Optical Switching in Low-Dimensional Systems

NATO ASI Series

Advanced Science Institutes Series

A series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities.

The series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division

A B	Life Sciences Physics	Plenum Publishing Corporation New York and London		
С	Mathematical	Kluwer Academic Publishers Dordrecht, Boston, and London		
D E	and Physical Sciences Behavioral and Social Sciences Applied Sciences			
F G H	Computer and Systems Sciences Ecological Sciences Cell Biology	Springer-Verlag Berlin, Heidelberg, New York, London, Paris, and Tokyo		
Rece	Recent Volumes in this Series			
<i>Volume 189</i> —Band Structure Engineering in Semiconductor Microstructures edited by R. A. Abram and M. Jaros				
Volu	<i>me 190</i> —Squeezed and Nonclassica edited by P. Tombesi and E			
<i>Volume 191</i> —Surface and Interface Characterization by Electron Optical Methods edited by A. Howie and U. Valdrè				
Volu	<i>me 192</i> —Noise and Nonlinear Phenc edited by J. L. Muñoz-Cobo			
Volu	me 193—The Liquid State and Its Ele edited by E. E. Kunhardt, L. and L. H. Luessen			
Volu	me 194—Optical Switching in Low-D edited by H. Haug and L. Bá			
Volu	me 195—Metallization and Metal-Se edited by I. P. Batra	emiconductor Interfaces		

Volume 196—Collision Theory for Atoms and Molecules edited by F. A. Gianturco

Series B: Physics

Optical Switching in Low-Dimensional Systems

Edited by H. Haug and L. Bányai

Institute for Theoretical Physics University of Frankfurt Frankfurt, Federal Republic of Germany

Plenum Press New York and London Published in cooperation with NATO Scientific Affairs Division Proceedings of a NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems, held October 6–8, 1988, in Marbella, Spain

Library of Congress Cataloging in Publication Data

NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems (1988: Marbella, Spain)

Optical switching in low-dimensional systems / edited by H. Haug and L. Bányai.

p. cm.—(NATO ASI series. Series B, Physics; v. 194)

"Published in cooperation with NATO Scientific Affairs Division." Includes bibliographies and index.

ISBN-13: 978-1-4684-7280-6 e-ISBN-13: 978-1-4684-7278-3 DOI: 10.1007/978-1-4684-7278-3

1. Semiconductors—Optical properties—Congresses. 2. Quantum wells— Congresses. 3. Exciton theory—Congresses. 4. Electrooptics—Congresses. I. Haug, Hartmut. II. Bányai L. (Ladislaus) III. North Atlantic Treaty Organization. Scientific Affairs Division. IV. Title. V. Series. QC611.6.06N38 1988 89-3748 621.3815/2—dc19 CIP

© 1989 Plenum Press, New York Softcover reprint of the hardcover 1st edition 1989 A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

SPECIAL PROGRAM ON CONDENSED SYSTEMS OF LOW DIMENSIONALITY

This book contains the proceedings of a NATO Advanced Research Workshop held within the program of activities of the NATO Special Program on Condensed Systems of Low Dimensionality, running from 1983 to 1988 as part of the activities of the NATO Science Committee.

Other books previously published as a result of the activities of the Special Program are:

•	
Volume 148	INTERCALATION IN LAYERED MATERIALS edited by M. S. Dresselhaus
Volume 152	OPTICAL PROPERTIES OF NARROW-GAP LOW- DIMENSIONAL STRUCTURES edited by C. M. Sotomayor Torres, J. C. Portal, J. C. Maan, and R. A. Stradling
Volume 163	THIN FILM GROWTH TECHNIQUES FOR LOW- DIMENSIONAL STRUCTURES edited by R. F. C. Farrow, S. S. P. Parkin, P. J. Dobson, J. H. Neave, and A. S. Arrott
Volume 168	ORGANIC AND INORGANIC LOW-DIMENSIONAL CRYSTALLINE MATERIALS edited by Pierre Delhaes and Marc Drillon
Volume 172	CHEMICAL PHYSICS OF INTERCALATION edited by A. P. Legrand and S. Flandrois
Volume 182	PHYSICS, FABRICATION, AND APPLICATIONS OF MULTILAYERED STRUCTURES edited by P. Dhez and C. Weisbuch
Volume 183	PROPERTIES OF IMPURITY STATES IN SUPERLATTICE SEMICONDUCTORS edited by C. Y. Fong, Inder P. Batra, and S. Ciraci
Volume 188	REFLECTION HIGH-ENERGY ELECTRON DIFFRACTION AND REFLECTION ELECTRON IMAGING OF SURFACES edited by P. K. Larsen and P. J. Dobson
Volume 189	BAND STRUCTURE ENGINEERING IN SEMICONDUCTOR MICROSTRUCTURES edited by R. A. Abram and M. Jaros

PREFACE

This book contains all the papers presented at the NATO workshop on "Optical Switching in Low Dimensional Systems" held in Marbella, Spain from October 6th to 8th, 1988. Optical switching is a basic function for optical data processing, which is of technological interest because of its potential parallelism and its potential speed.

Semiconductors which exhibit resonance enhanced optical nonlinearities in the frequency range close to the band edge are the most intensively studied materials for optical bistability and fast gate operation. Modern crystal growth techniques, particularly molecular beam epitaxy, allow the manufacture of semiconductor microstructures such as quantum wells, quantum wires and quantum dots in which the electrons are only free to move in two, one or zero dimensions, respectively. The spatial confinement of the optically excited electron-hole pairs in these low dimensional structures gives rise to an enhancement of the excitonic nonlinearities. Furthermore, the variations of the microstruture extensions, of the compositions, and of the doping offer great new flexibility in engineering the desired optical properties.

Recently, organic chain molecules (such as polydiacetilene) which are different realizations of one dimensional electronic systems, have been shown also to have interesting optical nonlinearities.

Both the development and study of optical and electro-optical devices, as well as experimental and theoretical investigations of the underlying optical nonlinearities, are contained in this book.

We, the organizers of the NATO workshop, thank all our colleagues for their excellent contributions both to the meeting and to this book. The generous financial support of the NATO Scientific Affairs Division is gratefully acknowledged.

Hartmut Haug and Ladislaus Bányai

Frankfurt, October 1988

CONTENTS

Switching Devices

Integrated Quantum Well Switching Devices 1
D.A.B. Miller
Intrinsic Optical Bistability and Collective Nonlinear Phenomena in Periodic Coupled
Microstructures: Model Experiments
D. Jäger, A. Gasch and K. Moser
Carrier Induced Effects of Quantum Well Structures and its Application to Optical Modulators
and Optical Switches
H. Sakaki and H. Yoshimura
Optical Bistability and Nonlinear Switching in Quantum Well Laser Amplifiers
M.J. Adams and L.D. Westbrook
Patterned Quantum Well Semiconductor Lasers
E. Kapon, J.P. Harbison, R. Bhat and D.M. Hwang
High Injection Effects in Quantum Well Lasers
P. Blood
Real and Virtual Charge Polarizations in DC Biased Low-Dimensional Semiconductor
Structures
M. Yamanishi
Nonlinear Optical Properties of n-i-p-i and Hetero-n-i-p-i Structures
G.H. Döhler

Nonlinear Optical Properties of Organic Materials

Excitonic Optical Nonlinearities in Polydiacetilene: The Mechanisms	97
B.I. Greene, J. Orenstein, S. Schmitt-Rink and M.Thakur	
Cubic Nonlinear Optical Effects in Conjugated 1D π -Electron Systems	107
F. Kajzar	

High-Field Effects, Femtosecond Spectroscopy

Optical Stark Shift in Quantum Wells	
D. Hulin, M. Joffre, A. Migus and A. Antonetti	
Femtosecond Spectroscopy of Optically Excited Quantum Well Structures	129
D. Chemla	
Femtosecond Dynamics of Semiconductor Nonlinearities: Theory and Experiments	
S.W. Koch, N. Peyghambarian, M. Lindberg and B.D. Fluegel	
Stationary Solutions for the Excitonic Optical Stark Effect	
in Two and Three Dimensional Semiconductors	151
H. Haug, C.Ell, J.F. Müller and K. El Sayed	
Coherent Nonlinear Edge Dynamics in Semiconductor Quantum Wells	
I. Balslev and A. Stahl	
Exciton Stark Shift : Biexcitonic Origin and Exciton Splitting	171
M. Combescot and R. Combescot	

Microcrystallites

Quantum Size Effects and Photocarrier Dynamics in the Optical Nonlinearities
of Semiconductor Microcrystallites 181
Ch. Flytzanis, D. Ricard and P. Roussignol
Optical Nonlinearities and Femtosecond Dynamics of Quantum Confined CdSe
Microcrystallites
N. Peyghambarian, S.H. Park, R.A. Morgan, B. Fluegel, Y.Z. Hu, M. Lindberg,
S.W. Koch, D. Hulin, A. Migus, J. Etchepare, M. Joffre, G. Grillon, A. Antonetti,
D.W. Hall, and N.F. Borrelli
Enhanced Optical Nonlinearity and Very Rapid Response due to Excitons
in Quantum Wells and Dots
E. Hanamura
Excitons in Quantum Boxes
A. D'Andrea and R. Del Sole

Excitons in Low Dimensions

Luminescence of GaAs-AlGaAs MQW Structures under Picosecond and
Nanosecond Excitation
L. Angeloni, A. Chiari, M. Colocci, F. Fermi, M. Gurioli, R. Querzoli and A.
Vinattieri
Nonlinearities, Coherence and Dephasing in Layered GaSe and in CdSe Surface Layer 233
J. Hvam and C. Dörnfeld

Excitons in II-VI Compound Semiconductor Superlattices:
A Range of Possibilities with ZnSe Based Heterostructures 243
A.V. Nurmikko, R.L. Gunshor and L.A. Kolodziejski
Biexcitons in ZnSe Quantum Wells 251
A. Mysyrowicz, D. Lee, Q. Fu, A.V. Nurmikko, R.L. Gunshor and L.A.
Kolodziejski
Biexcitonic Nonlinearity in Quantum Wires
L. Bányai, I. Galbraith and H. Haug
Ultrafast Dynamics of Excitons in GaAs Single Quantum Wells
J. Kuhl, A. Honold, L. Schultheis and C.W. Tu
Transient Optical Nonlinearities in Multiple Quantum Well Structures 279
A. Miller, R.J. Manning and P.K. Milsom
Excitons in Thin Films
R. Del Sole and A. D'Andrea
Band Structure Engineering of Non-Linear Response in Semiconductor Superlattices 301
M. Jaros, L.D.L. Brown, and R.J. Turton

Plasma Nonlinearities in Low Dimensions

Spectral Holeburning and Four-Wave Mixing in InGaAs/InP Quantum Wells			
J. Hegarty, K. Tai and W.T. Tsang			
Excitonic Enhancement of Stimulated Recombination in GaAs/AlGaAs			
Multiple Quantum Wells			
J.L. Oudar			
Carrier Relaxation and Recombination in (GaAs)/(AlAs) Short Period Superlattices	331		
E. Göbel, R. Fischer, G. Peter, W.W. Rühle, J. Nagle, and K. Ploog			
Picosecond and Subpicosecond Luminescence of GaAs/GaAlAs Superlattices	341		
B. Deveaud, B. Lambert, A. Chomette, F. Clerot, A. Regreny, J. Shah, T.C. Da	men		
and B. Sermage			
The Electron-Hole Plasma in Quasi Two-Dimensional and Three-Dimensional			
Semiconductors			
C. Klingshirn, Ch. Weber, D.S. Chemla, D.A.B. Miller, J.E. Cunningham, C.	Ell,		
and H. Haug			
Optical Spectroscopy on Two- and One-Dimensional Semiconductor Structures	361		
A. Forchel, G. Tränkle, U. Cebulla, H. Leier, and B.E. Maile			
Participants	375		
Index	381		