Skip to main content

Cave Ecology and the Evolution of Troglobites

  • Chapter
Evolutionary Biology

Abstract

Obligatory cavernicoles, or troglobites, have traditionally been of special interest to evolutionary biologists for several reasons. The existence of animal life in caves and other subterranean spaces at first attracted attention because of its novelty; intensive biological exploration of caves began little more than a century ago. Although the discovery and description of the cave faunas of the world is far from complete, especially in the Western Hemisphere, so much descriptive information has been compiled that we can safely assert that, at least in unglaciated, temperate parts of the world, the occurrence of numerous species of troglobites in any major limestone region is a common and highly probable phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeppli, E. 1952. Naturliche Polyploidie bei den Planarien Dendrocoelum lacteum(Müller) und Dendrocoelum infernale(Steinmann). Z. indukt. Abst. Vererbungsl., 84: 182–212.

    CAS  Google Scholar 

  • Alvarez, J. 1946. Revision del género Anoptichthyscon descripción de una especie nueva (Pisc., Characidae). An. Esc. Nac. Ciencias Biol., 4: 263–282.

    Google Scholar 

  • Alvarez, J. 1947. Descripción de Anoptichthys hubbsi, caracinido ciego de la Cueva de los Sabinos, S. L. P. Rev. Soc. Méxicana Hist. Nat., 8: 215–219.

    Google Scholar 

  • Atz, E. H. 1953. Experimental differentiation of basophil cell types in the transitional lobe of the pituitary of a teleost fish, Astyanax mexicanus. Bull. Bingham Oceanogr. Coll., 1953: 94–116.

    Google Scholar 

  • Baldwin, E., and R. A. Beatty. 1941. The pigmentation of cavernicolous animals. J. Exp. Biol., 18: 136–152.

    Google Scholar 

  • Banta, A. M. 1907. The Fauna of Mayfield’s Cave. Carnegie Inst. Washington Publ. 67: 1–114.

    Google Scholar 

  • Banta, A. M. 1910. A comparison of the reactions of a species of surface isopod with those of a subterranean species. J. Exp. Zool., 8:243–310, 439–488.

    Google Scholar 

  • Barr, T. C., Jr. 1959. New cave beetles (Carabidae, Trechini) from Tennessee and Kentucky. J. Tennessee Acad. Sci., 34: 5–30.

    Google Scholar 

  • Barr, T. C., Jr. 1960a. Introduction. Symposium: Speciation and raciation in cavernicoles. Amer. Midl. Nat., 64: 1–9.

    Google Scholar 

  • Barr, T. C., Jr. 1960b. The cavernicolous beetles of the subgenus Rhadine, genus Agonum(Coleoptera: Carabidae). Symposium: Speciation, and raciation in cavernicoles. Amer. Midl. Nat., 64: 45–65.

    Google Scholar 

  • Barr, T. C., Jr. 1961. Caves of Tennessee. Tennessee Dept. Conserv. and Comm., Div. Geol., Bull. 64: 1–567.

    Google Scholar 

  • Barr, T. C., Jr. 1962a. The genus Trechus(Coleoptera: Carabidae) in the southern Appalachians. Coleopterists’ Bull., 16: 65–92.

    Google Scholar 

  • Barr, T. C., Jr. 1962b. The blind beetles of Mammoth Cave, Kentucky. Amer. Midl. Nat., 68: 278–284.

    Google Scholar 

  • Barr, T. C., Jr. 1962c. The robustusgroup of the genus Pseudanophthalmus(Coleoptera: Carabidae). Coleopterists’ Bull., 16: 109–118.

    Google Scholar 

  • Barr, T. C., Jr. 1964. Non-troglobitic Carabidae (Coleoptera) from caves in the United States. Coleopterists’ Bull., 18: 1–4.

    Google Scholar 

  • Barr, T. C., Jr. 1965. The Pseudanophthalmusof the Appalachian valley (Coleoptera: Carabidae). Amer. Midl. Nat., 73: 41–72.

    Google Scholar 

  • Barr, T. C., Jr. 1966. Evolution of cave biology in the United States, 1882–1965. Bull. Nat. Speleol. Soc., 28: 15–21.

    Google Scholar 

  • Barr, T. C., Jr.. 1967a. Cave Carabidae (Coleoptera) of Mammoth Cave. Psyche, 73:284–287; 74: 24–26.

    Google Scholar 

  • b. Observations on the ecology of caves. American Nat., 101. In press.

    Google Scholar 

  • Barr, T. C., Jr., and R. A. Kuehne. 1968. Ecological studies in the Mammoth Cave system of Kentucky. II. The ecosystem. Int. J. Speleol., 4. In press.

    Google Scholar 

  • Barr, T. C., Jr., and S. B. Peck. 1965. Occurrence of a troglobitic Pseudanophthalmusoutside a cave (Coleoptera: Carabidae). American Midl. Nat., 73: 73–74.

    Google Scholar 

  • Barr, T. C., Jr., and J. R. Reddell. 1967. The arthropod fauna of the Carlsbad Caverns region, New Mexico. Southwestern Naturalist. In press.

    Google Scholar 

  • Beatty, R. A. 1941. The pigmentation of cavernicolous animals. II. Carotenoid pigments in the cave environment. J. Exp. Biol., 18: 144–152.

    Google Scholar 

  • Beatty, R. A. 1949. The pigmentation of cavernicolous animals. III. The carotenoid pigments of some amphipod Crustacea. J. Exp. Biol., 26: 125–130.

    PubMed  CAS  Google Scholar 

  • Bedel, L., and E. Simon. 1875. Liste générale des articulés cavernicoles de l’Europe. J. Zool., 4: 1–69.

    Google Scholar 

  • Bishop, S. C. 1944. A new neotenic plethodontid salamander, with notes on related species. Copeia, 1944: 1–4.

    Google Scholar 

  • Blume, J., E. Bünning, and E. Günzler. 1962. Zur Aktivitätsperiodik bei Höhlentieren. Die Naturwissenschaften, 49: 525.

    Google Scholar 

  • Bolívar, C., and R. Jeannel. 1931. Campagne spéologique dans l’Amérique du Nord en 1928 (première série). Arch. zool. exp. etgén., 71: 293–316.

    Google Scholar 

  • Bonet, F. 1953. Datos sobre las cavernas y otros fenómenos erosivos de las calizas de la Sierra de El Abra. Congr. Cien. Méxicana Mem. (V) 3, Cien. Fís. y Mat., Geología: 238–266.

    Google Scholar 

  • Bowman, T. E. 1964. Antrolana lira, a new genus and species of troglobitic cirolanid isopod from Madison Cave, Virginia. Int. J. Speleol., 1:229–236.

    Google Scholar 

  • Brace, C. Loring. 1963. Structural reduction in evolution. American Nat., 97: 39–49.

    Google Scholar 

  • Breder, C. M., Jr. 1942. Descriptive ecology of La Cueva Chica, with especial reference to the blind fish, Anoptichthys. Zoologica, 27: 7–16.

    Google Scholar 

  • Breder, C. M., Jr. 1953. Cave fish evolution. Evolution, 7: 179–181.

    Google Scholar 

  • Bretz, J. H. 1942. Vadose and phreatic features of limestone caverns. J. Geol., 50: 675–811.

    Google Scholar 

  • Brown, F. A. 1961. Diurnal rhythm in cave crayfish. Nature (London), 191: 929–930.

    Google Scholar 

  • Brown, F. A. 1965. A unified theory for biological rhythms. InAschoff, J., ed., Circadian clocks, pp. 231–261. Amsterdam, North Holland Publ. Co.

    Google Scholar 

  • Bünning, E. 1964. The Physiological Clock: Endogenous Diurnal Rhythms and Biological Chronometry. Berlin, Springer-Verlag.

    Google Scholar 

  • Burbanck, W. D., J. P. Edwards, and M. P. Burbanck. 1948. Toleration of lowered oxygen tension by cave and stream crayfish. Ecology, 29: 360–367.

    Google Scholar 

  • Calman, W. T. 1904. On Munidopsis polymorphaKoelbel, a cave-dwelling marine crustacean from the Canary Islands. Ann. Mag. Nat Hist., ser. 7, 14.

    Google Scholar 

  • Calman, W. T. 1932. A cave-dwelling Crustacean of the family Mysidaceae from the island of Lanzarote. Ann. Mag. Nat. Hist., ser. 10, 10: 127–131.

    Google Scholar 

  • Carr, A. F. 1939. Haideotriton wallacei, a new subterranean salamander from Georgia. Occ. Pap. Boston Soc. Nat. Hist., 8:333–336.

    Google Scholar 

  • Caumartin, V. 1963. Review of the microbiology of underground environments. Bull. Nat. Speleol. Soc., 25: 1–14.

    Google Scholar 

  • Christiansen, K. A. 1961. Convergence and parallelism in cave Entomobryinae. Evolution, 15: 288–301.

    Google Scholar 

  • Christiansen, K. A. 1964. Bionomics of Collembola. Ann. Rev. Entom., 9: 147–178.

    Google Scholar 

  • Coiffait, H. 1958. Contribution à la connaissance des Coléoptères du sol. Vie et Milieu, suppl., 7: 1–210.

    Google Scholar 

  • Configliachi, P. and M. RuscONl. 1819. Del Proteo anguino di Laurenti. Pavia, 1819.

    Google Scholar 

  • Conn, H. W. 1966. Barometric wind in Wind and Jewel caves, South Dakota. Bull. Nat. Speleol. Soc., 28: 55–69.

    Google Scholar 

  • Cope, E. D. 1887. The Origin of the Fittest: Essays on Evolution. New York, D. Appleton and Co.

    Google Scholar 

  • Cournoyer, D. N. 1955. Appendix 6. InBrucker, and J. Lawrence, ed., The Caves Beyond. New York, Funk and Wagnalls.

    Google Scholar 

  • Cropley, J. B. 1965. Influence of surface conditions on temperatures in large cave systems. Bull. Nat. Speleol. Soc., 27: 1–10.

    Google Scholar 

  • Cuénot, L. 1925. L’Adaptation. Paris, G. Doin.

    Google Scholar 

  • Curl, R. L. 1958. A statistical theory of cave entrance evolution. Bull. Nat. Speleol. Soc., 20: 9–22.

    Google Scholar 

  • Cvijic, J. 1918. Hydrographie souterraine et l’évolution morphologique du karst. Rec. tray. inst. geogr. alpine (Grenoble), 6 (4): 1–56.

    Google Scholar 

  • Darwin, C. 1859. On the Origin of Species, 1st ed., Tacs., Cambridge, Mass., Harvard Univ. Press.

    Google Scholar 

  • Davenport, C. B. 1903. The animal ecology of the Cold Spring sand spit, with remarks on the theory of adaptation. Decennial Pub1. Univ. Chicago, 10: 1–22.

    Google Scholar 

  • Davies, W. E. 1949. Caverns of West Virginia. West Virginia Geol. Surv., 19: 1–353.

    Google Scholar 

  • Davies, W. E. 1951. Mechanics of cavern breakdown. Bull. Nat. Speleol. Soc., 13: 36–43.

    Google Scholar 

  • Davis, W. M. 1930. Origin of limestone caverns. Geol. Soc. Amer. Bull., 41: 475–628.

    Google Scholar 

  • Deamer, D. W. 1964. Entropy and cave animals. Ohio J. Sci., 64: 221–223.

    CAS  Google Scholar 

  • Deicay, J. E. 1842. (Descr. Amblyopsis spelaeus.) Zoology of New York, or the New York fauna. Part IV. Fishes. Albany. P. 187.

    Google Scholar 

  • Deleurance-Glaçon. S. 1963a. Recherches sur les coléoptères troglobies de la sous-famille des Bathysciinae. Ann. Sci. Nat. (Zool.), sér. 12, 5 (1): 1–172.

    Google Scholar 

  • Deleurance-Glaçon. S. 1963b. Contribution à -l’étude des coléoptères cavernicoles de la sousfamille des Trechinae. Ann. Spéléol., 18: 227–265.

    Google Scholar 

  • Dobzhansky, T. 1951. Genetics and the Origin of Species. 3rd ed., New York, Columbia Univ. Press.

    Google Scholar 

  • Dresco-Derouet, L. 1952. Influence des variations de salinité du milieu exterieur sur des crustacés cavernicoles et épigés. C. R. Acad. Sci. Paris, 234:473–475, 888–890.

    Google Scholar 

  • Dresco-Derouet, L. 1959. Contribution à l’étude de la biologie de deux crustacés aquatiques cavernicoles, Caecosphaeroma burgundumet Niphargus orcinus virei. Vie et Milieu, 10: 321–346.

    Google Scholar 

  • Dudich, E. 1932. Biologie der Aggteleker Tropfsteinhöhle “Baradla” in Ungarn. Speläol. Mon. (Wien), 13: 1–246.

    Google Scholar 

  • Durand, J. P. 1964. Anatomie de l’orbite chez la larve de Proteus anguinus. Bull. Soc. Zool. (France), 88: 278–298.

    Google Scholar 

  • Eberly, W. 1960. Competition and evolution in cave crayfishes of southern Indiana. Syst. Zool., 9: 29–32.

    Google Scholar 

  • Eigenmann, C. H. 1909. Cave vertebrates of America: a study in degenerative evolution. Carnegie Inst. Washington Publ., 104: 1–241.

    Google Scholar 

  • Emerson, A. E. 1949. Natural selection. In Allee, W. C., A. E. Emerson, O. Park, T. Park, and K. P. Schmidt. Principles of Animal Ecology. Philadelphia, W. B. Saunders.

    Google Scholar 

  • Gardner, J. H. 1935. Origin and development of limestone caverns. Geol. Soc. Amer. Bull., 46: 1255–1274.

    Google Scholar 

  • Ginet, R. 1960. Écologie, ethologie, et biologie de Niphargus. Ann. Spéléol., 15: 127–377.

    Google Scholar 

  • Gonnon, M. S., and D. E. Rosen. 1962. A cavernicolous form of the poeciliid fish Poecilia sphenopsfrom Tabasco, Mexico. Copeia, 1962, 360–368.

    Google Scholar 

  • Gounot, A. M. 1960. Recherches sur le limon argileux souterrain et sur son rôle nutritif pour les Niphargus(Amphipoda gammaridés). Ann. Spéléol., 15: 501–526.

    Google Scholar 

  • Gurnee, R. H., J. V. Thrailkill, and G. Nicholas. 1966. Discovery at the Rio Camuy. Explorers’ J., 44: 51–65.

    Google Scholar 

  • Hamann, O. 1896. Europäische Höhlenfauna: Eine Darstellung der in den Höhlen Europas Lebenden Tierwelt, mit Besonderer Berücksichtigung der Höhlenfauna Krains. Jena, Hermann Costenoble.

    Google Scholar 

  • Hansen, H. J. 1905. On the propagation, structure, and classification of the family Sphaeromidae. Quart. J. Micr. Sci., 49: 69–135.

    Google Scholar 

  • Hawes, R. S. 1939. The flood factor in the ecology of caves. J. Anim. Ecol., 8: 1–5.

    Google Scholar 

  • Heuts, M. J. 1951. Ecology, variation, and adaptation of the blind African cave fish Caecobarbus geertsiBoulenger. Ann. Soc. Roy. Zool. Belgique, 82: 155–230.

    Google Scholar 

  • Heuts, M. J. 1953a. Regressive evolution in cave animals. Sympos. Soc. Exp. Biol., 7 (Evolution): 290–309.

    Google Scholar 

  • Heuts, M. J. 1953b. Comment on “Cave fish evolution.” Evolution, 7: 391–392.

    Google Scholar 

  • Hobbs, H. H., Jr. 1942. The crayfishes of Florida. Univ. Florida Publ., Biol. Sci. Ser., 3 (2): 1–179.

    Google Scholar 

  • Hobbs, H. H., Jr., and T. C. Barr, Jr. The origins and affinities of the troglobitic crayfishes of North America. (Decapoda, Astacidae). II. The genus Orconectes In preparation.

    Google Scholar 

  • Holdhaus, K. 1933. Die europäische Höhlenfauna in ihren Beziehungen zur Eiszeit. Zoogeographica, 1: 1–53.

    Google Scholar 

  • Holsinger, J. R. 1966. A preliminary study on the effects of organic pollution of Banners Corner Cave, Virginia. Int. J. Speleol., 2: 75–89.

    Google Scholar 

  • Hubbs, C. L. 1938. Fishes from the caves of Yucatan. Carnegie Inst. Washington Publ. 491: 261–295.

    Google Scholar 

  • Hubbs, C. L., and W. T. Innes. 1936. The first known blind fish of the family Characidae: a new genus from Mexico. Occ. Pap. Mus. Zool. Univ. Michigan, 342: 1–7.

    Google Scholar 

  • Husson, R. 1959. Les crustacés pericaridés des eaux souterraines: considérations sur la biologie de ces cavernicoles. Bull. Soc. Zool. France, 84: 219–231.

    Google Scholar 

  • Husson, R., and J. Daum. 1953. Sur la biologie de Caecosphaeroma burgundum. C.R. Acad. Sci. Paris, 236: 2345–2347.

    PubMed  CAS  Google Scholar 

  • Janzer, W., and W. L. 1952. Versuche zur evolutorischen Entstehung der Höhlentiermerkmale. Z. indukt. Abst. Vererbungsl., 84: 462–479.

    Google Scholar 

  • Jeannel, R. 1923. Sur l’évolution des coléoptères aveugles et le peuplement des grottes dans les monts Bihor en Transylvanie. C.R. Acad. Sci. Paris, 176: 1670–1673.

    Google Scholar 

  • Jeannel, R. 1926. Faune cavernicole de la France, avec une étude des conditions d’éxistence dans le domaine souterrain. Encycl. Entom., 7:1–334. Paris, P. Lechevalier.

    Google Scholar 

  • Jeannel, R. 1926–1930. Monographie des Trechinae. Morphologie comparüe et distribution güographique d’un groupe de Colüoptüres. L’Abeille, 32:221–550; 33:1–592; 34:59–122;35:1–808.

    Google Scholar 

  • Jeannel, R. 1943. Les fossiles vivants des cavernes. Paris, Editions Gallimard. 321 pp.

    Google Scholar 

  • Jeannel, R. 1950. La marche de l’évolution. Publ. Mus. Nat. Hist. Nat., Paris, no. 15.

    Google Scholar 

  • Jeannel, R.. 1965. La génèse du peuplement des milieux souterrains. Rév. d’écol. et biol. du sol, 2 (1): 1–22.

    Google Scholar 

  • Jegla, T. C., and J. S. Hall. 1962. A Pleistocene deposit of the free-tailed bat in Mammoth Cave, Kentucky. J. Mammal., 43: 447–481.

    Google Scholar 

  • Kammerer, P. 1912. Experimente über Fortpflanzung, Farbe, Augen und Körperreduktion bei Proteus anguinusLaur. Arch. Entwicklungsmech., 33: 349–461.

    Google Scholar 

  • Karaman, S. 1954. Über unsere unterirdische Fauna. Acta Mus. Maced. Sci. Nat., vol. 1 (Cited in Vandel, 1964: 19–20).

    Google Scholar 

  • Kofoid, C. A. 1899. The plankton of Echo River, Mammoth Cave. Trans. Amer. Micr. Soc., 21: 113–126.

    Google Scholar 

  • Kohls, G. M., and W. L. Jellison. 1948. Ectoparasites and other arthropods occurring in Texas bat caves. Bull. Nat. Speleol. Soc., 10: 116–117.

    Google Scholar 

  • Kosswig, C. 1937. Ober Pigmentverlust während des Höhlenlebens. Zool. Anz., 117: 37–43.

    Google Scholar 

  • Kosswig, C. 1965. Génétique et évolution régressive. Rév. Quest. Sci., 26: 227–257.

    Google Scholar 

  • Kosswig, C., and L. KosswiG. 1940. Die Variabilität bei Asellus aquaticusunter besonderer Berücksichtigung der Variabilität in isolierten unter-und oberirdischen Populationen. Rev. Fac. Sci. (Istanbul) ser. B, 5: 1–55.

    Google Scholar 

  • Krekeler, C. H. 1958. Speciation in cave beetles of the genus Pseudanophthabnus(Coleoptera: Carabidae). Amer. Midl. Nat., 59: 167–189.

    Google Scholar 

  • Lamarck, J. B. 1809. Philosophie Zoologique, vol. 1, facs., Weinheim, J. Cramer.

    Google Scholar 

  • Lankester, E. R. 1893. Blind animals in caves. Nature (London) 47: 389, 486.

    Google Scholar 

  • Lattin, G. De. 1939. Über die Evolution der Höhlentiercharaktere. Sitzber. Ges. Naturf. Freunde (Berlin), 32: 11–41.

    Google Scholar 

  • Leleup, N. 1956. La faune cavernicole du Congo Belge, et considérations sur les Coléoptères réliques d’Afrique intertropicale. Ann. Mus. Roy. Congo Belge (Tervuren, Belgique), sér.-in-oct., Sci. Zool., 46: 1–171.

    Google Scholar 

  • Ludwig, W. 1942. Zur evolutorischen Erklärung der Höhlentiermerkmale durch Allelelimination. Biol. Zentralbl., 62: 447–455.

    Google Scholar 

  • Macarthur, R. H. 1957. On the relative abundance of bird species. Proc. Nat. Acad. Sci. U.S.A., 43: 293–295.

    CAS  Google Scholar 

  • Maguire, B., Jr. 1961. Regressive evolution in cave animals and its mechanism. Texas J. Sci., 13: 363–370.

    Google Scholar 

  • Malott, C. A. 1932. Lost River at Wesley Chapel Gulf, Orange County, Indiana. Indiana Acad. Sci. Proc., 41: 285–316.

    Google Scholar 

  • Malott, C. A. 1937. Invasion theory of cavern development (abstr.). Proc. Geol. Soc. America, 1936: 323.

    Google Scholar 

  • Marshall, N. B., and G. L. Thinés. 1958. Studies of the brain, sense organs, and light sensitivity of a blind cave fish (Typhlogarra widdowsoni)from Iraq. Proc. Zool. Soc. (London) 131: 441–456.

    Google Scholar 

  • Mayr, E. 1942. Systematics and the Origin of Species, from the Viewpoint of a Zoologist. New York, Columbia Univ. Press.

    Google Scholar 

  • Mayr, E. 1963. Animal Species and Evolution. Cambridge, Harvard Univ. Press.

    Google Scholar 

  • Menaker, M. 1959. Endogenous rhythms of body temperature in hibernating bats. Nature (London), 184: 1251–1252.

    Google Scholar 

  • Mitchell, R. W. 1965. Ecological studies of the troglobitic carabid beetle Rhadine subterranea. Doct. dissert., Univ. Texas.

    Google Scholar 

  • Moore, G. W., ed. 1960. Origin of limestone caves: a symposium with discussion. Bull. Nat. Speleol. Soc., 22:3–84.

    Google Scholar 

  • Moore, G. W., ed. 1966. Limestone hydrology: a symposium with discussion. Bull. Nat. Speleol. Soc., 28:109–166.

    Google Scholar 

  • Mota, C., and J. Tanasachi. 1946. Acariens phreaticoles de Transylvanie. Notat. Biol. (Bucharest) 4. (Cited by Vandel, 1964:19).

    Google Scholar 

  • Motschulsky, T. V. Von. 1862. ütudes entomologiques (Ilme Annüe). Dresden.

    Google Scholar 

  • Noble, G. K., and C. H. Pope. 1928. The effect of light on the eyes, pigmentation, and behavior of the cave salamander, Typhlotriton. Anat. Rec., 41: 21.

    Google Scholar 

  • Norman, W. W. 1900. Remarks on the San Marcos salamander, Typhlomolge rathbuni. Amer. Nat., 34: 179 - 183.

    Google Scholar 

  • Packard, A. S., Jr. 1888. The cave fauna of North America, with remarks on the anatomy of the brain and origin of the blind species. Mem. Nat. Acad. Sci. (U.S.A.), 4: 1–156.

    Google Scholar 

  • Packard, A. S., Jr. 1894. On the origin of the subterranean fauna of North America. Amer. Nat., 28: 727–751.

    Google Scholar 

  • Park, O. 1951. Cavernicolous pselaphid beetles of Alabama and Tennessee, with observations on the taxonomy of the family. Geol. Surv. Alabama Mus. Pap. 31: 1–107.

    Google Scholar 

  • Park, O. 1956. New or little-known species of pselaphid beetles from southeastern United States. J. Tennessee Acad. Sci., 31: 54–100.

    Google Scholar 

  • Park, O. 1960. Cavernicolous pselaphid beetles of the United States. Amer. Midl. Nat., 64: 66–104.

    Google Scholar 

  • Park, O., and D. E. Reichle. 1964. Observations on the ecology and behavior of the cave cricket, Hadenoecus subterraneus(Scudder). Bull. Nat. Speleol. Soc., 26: 79 (abstr.).

    Google Scholar 

  • Park, O., T. W. Roberts, and S. J. Harris. 1941. Preliminary analysis of activity of the cave crayfish, Cambarus pellucidus. Amer. Nat., 75: 154–171.

    Google Scholar 

  • Poulson, T. L. 1963. Cave adaptation in amblyopsid fishes. Amer. Midl. Nat., 70: 257–290.

    Google Scholar 

  • Poulson, T. L. 1964. Animals in aquatic environments: animals in caves. InD. B. Dill, ed. Handbook of Physiology, sect. 4, “Adaptation to the environment,” ch. 47: 749–771. Washington, Amer. Physiol. Soc.

    Google Scholar 

  • Prout, T. 1964. Observations on structural reduction in evolution. Amer. Nat., 98: 239–249.

    Google Scholar 

  • Rasquin, P. and L. Rosenbloom. 1954. Endocrine imbalance and tissue hyperplasia in teleosts maintained in darkness. Bull. Amer. Mus. Nat. Hist., 104(4): 359–426, pl. 4–23.

    Google Scholar 

  • Reichle, D. E., J. D. Palmer, and O. Park. 1965. Persistent rhythmic locomdtor activity in the cave cricket, Hadenoecus subterraneus, and its ecological significance. Amer. Midl. Nat., 74: 57–66.

    Google Scholar 

  • Rensch, B. 1959. Evolution Above the Species Level. New York, Columbia Univ. Press.

    Google Scholar 

  • Rosen, D. E. 1962. Comments on the relationships of the North American cave fishes of the family Amblyopsidae. Amer. Mus. Novit., no. 2109.

    Google Scholar 

  • Roux, W. 1881. Der Kampf der Theile in Organismus. Leipzig.

    Google Scholar 

  • Sadoclu, P. 1957. Mendelian inheritance in the hybrids between the Mexican blind cave fishes and their overground ancestor. Verh. Deutsch. Zool. Ges. Graz, 1957: 432–439.

    Google Scholar 

  • Schiner, J. R. 1854. Fauna der Adelsberger-, Lueger-und Magdalen-Grotte. Verh. zool.-bot. Ges. Wien, 3: 1–40.

    Google Scholar 

  • Schiödte, J. C. 1851. Bidrag til den underjordiske Fauna. Vidensk. Selsk. Skr. (Copenhagen), 5 Raekke, naturv. og math. Afd., 2 Bd.: 1–39.

    Google Scholar 

  • Schlagel, S. R., and C. M. Breder, Jr. 1947. A study of the oxygen consumption of blind and eyed cave characins in light and darkness. Zoologica, 32: 17–27.

    CAS  Google Scholar 

  • Schmidt, F. J. 1832. Leptodirus Hohenwartii, n. g., n. sp. Illyrisches Blatt, Laibach, no. 3:9.

    Google Scholar 

  • Scorr, W. 1909. An ecological study of the plankton of Shawnee Cave, with notes on the cave environment. Biol. Bull., 17: 386–407.

    Google Scholar 

  • Simpson, G. G. 1944. Tempo and Mode in Evolution. New York, Columbia Univ. Press.

    Google Scholar 

  • Spencer, H. 1893. The inadequacy of natural selection. Contemporary Review, 63:153–167; 439–457; 743–761.

    Google Scholar 

  • Stager, K. E. 1941. A group of bat-eating duck hawks. The Condor, 43: 137–139.

    Google Scholar 

  • Stone, L. S. 1964a. The structure and visual function of the eye of larval and adult cave salamanders, Typhlotriton spelaeus. J. Exp. Zool., 156: 201–218.

    CAS  Google Scholar 

  • Stone, L. S. 1964b. Return of vision in transplanted larval eyes of cave salamanders. J. Exp. Zool., 156: 219–228.

    CAS  Google Scholar 

  • Stone, L. S. 1964c. Return of vision in larval eyes exchanged between Amblystoma punctatumand the cave salamander, Typhlotriton spelaeus. Invest. Ophthalmol., 3: 555 - 565.

    CAS  Google Scholar 

  • Sturm, J. H. 1844. Anophthalmus, blind Laufküfer, neue Gattung aus der familie der Caraben. Deutschl. Fauna in Abb. nach der Natur, Nürnberg, 5te Abt., 15:131, pl. 303.

    Google Scholar 

  • Swinnerton, A. C. 1932. Origin of limestone caverns. Geol. Soc. Amer. Bull., 43: 663–694.

    Google Scholar 

  • Swinnerton, A. C. 1942. Hydrology of limestone terranes. InO. E. Meinzer, ed. Physics of the Earth, pt. 9, Hydrology: 656–677. New York, McGaw Hill.

    Google Scholar 

  • Tellkampf, T. G. 1844a. Beschreibung einiger neuer in der Mammuth-Höhle in Kentucky aufgefundener Gattungen von Gliederthieren. Arch. Naturg., 10:318–322, pl. 7.

    Google Scholar 

  • Tellkampf, T. G. 1844b. Ueber den blinden Fisch der Mammuth-Höhle in Kentucky, mitBemerkungen über einige andere in dieser Höhle lebenden Thiere. Müllers Arch. Anat. Physiol., 4:384–394, pl. 9.

    Google Scholar 

  • Thornbury, W. D. 1954. Karst topography. InPrinciples of Geomorphology, pp. 316–353. New York, John Wiley and Sons.

    Google Scholar 

  • Valvasor, J. W., JR. 1689. Die Ehre dess Hertzogthums Crain. Vol. 4, pp. 594–598 treats the olm (Proteus). Laybach, 4 vols.

    Google Scholar 

  • Vandel, A. 1958. La répartition des cavernicoles et la paléogéographie. Actes 2. Congr. Int. Spéléol., 2 (3): 31–43.

    Google Scholar 

  • Vandel, A. 1961. Eye and pigment regression of cave salamanders. Bull. Nat. Speleol. Soc., 23: 71–74.

    Google Scholar 

  • Vandel, A. 1964. Biospéologie: La Biologie des Animaux Cavernicoles. Paris, Gauthier-Villars.

    Google Scholar 

  • Vandel, A., and Michel Bouillon. 1959. Le Protée et son intéret biologique. Ann. Spéléol., 14: 112–127.

    Google Scholar 

  • Viré, A. 1904. La Biospéléologie. C.R. Acad. Sci. Paris, 139: 992–995.

    Google Scholar 

  • Weismann, A. 1889. Essays Upon Heredity and Kindred Biological Problems. Oxford, Clarendon Press.

    Google Scholar 

  • Woons, Loren P., and Robert F. Inger. 1957. The cave, spring, and swamp fishes of the family Amblyopsidae of central eastern United States. Amer. Midl. Nat., 58 (1): 232–258.

    Google Scholar 

  • Woodward, H. P. 1961. A stream piracy theory of cave formation. Bull. Nat. Speleol. Soc., 23: 39–58.

    Google Scholar 

  • Wright, S. 1929. Fisher’s theory of dominance. Amer. Nat., 63: 274–279.

    Google Scholar 

  • Wright, S. 1964. Pleiotropy in the evolution of structural reduction and of dominance. Amer. Nat., 98: 65–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Plenum Press, New York

About this chapter

Cite this chapter

Barr, T.C. (1968). Cave Ecology and the Evolution of Troglobites. In: Dobzhansky, T., Hecht, M.K., Steere, W.C. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8094-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8094-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8096-2

  • Online ISBN: 978-1-4684-8094-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics