV. Epicellular deposition of iron by aquatic budding bacteria, Arch. Mikrobiol. 60: 201–216.

    Google Scholar 

  • Hirsch, P., 1974a, Genus Clonothrix, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 136, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hirsch, P., 1974b, Genus Crenothrix, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 135–136, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hirsch, P., 1974c, Genus Lieskeella, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 134, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hirsch, P., 1974d, Genus Hyphomicrobium, in: Bergey’s Manual of Determinative Bacteri-ology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 148–150, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hirsch, P., 1981, The genus. Toxothrix, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 409–411, Springer-Verlag, Berlin.

    Google Scholar 

  • Hirsch, P., and Skuja, H., 1974, Genus Planctomyces, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 162–163, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hirsch, P., and Zavarzin, G. A., 1974, Genus Toxothrix, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 120, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Jones, J. G., 1981, The population ecology of iron bacteria ( Genus Ochrobium) in a stratified eutrophic lake, J. Gen. Microbiol. 125: 85–93.

    Google Scholar 

  • Jones, J. G., 1983, A note on the isolation and enumeration of bacteria which deposit and reduce ferric iron, J. Appl. Bacteriol. 54: 305–310.

    Google Scholar 

  • Jones, J. G., Gardener, S., and Simon, B. M., 1983, Bacterial reduction of ferric iron in a stratified eutrophic lake, J. Gen. Microbiol. 129: 131–139

    Google Scholar 

  • Jones, J. G., Gardener, S., and Simon, B. M., 1984a, Reduction of ferric iron by heterotrophic bacteria in lake sediments, J. Gen. Microbiol. 130: 45–51.

    Google Scholar 

  • Jones, J. G., Davison, W., and Gardener, S., 1984b, Iron reduction by bacteria. Range of organisms involved and metals reduced, FEMS Microbiol. Lett. 21: 133–136.

    Google Scholar 

  • Kelly, D. P., Norris, P. R., and Brierley, C. L., 1979, Microbiological methods for the extrac-tion and recovery of metals, Symp. Soc. Gen. Microbiol. 29: 263–308.

    Google Scholar 

  • Kono, K., and Usami, S., 1982, Biological reduction of ferric iron by iron-and sulfur-oxidizing bacteria, Agric. Biol. Chem. 46: 803–805.

    Google Scholar 

  • Kucera, S., and Wolfe, R. S., 1957, A selective enrichment method for Gallionella ferruginea, J. Bacteriol. 74: 344–349.

    PubMed  CAS  Google Scholar 

  • Kutuzova, R. S., 1974, Electron microscopic study of ooze overgrowths of an iron-oxidizing coccus related to Siderococcus limoniticus Dorff, Microbiology 43: 237–241.

    Google Scholar 

  • Kuznetsov, S. I., 1970, The Microflora of Lakes and Its Geochemical Acivity, University ofTexas Press, Austin. Lammers, P. J., and Sanders-Loehr, J., 1982, Active transport of ferric schizokinen in Anabaena sp., J. Bacteriol. 151: 288–294.

    Google Scholar 

  • Lascelles, J., and Burke, K. A., 1978, Reduction of ferric iron by L-lactate and n-L-glycerol3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system, J. Bacteriol. 134: 585–589.

    PubMed  CAS  Google Scholar 

  • Lundgren, D. G., and Silver, M., 1980, Ore leaching by bacteria, Annu. Rev. Microbiol. 34: 263–283.

    Google Scholar 

  • Mah, R. A., 1982, Methanogenesis and methanogenic partnerships, Phil. Trans. R. Soc. Lond. B. 297: 599–616.

    Google Scholar 

  • McInerney, M. J., Bryant, M. P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens, Arch. Microbiol. 122: 129–135.

    Google Scholar 

  • McInerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W., 1981, Syntrophomonas wolfei gen. nov. sp. nov. an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. MicrobioL 41: 1029–1039.

    Google Scholar 

  • Moore, R. L., 1981, The genera Hyphomicrobium, Pedomicrobium, and Hyphomonas, in: The Prokaryotes (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel), pp. 480–487, Springer-Verlag, Berlin.

    Google Scholar 

  • Moores, J. C., Magazin, M., Ditta, G. S., and Leong, J., 1984, Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain, J. Bacteriol. 157: 53–58.

    PubMed  CAS  Google Scholar 

  • Mortimer, C. H., 1941, The exchange of dissolved substances between mud and water in lakes: I and II, J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942, The exchange of dissolved substances between mud and water in lakes: III and IV, J. Ecol. 30: 147–201.

    Google Scholar 

  • Mulder, E. G., 1964, Iron bacteria, particularly those of the Sphaerotilus-Leptothrix group, and industrial problems, J. Appl. Bacteriol. 27: 151–173.

    Google Scholar 

  • Mulder, E. G., 1974, Genus Leptothrix, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 129–133, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Mulder, E. G., and Deinema, M. H., 1981, The sheathed bacteria, in: The Prokaryotes (M. P. Stan, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel), pp. 425–440, Springer-Verlag, Berlin.

    Google Scholar 

  • Mulder, E. G., and van Veen, W. L., 1974, Genus Sphaerotilus, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), pp. 128129, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Munch, J. C., and Ottow, J. C. G., 1977, Model experiments on the mechanism of bacterial iron-reduction in water logged soils, Z. Pflanz. Dueng. Bodenkd. 140: 549–562.

    Google Scholar 

  • Munch, J. C., and Ottow, J. C. G., 1982, Effect of cell contact and iron(III) oxide form on bacterial iron reduction, Z. Pflanz. Dueng. Bodenkd. 145: 66–77.

    Google Scholar 

  • Munch, J. C., and Ottow, J. C. G., 1983, Reductive transformation mechanism of ferric oxides in hydromorphic soils, Ecol. Bull. 35: 383–394.

    Google Scholar 

  • Nealson, K., 1983, The microbial iron cycle, in: Microbial Geochemistry ( W. E. Krumbein, ed.), pp. 159–190, Blackwell, Oxford.

    Google Scholar 

  • Neilands, J. B., 1974, Siderophores of bacteria and fungi, Microbiol. Sci. 1: 9–14.

    Google Scholar 

  • Nicholls, K. H., and Fung, D., 1982, Accumulation of iron in the cell walls of the two mono-specific freshwater genera Catena and Dichotomosiphon ( Chlorophyceae ), Arch. Protis-tenkd. 125: 209–214.

    Google Scholar 

  • Novitsky, J. A., Scott, I. R., and Kepkay, P. E., 1981, Effects of iron, sulfur, and microbial activity on aerobic to anaerobic transitions in marine sediments, Geomicrobiol. J. 2: 211–223.

    Google Scholar 

  • Nunley, J. W., and Krieg, N. R., 1968, Isolation of Gallionella ferruginea by the use of formalin, Can. J. Microbiol. 14: 385–389.

    Google Scholar 

  • Obuekwe, C. O., Westlake, D. W. S., and Cook, R. D., 1981, Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil, Can. J. Microbiol. 27: 692–697.

    Google Scholar 

  • Ottow, J. C. G., 1970, Selection, characterization and irdn-reducing capacity of nitrate reductaseless (nit-) mutants from iron reducing bacteria, Z. Allg. Mikrobiol. 10:55–62. Ottow, J. C. G., and Glathe, H., 1971, Isolation and identification of iron-educing bacteria from gley soils, Soil Biol. Biochem. 3: 43–55.

    Google Scholar 

  • Ottow, J. C. G., and Munch, J. C., 1978, Mechanisms of reductive transformations in the anaerobic microenvironment of hydromorphic soils, in: Environmental Biogeochemistry and Geomicrobiology ( W. E. Krumbein, ed.), Vol. 2, pp. 483–491, Ann Arbor Science Publishers, Ann Arbor, Michigan.

    Google Scholar 

  • Pfanneberg, T., and Fischer, W. R., 1984, An aerobic Corynebacterium from soil and its capability to reduce various iron oxides, Zentralbl. Mikrobiol. 139: 167–172.

    Google Scholar 

  • Pringsheim, E. G., 1949, Iron bacteria, Biol. Rev. 24: 200–245.

    Google Scholar 

  • Rogers, S. R., and Anderson, J. J., 1976, Measurement of growth and iron depositon in Sphaerotilus discophorus, J. Bacteriol. 126: 257–263.

    PubMed  CAS  Google Scholar 

  • Schmidt, J. M., and Starr, M. P., 1981, The Blastocaulis-Planctomyces group of budding and appendaged bacteria, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 496–504, Springer-Verlag, Berlin.

    Google Scholar 

  • Schmidt, J. M., and Swafford, J. R., 1981, The genus Seliberia, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 516–519, Springer-Verlag, Berlin.

    Google Scholar 

  • Schmidt, J. M., and Zavarzin, G. A., 1981, The genera Caulococcus and Kusnezovia, in: The Prokaryotes ( M. P. Starr, H. Stolp,. H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 529–530, Springer-Verlag, Berlin.

    Google Scholar 

  • Schmidt, J. M., Sharp, W. P., and Starr, M. P., 1982, Metallic-oxide encrustations of the nonprosthecate stalks of naturally occurring populations of Planctomyces bekefii, Curr. Microbiol. 7: 389–394.

    Google Scholar 

  • Schmidt, W.-D., 1984, Die eisenbakterien des Plusssees. II. Morphologie und feinstruktur von Siderocapsa geminata (Skuja 1954/57), Z. Allg. Mikrobiol. 24: 391–396.

    Google Scholar 

  • Schmidt, W.-D., and Overbeck, J., 1974, Studies of “iron bacteria” from Lake Pluss. I. Morphology, fine structure and distribution of Metallogenium sp. and Siderocapsa geminata, Z. Allg. Mikrobiol. 24: 329–339.

    Google Scholar 

  • Shakhobova, N. N., 1981, Participation of Arthrobacter bacteria in the reduction of ferric compounds, Isv. Akad. Nauk Tadzh, SSR, Ocd. Biol. Nauk 1981 (1): 129–132.

    Google Scholar 

  • Sigel, S. P., and Payne, S. M., 1982, Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae, J. Bacteriol. 150: 148–155.

    PubMed  CAS  Google Scholar 

  • Sorensen, J., 1982, Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate, Appl. Environ. Microbiol. 43: 319–324.

    Google Scholar 

  • Staley, J. T., and Bauld, J., 1981, The genus Planctomyces, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 505–508, Springer-Verlag, Berlin.

    Google Scholar 

  • Svorcova,.L., 1975, Iron bacteria of the genus Siderocapsa in mineral waters, Z. Allg. Mikrobiol. 15: 553–557.

    Google Scholar 

  • Svorcova, L., 1979, Diagnostik der Eisenbakterien der Familie Siderocapsaceae, Arch. Hydrobiol. 87: 423–452.

    Google Scholar 

  • Takai, Y., and Kamura, T., 1966, The mechanism of reduction in waterlogged paddy soil, Folia Microbiol. 11: 304–313.

    CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41: 100–180.

    Google Scholar 

  • Tipping, E., and Cooke, D., 1982, The effects of adsorbed humic substances on the surface charge of geothite (a-FeOOH) in freshwaters, Geochim, Cosmochim. Acta 46: 75–80.

    Google Scholar 

  • Tipping, E., and Woof, C., 1983, Elevated concentrations of humic substances in a seasonally anoxic hypolimnion• Evidence for co-accumulation with iron, Arch. Hydrobiol. 98: 137–145.

    Google Scholar 

  • Tipping, E., Woof, C., and Cooke, D., 1981, Iron oxide from a seasonally anoxic lake, Geochim. Cosmochim. Acta 45: 1411–1419.

    Google Scholar 

  • Tipping, E., Woof, C., and Ohnstad, M., 1982, Forms of iron in the oxygenated waters of Esthwaite Water, U.K., Hydrobiologia 92: 383–393.

    Google Scholar 

  • Trick, C. G., Anderson, R. J., Gilliam, A., and Harrison, P. J., 1983, Procentrin, an extra-cellular siderophore produced by the marine dinoflagellate Procentrum minimum, Science 219: 306–308.

    PubMed  CAS  Google Scholar 

  • Van Veen, W. L., Mulder, E. G., and Deinema, M. H., 1978, The Sphaerotilus-Leptothrix group of bacteria, Microbiol. Rev. 42: 329–356.

    Google Scholar 

  • Verdouw, H., and Dekkers, E. M. J., 1980, Iron and manganese in Lake Vechten (The Netherlands); Dynamics and role in the cycle of reducing power, Arch. HydrobioL 89: 509–532.

    Google Scholar 

  • Volker, H., Schweisfurth, R., and Hirsch, P., 1977, Morphology and ultrastructure of Crenothrix polyspora Cohn, J. Bacteriol. 131: 306–313.

    PubMed  CAS  Google Scholar 

  • Walker, J. C. G., 1984, Suboxic diagenesis in bonded iron formations, Nature 309: 340–342.

    PubMed  CAS  Google Scholar 

  • Walsby, A. E., 1981, Gas-vacuolate bacteria (apart form Cyanobacteria), in: The Prokary-otes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 441–447, Springer-Verlag, Berlin.

    Google Scholar 

  • Walsh, F., and Mitchell, R., 1972a, . Sci. Technol. 6: 809–812.

    Google Scholar 

  • Walsh, F., and Mitchell, R., 1972b, An acid tolerant iron-oxidizing Metallogenium, . 72: 369–373.

    Google Scholar 

  • Walsh, F., and Mitchell, R., 1973, Differentiation between Gallionella and Metallogenium, Arch. Mikrobiol. 90: 19–25.

    Google Scholar 

  • Warner, P. J., Williams, P. H., Bindereif, A., and Neilands, J. B., 1981, Co1V plasmid specified aerobactin synthesis by invasive strains of Escherichia coli, Infect. Immunol. 33: 540–545.

    Google Scholar 

  • Williams, P. H., 1979, Novel iron uptake system specified by ColV plasmids: An important component in the virulence of invasive strains of Escherichia coli, Infect. Immunol. 26: 925–932.

    Google Scholar 

  • Williams, P., Brown, M. R. W., and Lambert, P. A., 1984, Effect of iron deprivation on the production of siderophores and outer membrane proteins in Klebsiella aerogenes, J. Gen. Microbiol. 130: 2357–2365.

    Google Scholar 

  • Wolfe, R. S., 1958, Cultivation, morphology and classification of the iron bacteria, J. Am. Water Works Assoc. 50: 1241–1249.

    Google Scholar 

  • Woolfolk, C. A., and Whiteley, H. R., 1962, Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus, J. Bacteriol. 84: 647–658.

    PubMed  CAS  Google Scholar 

  • Wurtsbaugh, W. A., and Home, A. J., 1983, Iron in eutrophic Clear Lake, California: Its importance for algal nitrogen fixation and growth, Can. J. Fish. Aquat. Sci. 40: 1419–1429.

    Google Scholar 

  • Zavarzin, G. A., 1974, Genus Ochrobium, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 467–468, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Zavarzin, G. A., 1981, The genus Metallogenium, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 524–528, Springer-Verlag, Berlin.

    Google Scholar 

  • Zavarzin, G. A., and Hirsch, P., 1974a, Genus Gallionella, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R.. Buchanan and N. E. Gibbons, eds.), pp. 160–161, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Zavarzin, G. A., and Hirsch, P., 1974b, Genus Metallogenium, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), pp. 163–165, Williams and Wilkins, Baltimore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, J.G. (1986). Iron Transformations by Freshwater Bacteria. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0611-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0611-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0613-0

  • Online ISBN: 978-1-4757-0611-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics