Skip to main content

The Maillard Reaction

  • Chapter

Abstract

The Maillard reaction is a type of non-enzymic browning which involves the reaction of carbonyl compounds, especially reducing sugars, with cornpounds which possess a free amino group, such as amino acids, amines and proteins. In most foods, the ε-amino groups of the lysine residues of proteins are the most important source of free amino groups, and the ease with which they take part in the reaction explains why the Maillard reaction is the most important route to nutritional damage of food proteins. 1,2 The Maillard reaction in fact comprises a complex network of intertwining reactions and takes place during food processing, especially when heat treatment is involved, and also on storage. Apart from resulting in nutritional damage, the Maillard reaction is also primarily responsible for the development of aroma and colour, which may be desirable or undesirable, in heated foods. It also results in the formation of potentially toxic compounds and in the development of components with antioxidant properties.3 In addition, it occurs in vivo. The Maillard reaction and its ramifications are so important that four symposia have been devoted to it over the last 12 years.4–7

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hurrell, R. F., Reactions of food proteins during processing and storage and their nutritional consequences. In Developments in Food Proteins, Vol. 3, ed. B. J. F. Hudson. Elsevier, London, 1984, pp. 213–244.

    Google Scholar 

  2. Hurrell, R. F., Food manufacturing processes and their influence on the nutritional quality of foods. In Nutritional Impact of Food Processing, ed. J. C. Somogyi & H. R. Miller. Bibl. Nutr. Dieta. No. 43. Karger, Basel, 1989, pp. 125–139.

    Google Scholar 

  3. Nursten, H. E., Maillard browning reactions in dried foods. In Concentration and Drying of Foods, ed. D. MacCarthy. Elsevier Applied Science, London, 1986, pp. 53–68.

    Google Scholar 

  4. Eriksson, C., ed., Mallard Reactions in Food. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon, Oxford, 1981.

    Google Scholar 

  5. Waller, G. R. & Feather, M. S., ed. The Maillard Reaction in Foods and Nutrition. ACS Symp. Ser. 215, ACS, Washington DC, 1983.

    Google Scholar 

  6. Fujimaki, M., Namiki, M. & Kato, H., ed. Amino-Carbonyl Reactions in Food and Biological Systems. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986.

    Google Scholar 

  7. Finot, P. A., Aeschbacher, H. U., Hurrell, R. F. & Liardon, R., ed. The Maillard Reaction in Food Processing, Human Nutrition and Physiology. Birkhäuser, Basel, 1990.

    Google Scholar 

  8. Hodge, J. E., Chemistry of browning reactions in model systems. J. Agric. Food Chem., 1 (1953) 928–943.

    CAS  Google Scholar 

  9. Ellis, G. P., The Maillard reaction. Adv. Carbohydr. Chem., 14 (1959) 63–134.

    CAS  Google Scholar 

  10. Reynolds, T. H., Chemistry of nonenzymic browning. I. The reaction between aldoses and amines. Adv. Food Res., 12 (1963) 1–52.

    CAS  Google Scholar 

  11. Reynolds, T. H., Chemistry of nonenzymic browning. II. Adv. Food Res., 14 (1965) 167–283.

    CAS  Google Scholar 

  12. Nursten, H. E., Recent developments in studies of the Maillard reaction. Food Chem., 6 (1981) 263–277.

    CAS  Google Scholar 

  13. Danehy, J. P., Maillard reactions: nonenzymatic browning in food systems with special reference to the development of flavor. Adv. Food Res., 30 (1986) 77–138.

    CAS  Google Scholar 

  14. Namiki, M., Chemistry of Maillard reactions: Recent studies on the browning reaction mechanism and the development of antioxidants and mutagens. Adv. Food. Res., 32 (1988) 115–184.

    CAS  Google Scholar 

  15. Ledl, F., Chemical pathways of the Maillard reaction. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 19–42.

    Google Scholar 

  16. Ledl, F. & Schleicher, E., New aspects of the Maillard reaction in foods and in the human body. Angew. Chem. Int. Ed. Engl., 29 (1990) 565–594.

    Google Scholar 

  17. Ames, J. M., Control of the Maillard reaction in food systems. Trends Food Sci. Technol., 1 (1990) 150–154.

    CAS  Google Scholar 

  18. Nursten, H. E., Key mechanistic problems posed by the Maillard reaction. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 145–153.

    Google Scholar 

  19. Hodge, J. E., Origin of flavors in foods: non-enzymatic browning reactions. In Symp. Foods: Chemistry and Physiology of Flavors, ed. H. W. Schultz, E. A. Day & L. M. Libbey. AVI, Westport, Conn., 1967, pp. 465–491.

    Google Scholar 

  20. Mills, F. D., Baker, B. G. & Hodge, J. E., Amadori compounds as nonspecific flavor precursors in processed foods. J. Agric. Food Chem., 17 (1969) 723–727.

    CAS  Google Scholar 

  21. Anet, E. F. L. J., Chemistry of non-enzymic browning. II. Some crystalline amino acid-deoxy sugars. Aust. J. Chem., 10 (1957) 193–197.

    CAS  Google Scholar 

  22. Baltes, W., Franke, K., Hörtig, W., Otto, R. & Lessig, U., Investigations on model systems of Maillard reactions. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 137–145.

    Google Scholar 

  23. Heyns, K., Müller, G. & Paulsen, H., Quantitative studies on the reactionsof hexoses with amino acids. Justus Liebigs Ann. Chem., 703 (1967) 202–214.

    CAS  Google Scholar 

  24. Hayashi, T., Mase, S. & Namiki, M., Formation of the N,N′-dialkylpyrazine cation radical from glyoxal dialkylimine produced on reaction of a sugar with an amine or amino acid. Agric. Biol. Chem., 49 (1985) 3131–3137.

    CAS  Google Scholar 

  25. Hayashi, T., Ohta, Y. & Namiki, M., Electron spin resonance spectral study on the structure of the novel free radical products formed by the reactions of sugars with amino acids or amines. J. Agric. Food Chem., 25 (1977) 1282–1287.

    CAS  Google Scholar 

  26. Namiki, M. & Hayashi, T., A new mechanism of the Maillard reaction involving sugar fragmentation and free radical formation. In The Maillard Reaction in Foods and Nutrition, ed. G. R. Waller & M. S. Feather. ACS Symp. Ser. 215, ACS, Washington DC, 1983, pp. 21–46.

    Google Scholar 

  27. Hayashi, T., Mase, S. & Namiki, M., Formation of three-carbon sugar fragment at an early stage of the browning reaction of sugar with amines or amino acids. Agric. Biol. Chem., 50 (1986) 1959–1964.

    CAS  Google Scholar 

  28. Hayashi, T. & Namiki, M., Role of sugar fragmentation in an early stage browning of amino-carbonyl reaction of sugar with amino acids. Agric. Biol. Chem., 50 (1986) 1965–1970.

    CAS  Google Scholar 

  29. Yano, M., Hayashi, T. & Namiki, M., Formation of free radical products by the reaction of dehydroascorbic acid with amino acid. J. Agric. Food Chem., 24 (1976) 815–819.

    CAS  Google Scholar 

  30. Gomyo, T., Haiyan, L., Miura, M., Hayase, F. & Kato, H., Kinetic aspects of the blue pigment formation in a Maillard reaction between D-xylose and glycine. Agric. Biol. Chem., 53 (1989) 949–957.

    CAS  Google Scholar 

  31. Yaylayan, V., Jocelyn Pare, J. R., Laing, R. & Sporns, P., Intramolecular nucleophilic substitution reactions of tryptophan and lysine Amadori rearrangement products. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 115–120.

    Google Scholar 

  32. Anet, E. F. L. J., Formation of furan compounds from sugars. Chem. Ind. (1962) 262.

    Google Scholar 

  33. Beck, J., Ledl, F., Sengl, M. & Severin, T., Formation of acids, lactones and esters through the Maillard reaction. Z. Lebensm. Unters. Forsch., 190 (1990) 212–216.

    CAS  Google Scholar 

  34. Ledl, F., Hiebl, J. & Severin, T., Formation of coloured 13-pyranones from hexoses and pentoses. Z. Lebensm. Unters. Forsch., 177 (1983) 353–355.

    CAS  Google Scholar 

  35. Kato, H., Chemical studies on amino-carbonyl reaction III. Formation of substituted pyrrole-2-aldehydes by reaction of aldoses with alkylamines. Agric. Biol. Chem. 31 (1967) 1086–1090.

    CAS  Google Scholar 

  36. Jurch, G. R. & Tatum, J. H., Degradation of D-glucose with acetic acid and methylamine. Carbohydr. Res., 15 (1970) 233–239.

    CAS  Google Scholar 

  37. Pachmayr, O., Ledl, F. & Severin, T., Formation of 1-alky1–3-oxopyridiniumbetaines from sugars. XXI. Investigations relating to the Maillard reaction. Z. Lebensm. Unters. Forsch., 182 (1986) 294–297.

    CAS  Google Scholar 

  38. Hayase, F., Nagaraj, R. H., Miyata, S., Njoroge, F. G. & Monnier, V. M., Aging of proteins: immunological detection of a glucose-derived pyrrole formed during Maillard reaction in vivo. J. Biol. Chem., 264 (1989) 3758–3764.

    CAS  Google Scholar 

  39. Olsson, K., Pernemalm, P. Å., Popoff, T. & Theander, O., Formation of aromatic compounds from carbohydrates. V. Reaction of D-glucose and methylamine in slightly acidic aqueous solution. Acta Chem. Scand. Ser. B, 31(1977) 469–474.

    Google Scholar 

  40. Shigematsu, H., Kurata, T., Kato, H. & Fujimaki, M., Formation of 2-(5-hydroxymethy1–2-formylpyrrol-1-yl)alkyl acid lactones on roasting alkyl-aamino acid with D-glucose. Agric. Biol. Chem., 35 (1971) 2097–2105.

    CAS  Google Scholar 

  41. Olsson, K., Pernemalm, P. Å. & Theander, O., Formation of aromatic compounds from carbohydrates. VII. Reaction of D-glucose and glycine in slightly acidic aqueous solution. Acta Chem. Scand. Ser. B, 32 (1978) 249–256.

    Google Scholar 

  42. Olsson, K., Pernemalm, P. Å. & Theander, O., Reaction products and mechanism in some simple model systems. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford. 1981, 47–55.

    Google Scholar 

  43. Njoroge, F. G., Sayre, L. M. & Monnier, V. M., Detection of D-glucose-derived pyrrole compounds during Maillard reaction under physiological conditions. Carbohydr. Res., 167 (1987) 211–220.

    CAS  Google Scholar 

  44. Miller, R., Olsson, K. & Pernemalm, P. A., Formation of aromatic compounds from carbohydrates. IX. Reaction of D-glucose and L-lysine in slightly acidic, aqueous solution. Acta Chem. Scand. Ser. B, 38 (1984) 689–694.

    Google Scholar 

  45. Tressl, R., Helak, B. & Rewicki, D., Malzoxazin, eine tricyclische Verbindung aus Gerstenmalz. Helv. Chim. Acta., 65 (1982) 483–489.

    CAS  Google Scholar 

  46. Ledl, F., Krönig, U., Severin, T. & Lotter, H., Investigations relating to Maillard-reaction XVIII. Isolation of N-containing coloured products. Z. Lebensm. Unters. Forsch., 177 (1983) 267–270.

    CAS  Google Scholar 

  47. Njoroge, F. G., Fernandes, A. A. & Monnier, V. M., 3-(D-erythro-Trihydroxypropy1)-1-neopentylpyrrolecarboxaldehyde, a novel nonenzymatic browning product of glucose. J. Carbohydr. Chem., 6 (1987) 553–568.

    CAS  Google Scholar 

  48. Farmar, J. G., Ulrich, P. C. & Cerami, A., Novel pyrroles from sulfite-inhibited Maillard reactions: Insight into the mechanism of inhibition. J. Org. Chem., 53 (1988) 2346–2349.

    CAS  Google Scholar 

  49. Ledl, F., Fritsch, G., Hiebl, J., Pachmayr, O. & Severin, T., Degradation of Maillard products. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki &. H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 173–182.

    Google Scholar 

  50. Beck, J., Ledl, F. & Severin, T., Formation of 1-deoxy-D-erythro-2,3-hexodiulose from Amadori compounds. Carbohydr. Res., 117 (1988) 240–243.

    Google Scholar 

  51. Hiebl, J., Ledl, F. & Severin, T., Isolation of 4-hydroxy-2-(hydroxymethyl)-5-methy1–3(2H)-furanone from sugar amino acid reaction mixtures. J. Agric. Food Chem., 35 (1987) 990–993.

    CAS  Google Scholar 

  52. Hodge, J. E., Fisher, B. E. & Nelson, E. C., Dicarbonyls, reductones and heterocyclics produced by reactions of reducing sugars with secondary amine salts. Proc. Am. Soc. Brew. Chem. (1963) 84–92.

    Google Scholar 

  53. Ledl, F., Formation of aminoreductones from disaccharides. Z. Lebensm. Unters. Forsch., 179 (1984) 381–384.

    CAS  Google Scholar 

  54. Ledl, F. & Fritsch, G., Formation of pyrrolinone reductones by heating hexoses with amino acids. Z. Lebensm. Unters. Forsch., 178 (1984) 41–44.

    CAS  Google Scholar 

  55. Mills, F. D., Baker, B. G. & Hodge, J. E., Thermal degradation of 1-deoxy1-piperidino-D-fructose. Carbohydr. Res., 15 (1970) 205–213.

    CAS  Google Scholar 

  56. Ledl, F. & Severin, T., Formation of aminoreductones from glucose and primary amines. XIV. Investigations relating to Maillard reaction. Z. Lebensm. Unters. Forsch., 169 (1979) 173–175.

    CAS  Google Scholar 

  57. Simon, H., Heubach, G., Bitterlich, W. & Gleinig, H., Reaction of bromodiacetyl and of alicyclic 1-chloro-2,3-diones with primary and secondary amines to reductones and some properties of the products. Chem. Ber., 98 (1965) 3692–3702.

    CAS  Google Scholar 

  58. Ledl, F., Ellrich, G. & Klostermeyer, H., Proof and identification of a new Maillard compound in heated milk. Z. Lebensm. Unters. Forsch., 182 (1986) 19–24.

    CAS  Google Scholar 

  59. Matsuura, H., Hirao, Y., Yoshida, Y., Kumihiro, K., Fuwa, T., Kasai, R. & Tanaka, O., Study of red ginseng: new glucosides and a note on the occurrence of maltol. Chem. Pharm. Bull., 32 (1984) 4674–4677.

    CAS  Google Scholar 

  60. Hodge, J. E. & Nelson, E. C., Preparation and properties of galactosylisomaltol and isomaltol. Cereal Chem., 38 (1961) 207–221.

    CAS  Google Scholar 

  61. Patton, S., The formation of maltol in certain carbohydrate-glycine systems. J. Biol. Chem., 184 (1950) 131–134.

    CAS  Google Scholar 

  62. Peer H. G., van den Ouweland, G. A. M. & de Groot, C. N., The reaction of aldopentoses and secondary amine salts, a convenient method of preparing 4-hydroxy-5-methyl-2,3-dihydrofuran-3-one. Red. Tray. Chim. Pays-Bas, 87 (1968) 1011–1020.

    CAS  Google Scholar 

  63. Severin, T. & Loidl, A., Formation of pyridone derivatives from maltose and lactose. XII. Investigations of the Maillard reaction. Z. Lebensm. Unters. Forsch., 161 (1976) 119–124.

    CAS  Google Scholar 

  64. Ledl, F., Osiander, H., Pachmayr, O. & Severin, T., Formation of maltosine, a product of the Maillard reaction with a pyridone structure. Z. Lebensm. Unters. Forsch., 188 (1989) 207–211.

    CAS  Google Scholar 

  65. Huber, B. & Ledl, F., Formation of 1-amino-1,4-dideoxy-2,3-hexodiuloses and 2-aminoacetylfurans in the Maillard reaction. Carbohydr. Res., 204 (1990) 215–220.

    CAS  Google Scholar 

  66. Huber, B., Ledl, F., Severin, T., Stangl, A. & Pfleiderer, G., Formation of 2-(2-furoy1)-4(5)-(2-fury1)-1H-imidazole in the Maillard reaction. Carbohydr. Res., 182 (1988) 301–306.

    CAS  Google Scholar 

  67. Njoroge, F. G., Fernandes, A. A. & Monnier, V. M., Mechanism of formation of the putative advanced glycosylation end product and protein crosslink 2-(2-furoy1)-4,5-(2-furany1)-1H-imidazole. J. Biol. Chem., 263 (1988) 10646–10652.

    CAS  Google Scholar 

  68. Estendorfer, S., Ledl, F. & Severin, T., Formation of an aminoreductone from glucose. Angew. Chem. Int. Ed. Engl., 29 (1990) 536–537.

    Google Scholar 

  69. Beck, J., Ledl, F., Sengl, M. & Severin, T., Formation of glucosyl deoxyosones from Amadori compounds of maltose. Z. Lebensm. Unters. Forsch., 188 (1989) 118–121.

    CAS  Google Scholar 

  70. Ahmed, M. U., Thorpe, S. R. & Baynes, J. W., Identification of Nϵ-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem., 261 (1986) 4889–4894.

    CAS  Google Scholar 

  71. Hayashi, T. & Namiki, M., Role of sugar fragmentation in the Maillard reaction. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 29–38.

    Google Scholar 

  72. Shaw, P. E. & Berry, R. E., Hexose-amino acid degradation studies involving formation of pyrroles, furans and other low molecular weight products. J. Agric. Food Chem., 25 (1977) 641–644.

    CAS  Google Scholar 

  73. Nyhammar, T., Olsson, K. & Pernemalm, P. A., In The Maillard Reaction in Foods and Nutrition, ed. G. R. Waller & M. S. Feather. ACS Symp. Ser. 215, ACS, Washington D.C., 1983, pp. 71–82.

    Google Scholar 

  74. Nyhammar, T., Olsson, K. & Pernemalm, P. A., On the formation of 2-acylpyrroles and 3-pyridinols in the Maillard reaction through Strecker degradation. Acta Chem. Scand. Ser. B, 37 (1983) 879–889.

    Google Scholar 

  75. Ames, J. M. & Nursten, H. E., Recent advances in the chemistry of coloured compounds formed during the Maillard reaction. In Trends in Food Science, ed. W. S. Lien & C. W. Foo. Singapore Institute of Food Science and Technology, 1989, pp. 8–14.

    Google Scholar 

  76. Motai, H., Viscosity of melanoidins formed by oxidative browning. Validity of the equation for a relationship between color intensity and molecular weight of melanoidin. Agric. Biol. Chem., 40 (1976) 1–7.

    CAS  Google Scholar 

  77. Kato, H. & Tsuchida, H., Estimation of melanoidin structure by pyrolysis and oxidation. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 147–156.

    Google Scholar 

  78. Barbetti, P. & Chiappini, I., Fractionation and spectroscopic characterization of melanoidic pigments from a glucose-glycine non-enzymic browning system. Ann. Chim. (Rome), 66 (1976) 293–304.

    CAS  Google Scholar 

  79. Feather, M. S., Some aspects of the chemistry of non-enzymatic browning (the Maillard reaction). In Chemical Changes in Food During Processing, ed. T. Richardson & J. W. Finley. AVI, Westport, 1985, pp. 289–303.

    Google Scholar 

  80. Feather, M. S. & Nelson, D., Maillard polymers derived from D-glucose, D-fructose, 5-(hydroxymethyl)-2-furaldehyde, and glycine and methionine. J. Agric. Food Chem., 32 (1984) 1428–1432.

    CAS  Google Scholar 

  81. Benzing-Purdie, L. M. & Ratcliffe, C. I., A Study of the Maillard reaction by 13C and 15N CP-MAS NMR: Influence of time, temperature and reactants on major products. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 193–205.

    Google Scholar 

  82. Feather, M. S. & Huang, R. -D., Some studies on a Maillard polymer derived from L-alanine and D-glucose. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol 13. Elsevier, Amsterdam, 1986, pp. 183–192.

    Google Scholar 

  83. Kato, H., Kim, S. B. & Hayase, F., Estimation of the partial chemical structures of melanoidins by oxidative degradation and 13C CP-MAS NMR. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol 13. Elsevier, Amsterdam, 1986, pp. 215–223.

    Google Scholar 

  84. Hayase, F., Kim, S. B. & Kato, H., Analysis of the chemical structures of melanoidins by 13C NMR, 13C and 15N CP-MAS NMR spectrometry. Agric. Biol. Chem., 50 (1986) 1951–1957.

    CAS  Google Scholar 

  85. Benzing-Purdie, L. M., Ripmeester, J. A. & Ratcliffe, C. I., Effects of temperature on Maillard reaction products. J. Agric. Food Chem., 33 (1985) 31–33.

    CAS  Google Scholar 

  86. Baltes, W., Application of pyrolytic methods in food chemistry. J. Anal. Appl. Pyrol., 8 (1985) 533–545.

    CAS  Google Scholar 

  87. Wu, C. H., Russell, G. F. & Powrie, W. D., Paramagnetic behaviour of model system melanoidins. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol 13. Elsevier, Amsterdam, 1986, pp. 135–144.

    Google Scholar 

  88. Clark, A. V. & Tannenbaum, S. R., Isolation and characterisation of pigments from protein-carbonyl browning systems. Isolation, purification and properties. J. Agric. Food Chem., 18 (1970) 891–894.

    CAS  Google Scholar 

  89. Clark, A. V. & Tannenbaum, S. R., Studies on limit-peptide pigments from glucose-casein browning systems using radioactive glucose. J. Agric. Food Chem., 21 (1973) 40–43.

    CAS  Google Scholar 

  90. Clark, A. V. & Tannenbaum, S. R., Isolation and characterization of pigments from protein-carbonyl browning systems. Models for two insulinglucose pigments. J. Agric. Food Chem., 22 (1974) 1089–1093.

    CAS  Google Scholar 

  91. Henry, K. M., Kon, S. K., Lea, C. H. & White, J. C. D., Deterioration on storage of dried skim milk. J. Dairy Res., 15 (1948) 293–356.

    Google Scholar 

  92. Lea, C. H. & Hannan, R. S., Studies of the reaction between proteins and reducing sugars in the ‘dry’ state. II. Further observations on the formation of the casein-glucose complex. Biochim. Biophys. Acta., 4 (1950) 518–531.

    CAS  Google Scholar 

  93. Lea, C. H. & Hannan, R. S., Studies of the reaction between proteins and reducing sugars in the ‘dry’ state. III. Nature of the protein groups reacting. Biochim. Biophys. Acta., 5 (1950) 433–454.

    CAS  Google Scholar 

  94. Ludwig, E., Die Verfolgung der Maillard-Reaktion zwischen β-Lactoglobulin und Lactose mittels Isoelektrofocussierung in Polyacrylamidgelen. Nahrung, 18 (1974) 615–620.

    CAS  Google Scholar 

  95. Finot, P. A., Deutsch, R. & Bujard, E., The extent of the Maillard reaction during the processing of milk. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 345–355.

    Google Scholar 

  96. Hurrell, R. F. & Finot, P. A., Food processing and storage as a determinant of protein and amino acid availability. In Nutritional Adequacy, Nutrient Availability and Needs, ed. J. Mauron. Experientia Basel Supplementum. Birkhäuser, Basel, 1983, pp. 135–156.

    Google Scholar 

  97. Erbersdobler, H. F., Protein reactions during food processing and storage -their relevance to human nutrition. In Nutritional Impact of Food Processing, ed. J. C. Somogyi & H. R. Muller. Bibl. Nutr. Dieta. No. 43. Karger, Basel, 1989, pp. 140–155.

    Google Scholar 

  98. Frangne, R. & Adrian, J., The Maillard reaction. VI. Reactivity of various purified proteins. Ann. Nutr. Aliment., 26 (1972) 97–106.

    CAS  Google Scholar 

  99. Adrian, J. & Frangne, R., Le comportement des proteolysats au cours de la reaction de Maillard. Ind. Aliment. Agric., 26 (1976) 23–28.

    Google Scholar 

  100. Hurrell, R. F. & Carpenter, K. J., Nutritional significance of cross-link formation during food processing. In Protein Crosslinking. Nutritional and Medical Consequences, ed. M. Friedman. Advances in Experimental Medicine and Biology, Vol. 86B. Plenum Press, New York, 1977, pp. 225–238.

    Google Scholar 

  101. Möller, A. B., Andrews, A. T. & Cheeseman, G. C., Chemical changes in ultra-heat-treated milk during storage. II. Lactuloselysine and fructoselysine formation by the Maillard reaction. J. Dairy Res., 44 (1977) 267–275.

    Google Scholar 

  102. Hurrell, R. F., Influence of the Maillard reaction on the nutritional value of foods. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 245–258.

    Google Scholar 

  103. Labuza, T. P. & Saltmarch, M., The nonenzymatic browning reaction as affected by water in foods. In Water Activity: Influences on Food Quality, ed. L. B. Rockland & G. F. Stewart. Academic Press, New York, 1981, pp. 605–650.

    Google Scholar 

  104. Ludwig, E., Untersuchungen zur Maillard-Reaktion zwischen β-Lactoglobulin und Lactose. 3. Mitt. Der Einfluß intermolekularer Disulfidbrücken auf die Blockierung von Lysin. Nahrung, 23 (1979) 707–714.

    CAS  Google Scholar 

  105. Nielsen, H. K., De Wecke, D., Finot, P. A., Liardon, R. & Hurrell, R. F., Stability of tryptophan during food processing and storage. 1. Comparative losses of tryptophan, lysine and methionine in different model systems. Br. J. Nutr., 53 (1985) 281–292.

    CAS  Google Scholar 

  106. Nielsen, H. K., Klein, A. & Hurrell, R. F., Stability of tryptophan during food processing and storage. 2. A comparison of the methods used for the measurement of tryptophan losses in processed foods. Br. J. Nutr., 53 (1985) 293–300.

    CAS  Google Scholar 

  107. Möller, A. B., Andrews, A. T. & Cheeseman, G. C., Chemical changes in ultra-heat-treated milk during storage. III. Methods for the estimation of lysine and sugar-lysine derivatives formed by the Maillard reaction. J. Dairy Res., 44 (1977) 277–281.

    Google Scholar 

  108. Hurrell, R. F. & Carpenter, K. J., The estimation of available lysine in foodstuffs after Maillard reactions. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 159–176.

    Google Scholar 

  109. Carpenter, K. J. & Booth, V. H. Damage to lysine in food processing: its measurement and its significance. Nutr. Abstr. Rev., 43 (1973) 423–451.

    Google Scholar 

  110. Erbersdobler, H., Amino acid availability. In Protein Metabolism and Nutrition, ed. D. J. A. Cole, K. N. Boorman, P. J. Buttery, D. Lewis, R. J. Neale & H. Swan. Butterworths, London, 1976, pp. 139–158.

    Google Scholar 

  111. Tanaka, M., Lee, T. -C. & Chichester, C. O., Effect of browning on chemical properties of egg albumin. Agric. Biol. Chem., 39 (1975) 863–866.

    CAS  Google Scholar 

  112. Kato, H., Matsumura, M. & Hayase, F., Chemical changes in casein heated with and without D-glucose in the powdered state or in an aqueous solution. Food Chem., 7 (1981) 159–168.

    CAS  Google Scholar 

  113. Holt, C., Muir, D. D. & Sweetsur, A. W. M., The heat stability of milk and concentrated milk containing added aldehydes and sugars. J. Dairy Res., 45 (1978) 47–52.

    CAS  Google Scholar 

  114. Nelson, V., Effects of formaldehyde and copper salts on the heat stability of evaporated milk. J. Dairy Sci., 37 (1954) 825–829.

    CAS  Google Scholar 

  115. Tybor, P. T., Dill, C. W. & Landmann, W. A., Effect of decolorization and lactose incorporation on the emulsification capacity of spray-dried blood protein concentrates. J. Food Sci., 38 (1973) 4–6.

    CAS  Google Scholar 

  116. Morales, M., Dill, C. W. & Landmann, W. A. Effect of Maillard condensation with D-glucose on the heat stability of bovine serum albumin. J. Food Sci., 41 (1976) 234–236.

    CAS  Google Scholar 

  117. Back, J. F., Oakenfull, D. and Smith, M. B., Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 18 (1979) 5191–5196.

    CAS  Google Scholar 

  118. Lea, C. H., The reaction between milk protein and reducing sugar in the dry state. J. Dairy Res., 15 (1948) 369–376.

    CAS  Google Scholar 

  119. Lea, C. H., Hannan, R. S. & Rhodes, D. N. Studies of the reaction between proteins and reducing sugars in the dry state. IV. Decomposition of the amino-sugar complex and the reaction of acetylated casein with glucose. Biochim. Biophys. Acta., 7 (1951) 366–377.

    CAS  Google Scholar 

  120. Mohammad, A., Fraenkel-Conrat, H. & Olcott, H. S., The “browning” reaction of proteins with glucose. Arch. Biochim. Biophys., 24 (1949) 157–178.

    CAS  Google Scholar 

  121. Shalabi, S. I. & Fox, P. F., Heat stability of milk: synergistic action of urea and carbonyl compounds. J. Dairy Res., 49 (1982) 197–207.

    CAS  Google Scholar 

  122. Shalabi, S. I. & Fox, P. F., Heat stability of milk: influence of modification of lysine and arginine on the heat stability-pH profile. J. Dairy Res., 49 (1982) 607–617.

    CAS  Google Scholar 

  123. Shalabi, S. I. & Fox, P. F., Effect of diacetyl on the heat stability of concentrated milks. J. Food Technol., 17 (1982) 753–760.

    CAS  Google Scholar 

  124. Kato, Y., Watanabe, K. & Sato, Y., Effect of the Maillard reaction on the attributes of egg white proteins. Agric. Biol. Chem., 42 (1978) 2233–2237.

    CAS  Google Scholar 

  125. Watanabe, K., Sato, Y. & Kato, Y., Chemical and conformational changes of ovalbumin due to the Maillard reaction. J. Food Process. Preserv., 3 (1980) 263–274.

    Google Scholar 

  126. Kato, Y., Watanabe, K. & Sato, Y., Effect of Maillard reaction on some physical properties of albumin. J. Food Sci., 46 (1981) 1835–1839.

    CAS  Google Scholar 

  127. Kato, Y., Watanabe, K. & Sato, Y., Effect of some metals on the Maillard reaction of ovalbumin. J. Agric. Food Chem., 29 (1981) 540–543.

    CAS  Google Scholar 

  128. Kato, Y., Watanabe, K. & Sato, Y., Conformational stability of ovalbumin reacted with glucose in a Maillard reaction. Agric. Biol. Chem., 47 (1983) 1925–1926.

    CAS  Google Scholar 

  129. Wu, H., Govindarajan, S., Smith, T., Rosen, J. D. & Ho, C.-T., Glucose— lysozyme reactions in a restricted water environment. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 85–90.

    Google Scholar 

  130. Hull, C. J., Studies on the glycation and Maillard reactions of protein. Ph.D. Dissertation, University of South Carolina, Columbia, South Carolina, 1985.

    Google Scholar 

  131. Baynes, J. W., Ahmed, M. U., Fisher, C. I., Hull, C. J., Lehman, T. A., Watkins, N. G. & Thorpe, S. R., Studies on glycation of proteins and Maillard reactions of glycated proteins under physiological conditions. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 421–431.

    Google Scholar 

  132. Cho, R. K., Okitani, A. & Kato, H., Chemical properties and polymerizing ability of the lysozyme monomer isolated after storage with glucose. Agric. Biol. Chem., 48 (1984) 3081–3089.

    CAS  Google Scholar 

  133. Cho, R. K., Okitani, A. & Kato, H., Polymerisation of proteins and impairment of their arginine residues due to intermediate compounds in the Maillard reaction. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 439–448.

    Google Scholar 

  134. Eble, A. S., Thorpe, S. R. & Baynes, J. W., Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J. Biol. Chem., 258 (1983) 9406–9412.

    CAS  Google Scholar 

  135. Okitani, A., Cho, R. K. & Kato, H., Polymerization of lysozyme and impairment of its amino acid residues caused by reaction with glucose. Agric. Biol. Chem., 48 (1984) 1801–1808.

    CAS  Google Scholar 

  136. Cho, R. K., Okitani, A. & Kato, H., Polymerization of acetylated lysozyme and impairment of their amino acid residues due to a-dicarbonyl and a-hydroxycarbonyl compounds. Agric. Biol. Chem., 50 (1986) 1373–1380.

    CAS  Google Scholar 

  137. Kato, H., Cho, R. K., Okitani, A. & Hayase, F., Responsibility of 3-deoxyglucosone for the glucose-induced polymerization of proteins. Agric. Biol. Chem., 51 (1987) 683–689.

    CAS  Google Scholar 

  138. Igaki, N., Saai, M., Hata, F., Yamada, H., Oimomi, M., Baba, S. & Kato, H., The role of 3-deoxyglucosone in the Maillard reaction. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 103–108.

    Google Scholar 

  139. Shin, D. B., Hayase, F. & Kato, H., Polymerization of proteins caused by reaction with sugars and the formation of 3—deoxyglucosone under physiological conditions. Agric. Biol. Chem., 52 (1988) 1451–1458.

    CAS  Google Scholar 

  140. Kato, H., Yamamoto, M. & Fujimaki, M., Mechanisms of browning degradation of D-fructose in special comparison with D-glucose—glycine reaction. Agric. Biol. Chem., 33 (1969) 939–948.

    CAS  Google Scholar 

  141. Sakai, M., Igaki, N., Nakamichi, T., Ohara, T., Masuta, S., Maeda, Y., Hata, F., Oimomi, M. & Baba, S., Acceleration of fructose-mediated collagen glycation. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 481–486.

    Google Scholar 

  142. Möller, A. B., Chemical changes in ultra heat treated milk during storage. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 357–368.

    Google Scholar 

  143. Dworschak, E., Nonenzymic browning and its effect on protein nutrition. CRC Crit. Rev. Food Sci. Nutr., 13 (1980) 1–40.

    CAS  Google Scholar 

  144. Feeney, R. E., Overview on the chemical deteriorative changes of proteins and their consequences. In Chemical Deterioration of Proteins, ed. J. R. Whitaker & M. Fujimaki. ACS Symp. Ser. 123, ACS, Washington D.C., 1980, pp. 1–47.

    Google Scholar 

  145. Matsumoto, J. J., Chemical deterioration of muscle proteins during frozen storage. In Chemical Deterioration of Proteins, ed. J. R. Whitaker & M. Fujimaki. ACS Symp. Ser. 123, ACS, Washington D.C., 1980, pp. 95–124.

    Google Scholar 

  146. Spark, A. A., Role of amino acids in non-enzymic browning. J. Sci. Food Agric., 20 (1969) 308–316.

    CAS  Google Scholar 

  147. Ashoor, S. H. & Zent, J. B., Maillard browning of common amino acids and sugars. J. Food Sci., 49 (1984) 1206–1207.

    CAS  Google Scholar 

  148. Lewis, V. M. & Lea, C. H., A note on the relative rates of reaction of several reducing sugars and sugar derivatives with casein. Biochim. Biophys. Acta., 4 (1950) 532–534.

    CAS  Google Scholar 

  149. Rao, N. M. & Rao, M. M. Effect of non-enzymatic browning on the nutritive value of casein-sugar complexes. J. Food Sci. Tech. (Mysore), 9 (1972) 66–68.

    CAS  Google Scholar 

  150. Kato, Y., Matsuda, T., Kato, N., Watanabe, K. & Nakamura, R., Browning and insolubilisation of ovalbumin by the Maillard reaction with some aldohexoses. J. Agric. Food Chem., 34 (1986) 351–355.

    CAS  Google Scholar 

  151. Kato, Y., Matsuda, T., Kato, N., Watanabe, K. & Nakamura, R., Maillard reaction of some aldohexoses with ovalbumin. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 115–124.

    Google Scholar 

  152. Kato, Y., Matsuda, T., Kato, N. & Nakamura, R., Browning and protein polymerisation induced by amino-carbonyl reaction of ovalbumin with glucose and lactose. J. Agric. Food Chem., 36 (1988) 806–809.

    CAS  Google Scholar 

  153. Bunn, H. F. & Higgins, P. J., Reaction of monosaccharides with protein: possible evolutionary significance. Science, 213 (1981) 222–224.

    CAS  Google Scholar 

  154. Hayward, L. D. & Angyal, S. J., A symmetry rule for the circular dichroism of reducing sugars, and the proportion of carbonyl forms in aqueous solutions thereof. Carbohydr. Res., 53 (1977) 13–20.

    CAS  Google Scholar 

  155. Kato, Y., Matsuda, T., Kato, N. & Nakamura, R., Maillard reaction in sugar-protein systems. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 97–102.

    Google Scholar 

  156. O’Brien, J. & Morrissey, P. A., Nutritional and toxicological aspects of the Maillard reaction in foods. CRC. Crit. Rev. Food Sci. Nutr., 28 (1989) 211–248.

    Google Scholar 

  157. Finot, P. A., Hurrell, R. F., Deutsch, R. & Klein, A., 1979. Unpublished data. In Finot, P. A., Deutsch, R. & Bujard, E. The extent of the Maillard reaction during the processing of milk. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 345–355.

    Google Scholar 

  158. Knipfel, J. E., Nitrogen and energy availabilities in foods and feeds subjected to heating. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 177–192.

    Google Scholar 

  159. Erbersdobler, H. F., The biological significance of carbohydrate-lysine crosslinking during heat treatment of food proteins. In Protein Crosslinking: Nutritional and Medical Consequences, ed. M. Freidman. Plenum Press, New York, 1977, pp. 367–378.

    Google Scholar 

  160. Hansen, L. P. & Millington, R. J., Blockage of protein enzymatic digestion (carboxypeptidase-B) by heat-induced sugar-lysine reactions. J. Food Sci., 44 (1979) 1173–1177.

    CAS  Google Scholar 

  161. Ford, J. E., Hurrell, R. F. & Finot, P. A., Storage of milk powders under adverse conditions. 2. Influence on the content of water-soluble vitamins. Br. J. Nutr., 49 (1983) 355–364.

    CAS  Google Scholar 

  162. Nursten, H. E., Aroma compounds from the Maillard reaction. In Developments in Food Flavour, ed. G. G. Birch & M. G. Lindley. Elsevier Applied Science, London, 1986, pp. 173–190.

    Google Scholar 

  163. Parliment, T. H., McGorrin, R. J. & Ho, C.-T., ed. Thermal Generation of Aromas. ACS Symp. Ser. 409, ACS, Washington D.C., 1989.

    Google Scholar 

  164. Tressl, R., Processed flavors-scope and limitations. In Flavour Science and Technology, ed. Y. Bessière & A. F. Thomas. Wiley, Chichester, 1990, pp. 87–104.

    Google Scholar 

  165. Hurrell, R. F., Maillard reaction in flavour. In Food Flavours Part A. Introduction, ed. I. D. Morton & A. J. MacLeod. Developments in Food Science, Vol. 3A. Elsevier, New York, 1982, pp. 399–437.

    Google Scholar 

  166. Ferretti, A. & Flanagan, V. P., The lactose-casein (Maillard) browning system: volatile components. J. Agric. Food Chem., 19 (1971) 245–249.

    CAS  Google Scholar 

  167. Ferretti, A., Flanagan, V. P. & Ruth, J. M., Non-enzymic browning in a lactose-casein model system. J. Agric. Food Chem., 18 (1970) 13–18.

    CAS  Google Scholar 

  168. Berry, S. K. & Gramshaw, J. W., Influence of starch plus gluten on the nonenzymatic browning reaction of the glucose-glutamic acid system. J. Agric. Food Chem., 36 (1988) 1265–1267.

    CAS  Google Scholar 

  169. Tressl, R., Helak, B., Kersten, E. & Rewicki, D., Related ring enlargement reactions of proline, azetidinic acid, arginine and lysine with reducing sugars. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 121–132.

    Google Scholar 

  170. Apriyantono, A. & Ames, J. M., Volatile compounds produced on heating lysine with xylose. In Flavour Science and Technology, ed. Y. Bessière & A. F. Thomas. Wiley, Chichester, 1990, pp. 117–120.

    Google Scholar 

  171. Pabst, H. M. E., Ledl, F. & Belitz, H.-D., Bitter compounds obtained by heating proline and sucrose. Z. Lebensm. Unters. Forsch., 178 (1984) 356–360.

    CAS  Google Scholar 

  172. Schnickels, R. A., Warmbier, H. C. & Labuza, T. P., Effect of protein substitution on nonenzymatic browning in an intermediate moisture food system. J. Agric. Food Chem., 24 (1976) 901–903.

    CAS  Google Scholar 

  173. Nursten, H. E. and O’Reilly, R., The complexity of the Maillard reaction as shown by a xylose-glycine model system. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki and H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 15–28.

    Google Scholar 

  174. Ledl, F. & Severin, T., Formation of coloured compounds from hexoses. XVI. Investigations relating to the Maillard reaction. Z. Lebensm. Unters. Forsch., 175 (1982) 262–265.

    CAS  Google Scholar 

  175. Severin, T. & Krönig, U., Maillard reaction IV. Structure of a colored product from pentoses. Chem. Mikrobiol. Technol. Lebensm., 1 1972, 156–157.

    CAS  Google Scholar 

  176. Nursten, H. E. & O’Reilly, R., Coloured compounds formed by the interaction of glycine with xylose. In The Maillard Reaction in Foods and Nutrition, ed. G. R. Waller &. M. S. Feather. ACS Symp. Ser. 215, ACS. Washington D.C., 1983, pp. 103–121.

    Google Scholar 

  177. Ledl, F. & Severin, T., Browning reactions of pentoses with amines. Investigation of the Maillard reaction XIII. Z. Lebensm. Unters. Forsch., 167 (1978) 410–413.

    CAS  Google Scholar 

  178. Nursten, H. E. & O’Reilly, R., Coloured compounds formed by the interaction of glycine and xylose. Food Chem., 20 (1986) 45–60.

    CAS  Google Scholar 

  179. Banks, S. B., Ames, J. M. & Nursten, H. E., Isolation and characterisation of 4-hydroxy-2-hydroxymethy1–3-(2′-pyrroly1)-2-cyclopenten-1-one from a xylose/lysine reaction mixture. Chem. Ind., (1988) 433–434.

    Google Scholar 

  180. Kurata, T., Fujimaki, M. & Sakurai, Y., Red pigment produced by the reaction of dehydro-L-ascorbic acid with a-amino acid. Agric. Biol. Chem., 37 (1973) 1471–1477.

    CAS  Google Scholar 

  181. Sakurai, H. & Ishii, K., Structural analysis of ninhydrin-positive substance produced by the reaction of dehydroascorbic acid with glycylleucine. Bull. Coll. Agric. Vet. Med. Nihon Univ., 45 (1988) 50–59.

    Google Scholar 

  182. Lingnert, H. & Hall, G., Formation of antioxidative Maillard reaction products during food processing. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 273–279.

    Google Scholar 

  183. Lingnert, H., Development of the Maillard reaction during food processing. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 171–185.

    Google Scholar 

  184. Chuyen, N. V., Utsunomiya, N., Hidaka, A. & Kato, H., Antioxidative effect of Maillard reaction products in vivo. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 285–290.

    Google Scholar 

  185. Aeschbacher, H. U., Anticarcinogenic effect of browning reaction products. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 335–348.

    Google Scholar 

  186. Sugimura, T., Takayama, S., Ohgaki, H., Wakabayashi, K. & Nagao, M., Mutagens and carcinogens formed by cooking meat and fish: heterocyclic amines. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology, ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 323–334.

    Google Scholar 

  187. Nyhammar, T., Grivas, S., Olsson, K. & Jägerstad, M., Isolation and identification of beef mutagens (IQ compounds) from heated model systems of creatinine, fructose and glycine or alanine. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 323–327.

    Google Scholar 

  188. Jägerstad, M., Laser Reutersward, A., Olsson, R., Grivas, S., Nyhammar, T., Olsson, K. & Dahlqvist, A., Creatin(in)e and Maillard reaction products as precursors of mutagenic compounds: effects of various amino acids. Food Chem., 12 (1983) 255–264.

    Google Scholar 

  189. Wakabayashi, K., Takahashi, M., Nagao, M., Sato, S., Kinae, N., Tomita, I. & Sugimura, T. Quantification of mutagenic and carcinogenic heterocyclic amines in cooked foods. In Amino-Carbonyl Reactions in Food and Biological Systems, ed. M. Fujimaki, M. Namiki & H. Kato. Developments in Food Science, Vol. 13. Elsevier, Amsterdam, 1986, pp. 363–371.

    Google Scholar 

  190. Jägerstad, M., Laser Reutersward, A., Oste, R., Dahlqvist, A., Grivas, S., Olsson, K. & Nyhammar, T. Creatinine and Maillard reaction products as precursors of mutagenic compounds formed in fried beef. In The Maillard Reaction in Foods and Nutrition, ed. G. R. Waller & M. S. Feather. ACS Symp. Ser. 215, American Chemical Society, Washington D.C., 1983, pp. 507–519.

    Google Scholar 

  191. Monnier, V. M., Sell, D. R., Miyata, S. & Nagaraj, R. H., The Maillard reaction as a basis for a theory of aging. In The Maillard Reaction in Food Processing, Human Nutrition and Physiology. ed. P. A. Finot, H. U. Aeschbacher, R. F. Hurrell & R. Liardon. Birkhäuser, Basel, 1990, pp. 393–414.

    Google Scholar 

  192. Sell, D. R. & Monnier, V. M., Structure elucidation of a senescence crosslink from human extracellular matrix. J. Biol. Chem., 264 (1989) 21597– 21602.

    CAS  Google Scholar 

  193. O’Brien, J. M. & Morrissey, P. A., The Maillard reaction in milk products. In Heat-Induced Changes in Milk, ed. P. F. Fox. Bulletin of the IDF, No. 238, 1989, 53–61.

    Google Scholar 

  194. Saltmarch, M. & Labuza, T. P., Nonenzymatic browning via the Maillard reaction in foods. In Proceedings of a Conference on Nonenzymatic Glycosylation and Browning Reactions: Their Relevance to Diabetes Mellitus, ed. C. M. Peterson. Diabetes, Vol. 31, Suppl. 3, Part 2 of 2, 1982, pp. 29–35.

    Google Scholar 

  195. Labuza, T. P. & Schmidl, M. K., Advances in the control of browning reactions in foods. In Role of Chemistry in the Quality of Processed Food, ed. O. R. Fennema, W.-H. Chang & C.-Y. Lii. Food & Nutr. Press Inc., Westport, Conn., 1986, pp. 65–95.

    Google Scholar 

  196. Eichner, K. & Ciner-Doruk, M., Formation and decomposition of browning intermediates and visible sugar-amine browning reactions. In Water Activity: Influences of Food Quality, ed. L. B. Rockland & G. F. Stewart. Academic Press, New York, 1981, pp. 567–603.

    Google Scholar 

  197. Saltmarch, M., Vagnini-Ferrari, M. & Labuza, T. P. Theoretical basis and application of kinetics to browning in spray-dried whey food systems. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science, Vol. 5 (1–6). Pergamon Press, Oxford, 1981, pp. 331–344.

    Google Scholar 

  198. McWeeny, D. J., Sulfur dioxide and the Maillard reaction in food. In Maillard Reactions in Food, ed. C. Eriksson. Progress in Food and Nutrition Science. Pergamon Press, Oxford, Vol. 5 (1–6) (1981) pp. 395–404.

    Google Scholar 

  199. Shu, C.-K. & Ho, C.-T. In Thermal Generations of Aromas, ed. T. H. Parliment, R. J. McGorrin & C.-T. Ho. ACS Symp. Ser. 409. American Chemical Society, Washington D.C., 1989, pp. 229–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ames, J.M. (1992). The Maillard Reaction. In: Hudson, B.J.F. (eds) Biochemistry of Food Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9895-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9895-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9897-4

  • Online ISBN: 978-1-4684-9895-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics