Skip to main content

Site-Directed Mutagenesis and the Mechanism of Flavoprotein Disulphide Oxidoreductases

  • Chapter
Protein Structure and Engineering

Part of the book series: NATO ASI Series ((NSSA,volume 183))

  • 102 Accesses

Abstract

Glutathione plays a critical role in the maintenance of reduced thiol groups in the cell and is of particular importance in the biosynthesis of DNA [for a review, see Holmgren, 1985]. Glutathione itself is maintained in a reduced form at the expense of NADPH by the action of the enzyme glutathione reductase (EC 1.6.4.2):

$${\text{GSSG }} + {\text{ NADPH }} + {\text{ }}{{\text{H}}^ + } = {\text{ 2GSH }} + {\text{ AD}}{{\text{P}}^ + }$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berry, A., Scrutton, N.S. and Perham, R.N., 1989, Switching kinetic mechanism and putative proton donor by directed mutagenesis of glutathione reductase, Biochemistry 28:1264.

    Article  Google Scholar 

  • Brown, N. L., Ford, S. J., Pridmore, D. and Fritzinger, D. C., 1983, Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase, Biochemistry 22:4089.

    Article  Google Scholar 

  • Creighton, T.E., 1988, Disulphide bonds and protein stability, BioEssays 8:57.

    Article  Google Scholar 

  • Deonarain, M.P., Berry, A., Scrutton, N.S. and Perham, R.N., 1989, Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of His-439 and Tyr-99, Biochemistry x in press.

    Google Scholar 

  • Fox, B. and Walsh, C.T., 1982, Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reductionOactive disulphide, J. Biol Chem. 257:2498.

    Google Scholar 

  • Fox, B. and Walsh, C.T., 1983, Mercuric reductase: Homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide, Biochemistry 22:4082.

    Article  Google Scholar 

  • Greer, S. and Perham, R.N., 1986, Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein disulphide oxidoreductases, Biochemistry 25:2736.

    Article  Google Scholar 

  • Holmgren, A., 1985, Thioredoxin, Annu. Rev. Biochem. 54:237.

    Article  Google Scholar 

  • Jaenicke, R., 1987, Folding and association of proteins, Progress in Biophys. and Mol. Biol. 49:117.

    Article  Google Scholar 

  • Karplus, P.A. and Schulz, G.E., 1987, Refined structure of glutathione reductase as 1.54 Å resolution, J. Mol. Biol. 195:701.

    Article  Google Scholar 

  • Karplus, P.A., Pai, E.F. and Schulz, G.E., 1989, A crystallographic study of the glytathione binding site of glytathione reductase at 0.3nm resolution, Eur. J. Biochem. 178:693.

    Article  Google Scholar 

  • Krauth-Siegel, R.L., Blatterspiel, R., Saleh, M., Schulz, G.E., Schirmer, R.H. and Untucht-Grau, R., 1982, Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain, Eur. J. Biochem. 121:259.

    Article  Google Scholar 

  • Krauth-Siegel, R.L., Enders, B., Henderson, G.B., Fairlamb, A.H. and Schirmer, H.R., 1987, Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme, Eur. J. Biochem. 164:123.

    Article  Google Scholar 

  • Mannervik, B., 1973, A branching mechanism of glutathione reductase, Biochem. Biophys. Res. Commun. 53:1151.

    Article  Google Scholar 

  • Matthews, R. G., Ballou, D. P., Thorpe, C. and Williams, C. H., Jr., 1977, Ion pair formation in pig heart lipoamide dehydrogenase. Rationalization of pH profiles for reactivity of oxidized enzyme with dihydrolipoamide and 2-electron-reduced enzyme with lipoamide and iodoacetamide, J. Biol. Chem. 252:3199.

    Google Scholar 

  • Packman, L.C. and Perham, R.N., 1982, An amino acid sequence in the active site of lipoamide dehydrogenase from Bacillus stearothermophilus, FEBS Lett. 139:155.

    Article  Google Scholar 

  • Pai, E.F. and Schulz, G.E., 1983, The catalytic mechanism of glytathione reductase as derived from X-ray diffraction analyses of reaction intermediates, J. Mol. Biol. 258:1751.

    Google Scholar 

  • Perham, R.N., Harrison, R.A. and Brown, J.P., 1978, The lipoamide dehydrogenase component of the 2-oxo acid dehydrogenase multienzyme complexes of Escherichia coli, Biochem. Soc. Trans. 6:47.

    Google Scholar 

  • Perham, R.N., Packman, L.C. and Radford, S.E., 1987, 2-Oxo acid dehydrogenase multienzyme complexes: in the beginning and halfway there, in: “Kreb’s citric acid cycle -half a centry and still turning,” J. Kay and P.D.J. Weitzman, eds., Biochem. Soc. Symp. 54:67.

    Google Scholar 

  • Perry, L.J., and Wetzel, R., 1986, Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme, Biochemistry 25:733.

    Article  Google Scholar 

  • Reed, L.J., 1974, Multienzyme complexes, Ace. Chem. Res. 7:40.

    Article  Google Scholar 

  • Rice, D.W., Schulz, G.E. and Guest, J.R., 1984, Structural relationship between glutathione reductase and lipoamide dehydrogenase, J. Mol. Biol. 174:483.

    Article  Google Scholar 

  • Rüssel, M. and Model, P., 1988, Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulphide oxidoreductases, J. Biol. Chem. 263:9015.

    Google Scholar 

  • Sauer, R.T., Hehir, K., Stearman, R.S., Weiz, M.A., Jeitler-Nilsson, A., Suchanek, E.G., and Pabo, C.O., 1986, An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of λ-repressor, Biochemistry 25:5992.

    Article  Google Scholar 

  • Schierbeek, A.J., Swarte, M.B.A., Dijksta, B.W., Vriend, G., Read, R.J., Hol, W.G.J., Drenth, J. and Betzel, C., 1989, X-ray structure of lipoamide dehydrogenase from Azotobacter vinelandii determined by a combination of molecular and isomorphous replacement techniques, J. Mol. Biol. 206:365.

    Article  Google Scholar 

  • Scrutton, N.S., Berry, A. and Perham, R.N., 1987, Purfication and characterization of glutathione reductase encoded by a cloned and over-expressed gene in Escherichia coli, Biochem. J. 245:875.

    Google Scholar 

  • Scrutton, N.S., Berry, A. and Perham, R.N., 1988, Engineering of an intersubunit disulphide bridge in glutathione reductase from Escherichia coli, FEBS Lett. 24:46.

    Article  Google Scholar 

  • Shames, S.L., Fairlamb, A.H., Cerami, A. and Walsh, C.T., 1986, Purification and characterization of trypanothione reductase from Crithidiafasciculata, a newly discovered member of the family of disulphide-containing flavoprotein reductases, Biochemistry 25:3519.

    Article  Google Scholar 

  • Shames, S.L., Kimmel, B.E., Peoples, O.P., Agabian, N. and Walsh, C.T., 1988, Trypanothione reductase of Trypanosoma congolense: Gene isolation, primary sequence determination, and comparison to glutathione reductase, Biochemistry 27:5014.

    Article  Google Scholar 

  • Shaw, W.V., 1987, Protein Engineering. The design, synthesis and characterization of fictitious proteins, Biochem. J. 246:1.

    Google Scholar 

  • Stephens, P.E., Lewis, H.M., Darlison, M.G. and Guest, J.R., 1983, Nucleotide sequence of the lipoamide dehydrogenase gene of Escherichia coli K12, Eur. J. Biochem. 135:519.

    Article  Google Scholar 

  • Thieme, R., Pai, E.F., Schirmer, R.H. and Schulz, G.E., 1981, Three-dimensional structure of glutathione reductase at 2 Å resolution J. Mol. Biol. 151:763.

    Article  Google Scholar 

  • Wells, J.A. and Powers, D.B., 1986, In vivo formation and stability of engineered disulfide bonds in subtilisin, J. Biol. Chem. 261:6564.

    Google Scholar 

  • Wetzel, R., Perry, L.J., Baase, W.A. and Becktel, W.J., 1988, Disulfide bonds and thermal stability in T4 lysozyme, Proc. Natl. Acad. Sci. U.S.A. 85:401.

    Article  ADS  Google Scholar 

  • Williams, C.H., Jr., 1976, Flavin containing dehydrogenases, in: “The Enzymes” 3rd edn., P.D. Boyer, ed., Academic Press, New York. 13:89.

    Google Scholar 

  • Williams, C.H., Jr., Arscott, L.D. and Schulz, G.E., 1982, Amino acid sequence homology between pig heart lipoamide dehydrogenase and human erythrocyte glutathione reductase, Proc. Natl. Acad. Sci. U.S.A. 79:2199.

    Article  ADS  Google Scholar 

  • Wong, K.K., Vanoni, M.A. and Blanchard, J.S., 1988, Glutathione reductase: Solvent equilibrium and kinetic isotope effects, Biochemistry 27:7091.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Perham, R.N., Berry, A., Scrutton, N.S., Deonarain, M.P. (1989). Site-Directed Mutagenesis and the Mechanism of Flavoprotein Disulphide Oxidoreductases. In: Jardetzky, O., Holbrook, R. (eds) Protein Structure and Engineering. NATO ASI Series, vol 183. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5745-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5745-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5747-6

  • Online ISBN: 978-1-4684-5745-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics