Skip to main content

The Ecology of Microbial Corrosion

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 11))

Abstract

Corrosion reactions may be induced or enhanced by microbial activity. The classic corrosion reaction is electrochemical, resulting in the dissolution of metal from anodic sites with subsequent electron acceptance at cathodic sites. Consumption of electrons varies, depending on the redox potential of the surface. In an aerobic environment, oxygen is the electron acceptor, forming metal oxides and hydroxides. At low redox potentials, protons become the electron acceptors, yielding hydrogen gas and other highly reduced products. The process of corrosion is accelerated by removal of the end products of the chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absolom, D. R., Lamberti, F. W., Policova, Z., Zingg, W., Van Oss, D. J., and Neumann, A. W., 1983, Surface thermodynamics of bacterial adhesion, Appl. Environ. Microbiol. 46: 90–97.

    PubMed  CAS  Google Scholar 

  • Ahring, B. K., and Westermann, P., 1984, Isolation and characterization of a thermophilic, acetateutilizing methanogenic bacterium, FEMS Microbiol. Lett. 25: 47–52.

    CAS  Google Scholar 

  • Ahring, B. K., and Westermann, P., 1987a, Thermophilic anaerobic degradation of butyrate by a butyrate-utilizing bacterium in coculture and triculture with methanogenic bacteria, Appl. Environ. Microbiol. 53: 429–433.

    PubMed  CAS  Google Scholar 

  • Ahring, B. K., and Westermann, P., 1987b, Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture, Appl. Environ. Microbiol. 53: 434–439.

    PubMed  CAS  Google Scholar 

  • Allen, L. A., Cairns, A., Eden, G. E., Wheatland, A. B., Wormwell, F., and Nurse, T. J., 1948, Microbiological problems in the manufacture of sugar from beet: Part 1. Corrosion in the diffusion battery and in the recirculation system, J. Soc. Chem. Ind. 67: 70–77.

    CAS  Google Scholar 

  • Baier, R. E., 1973, Influence of the initial surface condition of material on bioadhesion, in: Proceedings of the 3rd International Congress on Marine Corrosion and Fouling (R. F. Acker, ed.), pp. 15–48, Northwestern University Press, Evanston, Ill.

    Google Scholar 

  • Baier, R. E., 1984, Adhesion in the biologic environment, Biomater. Med. 12: 133–160.

    Google Scholar 

  • Baier, R. E., Meyer, A. E., Natiella, J. R., Natielia, R. R., and Carter, J. M., 1984, Surface properties determine bioadhesive outcomes: methods and results, J. Biomed. Mater. Res. 18: 337–355.

    CAS  Google Scholar 

  • Barry, S., and Houghton, D. R. (eds.), 1986, Biodeterioration 6, C.A.B. International, Slough, United Kingdom.

    Google Scholar 

  • Beguin, P., and Millet, J., 1986, Applied genetics of anaerobic thermophiles, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 179–195, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Belkin, S., Wirsen, C. O., and Jannasch, H. W., 1985, Biological and abiological sulfur reduction at high temperatures, Appl. Environ. Microbiol. 49: 1057–1061.

    PubMed  CAS  Google Scholar 

  • Berk, S., Mitchell, R., Bobbie, R., Nickels, J., and White, D. C., 1981, Microfouling on metal surfaces exposed to seawater, Int. Biodeterior. Bull. 17: 29–37.

    CAS  Google Scholar 

  • Bernstein, I. M., and Thompson, A. W. (eds.), 1974, Hydrogen in Metals, Am. Society for Metals, Metals Park, Ohio.

    Google Scholar 

  • Beyer, R., Melton, L. D., and Kennedy, L. D., 1983, The structure of the neutral polysaccharide gum secreted by Rhizobium strain CB744, Carbohydr. Res. 122: 155–163.

    CAS  Google Scholar 

  • Bitton, G., and Freihofer, V., 1978, Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes, Microb. Ecol. 4: 119–125.

    CAS  Google Scholar 

  • Black, J. P., Ford, T. E., and Mitchell, R., 1988, Corrosion behaviour of metal-binding exopolymers from iron-and manganese-depositing bacteria, CORROSION/88, Paper 94, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Boone, D. R., and Bryant, M. P., 1980, Propionate-degrading bacterium, Syntrophobacter wolinni sp. nov. gen. nov., from methanogenic ecosystems, Appl. Environ. Microbiol. 40: 626–632.

    PubMed  CAS  Google Scholar 

  • Borenstein, S. W., 1988, Microbiologically influence corrosion failures of austenitic stainless steel welds, CORROSION/88, Paper 78, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Borenstein, S. W., and Lindsay, P. B., 1988, Microbiologically influenced corrosion failure analyses, Mater. Perform. 27: 51–54.

    Google Scholar 

  • Boyle, C. D., and Reade, A. E., 1983, Characterization of two extracellular polysaccharides from marine bacteria, Appl. Environ. Microbiol. 46: 392–399.

    PubMed  CAS  Google Scholar 

  • Brierley, J. A., and Brierley, C. L., 1986, Microbial mining using thermophilic microorganisms, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 279–305, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Brock, T. D., and Boylen, K. L., 1973, Presence of thermophilic bacteria in laundry and domestic hotwater heaters, Appl. Microbiol. 25: 72–76.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., and Freeze, H., 1969, Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile, J. Bacteriol. 98: 289–297.

    PubMed  CAS  Google Scholar 

  • Brown, M. J., and Lester, J. N., 1979, Metal removal in activated sludge: the role of bacterial extracellular polymers, Water Res. 13: 817–837.

    CAS  Google Scholar 

  • Brown, M. J., and Lester, J. N., 1982a, Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—I. Effects of metal concentration, Water Res. 16: 1539–1548.

    CAS  Google Scholar 

  • Brown, M. J., and Lester, J. N., 1982b, Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge—II. Effects of mean cell retention time, Water Res. 16: 1549–1560.

    CAS  Google Scholar 

  • Brown, L. R., and Pabst, G. S., 1975, Biodeterioration of stainless steel and aluminum alloys, in: Proceedings of the 3rd International Biodegradation Symposium (J. M. Sharpley and A. M. Kaplan eds.), Applied Science Publishers Ltd., London.

    Google Scholar 

  • Bryant, M. P., 1979, Microbial methane production—theoretical aspects, J. Anim. Sci. 48: 193–201.

    CAS  Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii, a symbiotic association of two species of bacteria, Arch. Mikrobiol. 59: 20–31.

    PubMed  CAS  Google Scholar 

  • Bryant, M. P., Campbell, L. L., Reddy, C. A., and Crabill, M. R., 1977, Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria, Appl. Environ. Microbiol. 33: 1162–1169.

    PubMed  CAS  Google Scholar 

  • Caldwell, D. E., and Caldwell, S. J., 1980, Fine structure of in situ microbial iron deposits, Geomicrobiol. J. 2: 39–53.

    CAS  Google Scholar 

  • Chiong, M., Barra, R., Gonzalez, E., and Vasquez, C., 1988, Resistance of Thermus spp. to potassium tellurite, Appl. Environ. Microbiol. 54: 610–612.

    PubMed  CAS  Google Scholar 

  • Christensen, B. E., Kjosbakken, J., and Smidsrod, O., 1985, Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, periphytic Pseudomonas sp. strain NCMB 2021, Appl. Environ. Microbiol. 50: 837–845.

    PubMed  CAS  Google Scholar 

  • Coles, E. L., and Davies, R. L., 1956, The protection of cable sheathing: The “phenol corrosion” of lead, Chem. Ind. 39: 1030–1035.

    Google Scholar 

  • Congregado, F., Estanol, I., Espuny, M. J., Fuste, M. C., Manresa, M. A., Marques, A. M., Guinea, J., and Simon-Pujol, M. D., 1985, Preliminary studies on the production and composition of the extracellular polysaccharide synthesized by Pseudomonas sp. EPS-5028, Biotechnol. Lett. 7: 883–888.

    CAS  Google Scholar 

  • Cord-Ruwisch, R., and Widdel, F., 1986, Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria, Appl. Microbiol. Biotechnol. 25: 169–174.

    CAS  Google Scholar 

  • Costello, J. A., 1974, Cathodic depolarization by the sulphate-reducing bacteria, S. Afr. J. Sci. 70: 202–204.

    CAS  Google Scholar 

  • Costerton, J. W., Geesey, G. G., and Cheng, K.J., 1978, How bacteria stick, Sci. Am. 238: 86–95.

    PubMed  CAS  Google Scholar 

  • Costerton, J. W., Irvin, R. T., and Cheng, K.-J., 1981, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol. 35: 299–324.

    PubMed  CAS  Google Scholar 

  • Costerton, J. W, Cheng, K.J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., and Marrie, T. J., 1987, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol. 41: 435–464.

    PubMed  CAS  Google Scholar 

  • Costerton, J. W., Geesey, G. G., and Jones, P. A., 1988, Bacterial biofilms in relation to internal corrosion monitoring and biocide strategies, Mater. Perform 27: 49–53.

    CAS  Google Scholar 

  • Cowen, J. P., and Silver, M. W., 1984, The association of iron and manganese with bacteria on marine macroparticulate material, Science 224: 1340–1342.

    PubMed  CAS  Google Scholar 

  • Crombie, D. J., Moody, G. J., and Thomas, J. D. R., 1980, Corrosion of iron by sulphate-reducing bacteria, Chem. Ind. 21: 500–504.

    Google Scholar 

  • Daniels, L., Belay, N., Rajagopal, B. S., and Weimer, P. J., 1987, Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons, Science 237: 509–511.

    PubMed  CAS  Google Scholar 

  • Devanathan, M. A. V., and Stachurski, Z., 1962, Adsorption and diffusion of electrolytic hydrogen in palladium, Proc. R. Soc. Lond. A 270: 90–110.

    CAS  Google Scholar 

  • Dexter, S. C., Sullivan, J. D., Williams, J., and Watson, S. W., 1975, Influence of substrate wettability on the attachment of marine bacteria to various surfaces, Appl. Microbiol. 30: 298–308.

    PubMed  CAS  Google Scholar 

  • Donham, J. E., Farquhar, G., Johnston, D., Junkin, E., Lane, D., Edwards, D., and Magnon, L., 1976, The Role of Bacteria in the Corrosion of Oil Field Equipment, TPC Publication 3, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Dowling, N. J. E., Widdel, F., and White, D. C., 1986, Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide forming bacteria, J. Gen. Microbiol. 132: 1815–1825.

    CAS  Google Scholar 

  • Dowling, N. J. E., Guezennec, J., Lemoine, M. L., Tunlid, A., and White, D. C., 1988, Analysis of carbon steels affected by bacteria using electrochemical impedance and direct current techniques, Corrosion 44: 869–874.

    CAS  Google Scholar 

  • Edlund, A., Nichols, P. D., Roffey, R., and White, D. C., 1985, Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species, J. Lipid Res. 26: 982–988.

    PubMed  CAS  Google Scholar 

  • Farrah, S. R., and Unz, R. F., 1976, Isolation of exocellular polymer from Zoogloea strains MP6 and 106 and from activated sludge, Appl. Environ. Microbiol. 32: 33–37.

    PubMed  CAS  Google Scholar 

  • Fischer, F., Zillig, W., Stetter, K. O., and Schreiber, G., 1983, Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria, Nature (London) 301: 511–513.

    CAS  Google Scholar 

  • Flatau, G. N., Clement, R. L., and Gauthier, M. J., 1985, Cadmium binding sites on cells of a marine pseudomonad, Chemosphere 14: 1409–1412.

    CAS  Google Scholar 

  • Fletcher, M., and Loeb, G. I., 1979, Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces, Appl. Environ. Microbiol. 37: 67–72.

    PubMed  CAS  Google Scholar 

  • Ford, T. E., Maki, J. S., and Mitchell, R., 1987a, The role of metal-binding bacterial exopolymers in corrosion processes, CORROSION/87, Paper 380, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Ford, T. E., Walch, M., and Mitchell, R., 1987b, Corrosion of metals by thermophilic microorganisms, Mater. Perform. 26: 35–39.

    CAS  Google Scholar 

  • Ford, T. E., Maki, J. S., and Mitchell, R., 1988, Involvement of bacterial exopolymers in biodeterioration of metals, in: Biodeterioration 7, (D. R. Houghton, R. N. Smith, and H. O. W. Eggins, eds.) pp. 378–384, Elsevier Applied Science, Barking, United Kingdom.

    Google Scholar 

  • Ford, T. E., Walch, M., Mitchell, R., Kaufman, M. J., Vestal, J. R., Ditner, S. A., and Lock, M. A., 1989, Microbial film formation on metals in an enriched arctic river, Biofouling 1: 301–311.

    CAS  Google Scholar 

  • Forrester, J. A., 1959, Destruction of concrete caused by sulfur bacteria in a purification plant, Surveyor 118: 881–884.

    CAS  Google Scholar 

  • Frankel, R. B., and Blakemore, R. P., 1984, Precipitation of Fe3O4 in magnetotactic bacteria, Phil. Trans. R. Soc. Lond. B 304: 567–574.

    CAS  Google Scholar 

  • Friedman, B. A., and Dugan, P. R., 1968, Concentration and accumulation of metallic ions by the bacterium Zoogloea, Dev. Ind. Microbiol. 9: 381–388.

    Google Scholar 

  • Gaines, R. H., 1910, Bacterial activity as a corrosive influence in the soil, Ind. J. Eng. Ind. Chem. 2: 128–135.

    Google Scholar 

  • Gaylarde, C., Johnston, J., 1986, Anaerobic metal corrosion in cultures of bacteria from estuarine sediments, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 137–143, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Geesey, G. G., and Mittelman, M. W., 1985, The role of high-affinity, metal-binding exopolymers of adherent bacteria in microbial-enhanced corrosion, CORROSION/85, Paper 297, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Geesey, G. G., Mittelman, M. W., Iwaoka, T., and Griffiths, P. R., 1986, Role of bacterial exopolymers in the deterioration of metallic copper surfaces, Mater. Perform. 25: 37–40.

    CAS  Google Scholar 

  • Geesey, G. G., Iwaoka, T., and Griffiths, P. R., 1987, Characterization of interfacial phenomena occurring during exposure of a thin copper film to an aqueous suspension of an acidic polysaccharide, J. Colloid Interface Sci. 120: 370–376.

    Google Scholar 

  • Geesey, G. G., Jang, L., Jolley, J. G., Hankins, M. R., Iwaoka, T., and Griffiths, P. R., 1988, Binding of metal ions by extracellular polymers of biofilm bacteria, Wat. Sci. Tech. 20: 161–165.

    CAS  Google Scholar 

  • Ghiorse, W. C., 1984, Biology of iron-and manganese-depositing bacteria, Annu. Rev. Microbiol. 38: 515–550.

    PubMed  CAS  Google Scholar 

  • Gragnolino, G., and Tuovinen, O. H., 1984, The role of sulphate-reducing bacteria and sulphur oxidizing bacteria in the localized corrosion of iron-base alloy: A review, Int. Biodeterior. Bull. 20: 9–26.

    Google Scholar 

  • Griffin, R. B., Cornwell, L. R., Seitz, W., and Estes, E., 1988, Localized corrosion under biofouling, CORROSION/88, Paper 400, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Hamilton, W. A., 1985, Sulphate-reducing bacteria and anaerobic corrosion, Annu. Rev. Microbiol. 39: 195–217.

    PubMed  CAS  Google Scholar 

  • Hamilton, W. A., 1987, Biofilms: Microbial interactions and metabolic activities, in: Ecology of Microbial Communities, Society for General Microbiology Symposium 41 (M. Fletcher, T. R. G. Gray, and J. G. Jones, eds.), pp. 361–387, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hansen, D. J., Tighe-Ford, D. J., and George, G. C., 1981, Role of the mycelium in the corrosive activity of Cladosporium resinae in a dieso/water system, Int. Biodeterior. Bull. 17: 103–112.

    CAS  Google Scholar 

  • Hardy, J. A., 1983, Utilization of cathodic hydrogen by sulphate-reducing bacteria, Br. Corros. J. 18: 190–193.

    CAS  Google Scholar 

  • Hardy, J. A., and Bown, J. L., 1984, The corrosion of mild steel by biogenic sulfide films exposed to air, Corrosion 40: 650–654.

    CAS  Google Scholar 

  • Hendey, N. I., 1964, Some observations on Cladosporium resinae as a fuel contaminant and its possible role in the corrosion of aluminium alloy fuel tanks, Trans. Br. Mycol. Soc. 47: 467–475.

    CAS  Google Scholar 

  • Hueck van der Plas, 1968, The micro-biological deterioration of porous building materials, Int. Bioderior. Bull. 4: 11–28.

    Google Scholar 

  • Imanaka, T., and Aiba, S., 1986, Applied genetics of aerobic thermophiles, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 159–178, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Iverson, W. P., 1974, Microbial corrosion of iron, in: Microbial Iron Metabolism (J. B. Neilands, ed.), pp. 475–512, Academic Press, New York.

    Google Scholar 

  • Iverson, W. P., 1981, An overview of the anaerobic corrosion of underground metallic structures, evidence for a new mechanism, in: Underground Corrosion (E. Escalante, ed.), pp. 33–52, Technical Publication 741, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Iverson, W. P., 1984, Mechanism of anaerobic corrosion of steel by sulfate reducing bacteria, Mater. Perform. 23: 28–30.

    CAS  Google Scholar 

  • Iverson, W. P., and Olson, G. J., 1983, Anaerobic corrosion by sulphate-reducing bacteria due to highly reactive volatile phosphorus compound, in: Microbial Corrosion, pp. 46–53, The Metal Society, London.

    Google Scholar 

  • Iverson, W. P., and Olson, G. J., 1984, Problems relating to sulphate-reducing bacteria in the petroleum industry, in: Petroleum Microbiology (R. M. Atlas, ed.), pp. 619–641, Macmillan, New York.

    Google Scholar 

  • Iverson, W. P., Olson, G. J., and Heverly, L. F., 1986, The role of phosphorus and hydrogen sulfide in the anaerobic corrosion of iron and the possible detection of this corrosion by an electrochemical noise technique, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 154–161, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Johnson, H. H., 1974, Hydrogen gas embrittlement, in Hydrogen in Metals (I. M. Bernstein and A. W. Thompson, eds.), pp. 35–49, American Society for Metals, Metals Park, Ohio.

    Google Scholar 

  • Jolley, J. G., Geesey, G. G., Hankins, M. R., Wright, R. B., and Wichlacz, P. L., 1988, Auger electron spectroscopy and X-ray photoelectron spectroscopy of the biocorrosion of copper by gum arabic, bacterial culture supernatant and Pseudomonas atlantica exopolymer, J. Surf. Interface Anal. 11: 371–376.

    CAS  Google Scholar 

  • Jones, J. G., 1986, Iron transformations by freshwater bacteria, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), 149–185, Plenum Press, New York.

    Google Scholar 

  • Kasahara, K., and Kajiyama, F., 1986, Role of sulfate reducing bacteria in the localized corrosion of buried pipes, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 171–183, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Kaspar, H. F., and Wurhmann, K., 1978, product inhibition in sludge digestion, Microb. Ecol. 4: 241–248.

    CAS  Google Scholar 

  • Kerger, B. D., Nichols, P. D., Sand, W., Bock, E., and White, D. C., 1987, Association of acid-producing thiobacilli with degradation of concrete: analysis by’ signature’ fatty acids from the polar lipids and lipopolysaccharide, J. Ind. Microbiol. 2: 63–69.

    CAS  Google Scholar 

  • King, R. A., and Miller, J. D. A., 1971, Corrosion by the sulphate-reducing bacteria, Nature (London) 233: 491–492.

    CAS  Google Scholar 

  • Kobrin, G., 1976, Corrosion by microbiological organisms in natural waters, Mater. Perform. 15: 38–43.

    CAS  Google Scholar 

  • Kushner, D. J. (ed.), 1978, Microbial Life in Extreme Environments, Academic Press, New York.

    Google Scholar 

  • Laanbroek, H., Abee, T., and Voogd, I. L., 1982, Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulphate and hydrogen, Arch. Microbiol. 133: 178–184.

    CAS  Google Scholar 

  • Lester, J. N., Sterrett, R. M., Rudd, T., and Brown, M. J., 1984, Assessment of the role of bacterial extracellular polymers in controlling metal removal in biological waste water treatment, in: Microbiological Methods for Environmental Biotechnology (J. M. Grainger and J. M. Lynch, eds.), pp. 197–217, Academic Press, London and Orlando.

    Google Scholar 

  • Little, B. J., Walch, M., Wagner, P., Gerchakov, S. M., and Mitchell, R., 1984, The impact of extreme obligate thermophilic bacteria on corrosion processes, in Proceedings of the 6th International Congress on Marine Corrosion and Fouling, pp. 511–520.

    Google Scholar 

  • Little, B., Wagner, P., and Gerchakov, S. M., 1986a, A quantitative investigation of mechanisms for microbial corrosion, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 209–214, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Little, B., Wagner, P., Gerchakov, S. M., Walch, M., and Mitchell, R., 1986b, The involvement of a thermophilic bacterium in corrosion processes, Corrosion 42: 533–536.

    CAS  Google Scholar 

  • Little, B. J., Wagner, P., Maki, J. S., Walch, M., and Mitchell, R., 1986c, Factors influencing the adhesion of microorganisms to surfaces, J. Adhes. 20: 187–210.

    CAS  Google Scholar 

  • Little, B., Wagner, P., and Jacobus, J., 1988, The impact of sulfate-reducing bacteria on welded coppernickel seawater piping systems, CORROSION/88, Paper 81, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Lutey, R., 1980, Microbiological corrosion, CORROSION/80, Paper 39, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Maki, J. S., and Mitchell, R., 1988, L’adhesion microbienne aux surfaces et ses consequences, in: Microorganisms dans les Ecosystemes Oceaniques (A. Bianchi, D. Marty, J.-C. Bertrand, C. Caumette, and M. Gauthier, eds.), pp. 387–409, Masson, Paris.

    Google Scholar 

  • Marshall, K. C. (ed.), 1984, Microbial Adhesion and Aggregation, Dahlem Konferenzen, Springer-Verlag, Berlin.

    Google Scholar 

  • Marszalek, D. S., Gerchakov, S. M., and Udey, L. R., 1979, Influence of substrate composition on marine microfouling, Appl. Environ. Microbiol. 38: 987–995.

    PubMed  CAS  Google Scholar 

  • Martin, J. P., 1971, Decomposition and binding action of polysaccharides in soil, Soil Biol. Biochem. 3: 33–41.

    CAS  Google Scholar 

  • Martin, J. P., Ervin, J. O., and Richards, S. J., 1972, Decomposition and binding action in soil of some mannose-containing microbial polysaccharides and their Fe, Al, Zn, and Cu complexes, Soil Sci. 113: 322–327.

    CAS  Google Scholar 

  • Mclnerney, M. J., Bryant, M. P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens, Arch. Microbiol. 122: 129–135.

    Google Scholar 

  • Mclnerney, M. J., Mackie, R. I., and Bryant, M. P., 1981a, Syntrophic association of a butyratedegrading bacterium and Methanosarcina enriched from bovine rumen fluid, Appl. Environ. Microbiol. 41: 826–828.

    Google Scholar 

  • Mclnerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W., 1981b, Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. Microbiol. 41: 1029–1039.

    Google Scholar 

  • Miller, J. D. A. (ed.), 1970, Microbial Aspects of Metallurgy, American Elsevier, New York.

    Google Scholar 

  • Mittelman, M. W., and Geesey, G. G., 1985, Copper-binding characteristics of exopolymers from a freshwater sediment bacterium, Appl. Environ. Microbiol. 49: 846–851.

    PubMed  CAS  Google Scholar 

  • Moosavi, A. N., Dawson, J. L., and King, R. A., 1986, The effect of sulphate-reducing bacteria on the corrosion of reinforced concrete, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 291–308, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Mountfort, D. O., and Bryant, M. P., 1982, Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge, Arch. Microbiol. 133: 249–256.

    CAS  Google Scholar 

  • Mountford, D. O., Brulla, W. J., Krumholz, L. R., and Bryant, M. P., 1984, Syntrophus buswellii gen. now, sp. nov.: A benzoate catabolizer from methanogenic ecosystems. Int. J. Syst. Bacterial. 34: 216–217.

    Google Scholar 

  • Nakai, Y., Kurahashi, R, Totsuka, N., and Wesugi, Y., 1982, Effect of corrosive environment on hydrogen induced cracking, CORROSION/82, Paper 132, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Nealson, K. H., 1983a, The microbial iron cycle, in: Microbial Geochemistry (W. E. Krumbein, ed.), pp. 159–190, Blackwell, Oxford.

    Google Scholar 

  • Nealson, K. H., 1983b, The microbial manganese cycle, in: Microbial Geochemistry (W. E. Krumbein, ed.), pp. 191–221, Blackwell, Oxford.

    Google Scholar 

  • Ng, T. K., and Kenealy, W. F., 1986, Industrial applications of thermostable enzymes, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 197–215, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Nichols, P. D., Guckert, J. B., and White, D. C., 1986, Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disolphide adduets, J. Microbiol. Methods 5: 49–55.

    CAS  Google Scholar 

  • Obuekwe, C., O., and Westlfake, D. W. S., 1982, Effect of reducible compounds (potential electron acceptors) on reduction of ferric iron by Pseudomonas species, Microbiol. Lett. 19: 57–62.

    CAS  Google Scholar 

  • Obuekwe, C. O., Westlake, D. W. S., and Cook, F. D., 1981a, Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil, Can. J. Microbial. 27: 692–697.

    CAS  Google Scholar 

  • Obuekwe, C. O., Westlake, D. W. S., Cook, F. D., and Costerton, J. W., 1981b, Surface changes in mild steel coupons from the action of corrosion-causing bacteria, Appl. Environ. Microbiol. 41: 766–774.

    PubMed  CAS  Google Scholar 

  • Obuekwe, C. O., Westlake, D. W. S., Plambeck, I. A., and Cook, F. D., 1981c, Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil. I. Polarization characteristics, Corrosion 37: 461–467.

    CAS  Google Scholar 

  • Obuekwe, C. O., Westlake, D. W. S., Plambeck, J. A., and Cook, F. D., 1981d, Corrosion of mild steel in cultures of ferric iron reducing bacterium isolated from crude oil. II. Mechanism of anodic depolarization, Corrosion 37: 632–637.

    CAS  Google Scholar 

  • Obuekwe, C. O., Westlake, D. W. S., and Cook, F. D., 1983, Corrosion of Pembina crude oil pipeline: The origin and mode of formation of hydrogen sulfide, Eur. J. Appl. Microbiol. Biotechnol. 17: 173–177.

    CAS  Google Scholar 

  • Odom, J. M., and Peck, H. D., 1981, Hydrogen cycling as a general mechanism for energy coupling in the sulphate-reducing bacteria, Desulfovibrio sp., FEMS Microbiol. Lett. 12: 47–50.

    CAS  Google Scholar 

  • Pankhama, I. P., 1988, Hydrogen metabolism in sulphate-reducing bacteria and its role in anaerobic corrosion, Biofouting 1: 27–47.

    Google Scholar 

  • Pankhania, I. P., Moosavi, A. N., and Hamilton, W. A., 1986a, Utilization of cathodic hydrogen by Desulfovibrio vulgaris (Hidenborough), J. Gen. Microbiol. 132: 3357–3365.

    CAS  Google Scholar 

  • Pankhania, I. P., Gow, L. A., and Hamilton, W. A., 1986b, The effect of hydrogen, on the growth of Desulfovibrio vulgaris (Hidenborough) on lactate, J. Gen, Microbiol. 132: 3349–3356.

    CAS  Google Scholar 

  • Parker, C.D., 1945a, The corrosion of concrete. 1. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide, Aust. J. Exp. Biol. Med. Sci. 23: 81–90.

    CAS  Google Scholar 

  • Parker, C. D., 1945b, The corrosion of concrete. 2. The function of Thiohacillus concretivorus (nov. spec.) in the corrosion of concrete exposed to atmospheres containing hydrogen sulphide, Aust. J. Exp. Biol. Med. Sci. 23: 91–98.

    CAS  Google Scholar 

  • Platt, R. M., Geesey, G. G., Davis, J. D., and White, D. C., 1985, Isolation and partial chemical analysis of firmly bound exopolysaccharide from adherent cells of a freshwater sediment bacterium, Can. J. Microbiol. 31: 675–680.

    PubMed  CAS  Google Scholar 

  • Pope, D. H., Zintel, T. P., Kunuvilla, A. K., Sichert, O. W., 1988, Organic acid corrosion of carbon steel: A mechanism of microbiologically influenced corrosion, CORROSION/88, Paper 79, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Postgate, J. R. (ed.), 1984, The Sulphate-Reducing Bacteria, 2nd ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Ramaley, R. E, and Hixon, J., 1970, Isolation of a non-pigmented, thermophilic bacterium similar to Thermus aquaticus, J. Bacteriol. 103: 527–528.

    PubMed  CAS  Google Scholar 

  • Ridgway, H. F., and Olson, B. H., 1981, Scanning electron microscope evidence for bacterial colonization of a drinking-water distribution system, Appl. Environ. Microbiol. 41: 274–287.

    PubMed  CAS  Google Scholar 

  • Rigdon, J. H., and Beardsley, C. W, 1958, Corrosion of concrete by autotrophs, Corrosion 14: 206–208.

    Google Scholar 

  • Rosanova, E. P., and Khudyakova, A. I., 1974, A new nonspore-forming thermophilic suifate-redueing organism, Desulfovtbrio thermophitus nov. sp., Microhiologiya 43: 1069–1075 (Engl trans pp. 908–912).

    Google Scholar 

  • Rudd, T., Sterritt, R. M., and Lester, J. N., 1984, Formation and conditional stability constants of complexes formed between heavy metal and bacterial extracellular polymers, Water Res. 18: 379–384.

    CAS  Google Scholar 

  • Salvarezza, R. C., de Mele, M. F. L., and Videla, H. A., 1983, Mechanisms of the microbial corrosion of aluminum alloys. Corrosion 39: 26–32.

    CAS  Google Scholar 

  • Sand, W., and Bock, E., 1984, Concrete corrosion in the Hamburg sewer system system, Environ Technol. Lett. 5: 517–528.

    CAS  Google Scholar 

  • Savage, D. C., and Fletcher, M. (eds.), 1985, Bacterial Adhesion, Plenum Press, New York.

    Google Scholar 

  • Schmitt, C. R., 1986, Anomalous microbiological tuberculation and aluminum pitting corrosion-case histories, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 69–75, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Sempfe, K. M., and Westlake, D. W. S., 1987, Characterization of iron-reducing Aberomonas putrefadens strains from oil field fluids, Can. J. Microbiol. 3: 366–371.

    Google Scholar 

  • Sheifon, D. R., and Tiedje, I. M., 1984, Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid, Appl. Environ. Microbial. 48: 840–848.

    Google Scholar 

  • Shilo, M. (ed.), 1979, Strategies of Life in Extreme Environments, Dahlem Konferenzen, Verlag Chemie, Weinheim.

    Google Scholar 

  • Siporin, C., and Cooney, J. J., 1975, Extracellular lipids of Cladosporium (Amorphotheca) resinae grown on glucose or on n-alkanes, Appl. Microbial. 29: 604–609.

    CAS  Google Scholar 

  • Smith, J. S., and Miller, J. D. A., 1975, Nature of sulphides and their corrosive effects on ferrous metals: A review, Br. Corros. J. 10: 136–143.

    CAS  Google Scholar 

  • Staehle, R. W., Hochmann, J., McCright, R. D., and Slater, J. E. (eds.), 1977, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Starkey, R. L., 1986, Anaerobic corrosion-perspectives about causes, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 3–7, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Stetter, K. O., 1986, Diversity of extremely thermophilic archaebacteria, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.). pp. 39–74, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Stetter, K. O., Thomm, M., Winter, J., Wildgruber, G., Huber, H., Ziliig, W., Janecovic, D., Konig, H., Palm, P., and Wunderl, S., 1981, Methanothermus fervidus, a novel extremely thermophilic methanogen isolated from an Icelandic hot spring, Zbl. Bakt. Hyg. I Abt. Orig. 2: 166–178.

    CAS  Google Scholar 

  • Stetter, K. O., Konig, H., and Stackebrandt, E., 1983, Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebaeteria growing optimally at 105°C, Syst. Appl. Microbiol. 4: 535–551.

    CAS  Google Scholar 

  • Stieb, M., and Sehink, B., 1985, Anaerobic oxidation of fatty acids by Clostridium bryamii sp. nov., a sporeformmg obligately syntrophie bacterium, Arch. Microbial. 140: 387–390.

    CAS  Google Scholar 

  • Stoecker, J. G., and Pope, D. H., 1986, Study of biological corrosion in high temperature demineralized water, Mater. Perform. 25: 51–56.

    CAS  Google Scholar 

  • Stoveland, S., and Lester, J. N., 1980, A study of the factors which influence metal removal in the activated sludge process, Sci. Total Environ. 16: 37–54.

    CAS  Google Scholar 

  • Stranger-Johannessen, M., 1986, Fungal corrosion of the steel interior of a ship’s holds, in: Biodeterioration 6 (S. Barry and D. R. Houghton, eds.), C.A.B. International, Slough, United Kingdom.

    Google Scholar 

  • Sutherland, I. W., 1972, Bacterial exopolysaccharides, Adv. Microb. Physiol. 8: 143–213.

    PubMed  CAS  Google Scholar 

  • Sutherland, I. W., 1984, Enzymes in the assay of microbial polysaccharides, Proc. Biochem. 18: 19–24.

    Google Scholar 

  • Sutherland, I. W., 1985, Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides, Annu. Rev. Microbiol. 39: 243–270.

    PubMed  CAS  Google Scholar 

  • Tago, Y., and Aida, K., 1977, Exocellular mucopolysaccharide closely related to bacterial floe formation, Appl. Environ. Microbiol. 34: 308–314.

    PubMed  CAS  Google Scholar 

  • Tarasevich, M. R., 1979, Ways of using enzymes for acceleration of electrochemical reactions, J. Electroanal. Chem. 104: 587–597.

    Google Scholar 

  • Tatnall, R. E., 1981a, Fundamentals of bacteria-induced corrosion, Mater. Perform. 20: 32–38.

    Google Scholar 

  • Tatnall, R. E., 1981b, Case histories: Bacteria-induced corrosion, Mater. Perform. 20: 41–48.

    CAS  Google Scholar 

  • Tiller, A. K., 1982, Aspects of microbial corrosion, in: Corrosion Processes (R. N. Parkins ed.), pp. 115–159, Applied Science Publishers, London, New York.

    Google Scholar 

  • Tomei, F. A., and Mitchell, R., 1986, Development of an alternative method for studying the role of H2-consuming bacteria in the anaerobic oxidation of iron, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 309–320, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Tomei, F. A., Maki, J. S., and Mitchell, R., 1985, Interactions in syntrophic associations of endosporeforming, butyrate-degrading bacteria and H2-consuming bacteria, Appl. Environ. Microbiol. 50: 1244–1250.

    PubMed  CAS  Google Scholar 

  • Troiano, A. R., 1974, Introduction, in: Hydrogen in Metals (I. M. Bernstein and A. W. Thompson, eds.), pp. 3–15. American Society for Metals, Metals Park, Ohio.

    Google Scholar 

  • Tuovinen, O. H., and Mair, D. M., 1985, Corrosion of cast iron pipes and associated water quality effects in distribution systems, in: Biodeterioration 6 (S. Barry and D. R. Houghton, eds.), pp. 223–227, C.A.B. International, Slough, United Kingdom.

    Google Scholar 

  • Tuovinen, O. H., Button, K. S., Vuorinen, A., Carlson, L., Mair, D. M., and Yut, L. A., 1980, Bacterial, chemical, and mineralogical characteristics of tubercles in distribution pipelines, J. Am. Water Works Assoc. 72: 626–635.

    CAS  Google Scholar 

  • Tyler, P. A., and Marshall, K. C., 1967a, Hyphomicrobia—a significant factor in manganese problems, J. Am. Water Works Assoc. 59: 1043–1048.

    CAS  Google Scholar 

  • Tyler, P. A., and Marshall, K. C., 1967b, Microbial oxidation of manganese in hydrooelectric pipelines, Antonie van Leeuwenhoek J. Microbiol. Serol. 33: 171–183.

    CAS  Google Scholar 

  • Uhlinger, D. J., and White, D. C., 1983, Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas atlantica, Appl. Environ. Microbiol. 45: 64–70.

    PubMed  CAS  Google Scholar 

  • Videla, H. A., Guiamet, P. S., and DoValle, S., 1988, Effects of fungal and bacterial contaminants of kerosene fuels on the corrosion of storage and distribution systems, CORROSION/88, Paper 91, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • von Wolzogen Kuhr, C. A. H., and van der Vlugt, L. S., 1934, Graphication of cast iron as an electrochemical process in anaerobic soils, Water 18: 147–165.

    Google Scholar 

  • Wagner, C., and Traud, W., 1938, Uber die Deutung von Korrosionsvorgangen durch Uberlagerung von elektrochemischen Teilvorgangen und uber die Potentialbildung an Mischelektroden, Z. Elektrochem. 44: 391–454.

    CAS  Google Scholar 

  • Wagner, P., and Little, B. J., 1986, Applications of a technique for the investigation of microbially induced corrosion, CORROSION/86, Paper 121, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Walch, M., 1986, The Microbial Ecology of Metal Surfaces, Ph.D. thesis, Harvard University, Cambridge, Mass.

    Google Scholar 

  • Walch, M., and Mitchell, R., 1986, Microbial influence on hydrogen uptake by metals, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 201–208. National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • Weimer, P. J., 1986, Use of thermophiles for the production of fuels and chemicals, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 217–255, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Weimer, P. J., Van Kavelaar, M. J., Michel, C. B., and Ng, T. K., 1988, Effect of phosphate on the corrosion of carbon steel and on the composition of corrosion products on two-stage continuous cultures of Desulfovibrio desulfuricans, Appl. Environ. Microbiol. 54: 386–396.

    PubMed  CAS  Google Scholar 

  • Westlake, D. W. S., Semple, K. M., and Obuekwe, C.O., 1986, Corrosion by ferric iron-reducing bacteria isolated from oil production systems, in: Biologically Induced Corrosion (S. C. Dexter, ed.), pp. 193–200, National Association of Corrosion Engineers, Houston, Tex.

    Google Scholar 

  • White, D. C., 1983, Analysis of microorganisms in terms of quantity and activity in natural environments, in: Microbes in Their Natural Environments, Society for General Microbiology Symposium 34 (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 37–66, Society for General Microbiology, New York.

    Google Scholar 

  • White, D. C., 1984, Chemical characterization of films, in: Microbial Adhesion and Aggregation, Dahlem Konferenzen Life Sciences Research Report 31 (K. C. Marshall, ed.), pp. 159–176, Springer-Verlag, Berlin.

    Google Scholar 

  • Widdel, F., 1987, New types of acetate-oxidizing, sulphate-reducing Desulfobacter species, D., hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov., Arch. Microbiol. 148: 286–291.

    CAS  Google Scholar 

  • Widdel, F., and Pfennig, N., 1981, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of a new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov., Arch. Microbiol. 129: 395–400.

    PubMed  CAS  Google Scholar 

  • Widdel, F., and Pfennig, N., 1982, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov., Arch. Microbiol. 131: 360–365.

    CAS  Google Scholar 

  • Widdel, F., Kohring, G. W., and Mayer, F., 1983, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov., and Desulfonema magnum sp. nov., Arch. Microbiol. 134: 286–294.

    CAS  Google Scholar 

  • Williams, A. G., and Wimpenny, J. W. T., 1977, Exopolysaccharide production by Pseudomonas NCIB11264 grown in batch culture, J. Gen. Microbiol. 102: 13–21.

    PubMed  CAS  Google Scholar 

  • Winter, J., Lerp, C., Zabel, H.-P., Wildenauer, F. X., Konig, H., and Schindler, F., 1984, Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen, Syst. Appl. Microbiol. 5: 457–466.

    CAS  Google Scholar 

  • Wrangstadh, M., Conway, P. L., and Kjelleberg, S., 1986, The production and release of an extracellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion, Arch. Microbiol. 145: 220–227.

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., 1978, Ecology of methane formation, in: Water Pollution Microbiology, Vol. 2 (R. Mitchell, ed.), John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Zeikus, J. G., and Wolfe, R. S., 1972, Methanobacterium thermoautotrophicum sp. nov., an anaerobic, autotrophic extreme thermophile, J. Bacteriol. 109: 707–713.

    PubMed  CAS  Google Scholar 

  • Zeikus, J. G., Dawson, M. A., Thompson, T. E., Ingvorsen, K., and Hatchikian, E. C., 1983, Microbial ecology of volcanic sulphidogenesis: Isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov., J. Gen. Microbiol. 129: 1159–1169.

    CAS  Google Scholar 

  • Zillig, W., Stetter, K. O., Schafer, W., Janekovic, D., Wunderl, S., Holz, I., and Palm, P., 1981, Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic Solfataras, Zbl. Bakt. Hyg. I Abt. Orig. 2: 205–227.

    CAS  Google Scholar 

  • Zillig, W., Stetter, K. O., Prangishvilli, D., Schafer, W., Wunderl, S., Janekovic, D., Holz, I., and Palm, P., 1982, Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales, Zbl. Bakt. Hyg. I Abt. Orig. 3: 304–317.

    CAS  Google Scholar 

  • Zinder, S. H., 1986, Thermophilic waste treatment systems, in: Thermophiles: General, Molecular and Applied Microbiology (T. D. Brock, ed.), pp. 257–277, John Wiley & Sons, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Ford, T., Mitchell, R. (1990). The Ecology of Microbial Corrosion. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7612-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7614-9

  • Online ISBN: 978-1-4684-7612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics