Skip to main content

Mechanism of Inhibition of Glycolysis by Vanadate

  • Chapter
Phosphate and Mineral Homeostasis

Abstract

Vanadate is a well known inhibitor of the Na+, K+-ATPase (1,2). In addition to the effects on the sodium pump, vanadium compounds have been shown to inhibit acid phosphatase, alkaline phosphatase and adenylate kinase (3,4) as well as several of the enzymes in the glycolytic pathway (5), including glyceraldehyde-3-posphate dehydrogenase (6) phosphoglucomutase and phosphoglyceromutase (7–10). Since vanadate can adopt a stable trigonal bipyramidal structure which resembles phosphate, it could inhibit enzyme activity by replacing phosphate as a substrate in transfer or release reactions and lead to the formation of unstable analogues (5–7). This hypothesis, nevertheless, may not completely explain the inhibitory effect of vanadate on glycolytic enzymes. An alternative mechanism may be the influx of extracellular calcium into cells by inhibition of Na+, K+-ATPase (11,12) or Ca++-ATPase (11, 12). This would decrease the cell requirements for ATP (thus, decreasing the rate of glycolysis) by reduction in the activity of the ATPases or inhibition of phophofructokinase, pyruvate kinase or pyruvate carboxylase in the glycolytic pathway (13, 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaugé, L.A., and I.M. Glynn. Commercial ATP containing traces of vanadate alters the response of (Na, K)–ATPase to external potassium. Nature, London. 272: 551–552, (1978).

    Article  Google Scholar 

  2. Cantley, L.C.Jr., L. Josephson, R. Warner, M. Yanagisaya, C. Lechene and G. Guidotti. Vanadate is a potent (Na, K)–ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem. 252: 7421–7423, (1977).

    Google Scholar 

  3. Lopez, V., T. Stevens, and R.N. Lindquist. Vanadium ion inhibition of alkaline phosphatase catalized phosphate ester hydrolysis. Arch. Biochem. Biophys. 175: 31–38, (1976).

    Article  Google Scholar 

  4. Choata, G.L., and T.E. Mansour. Inhibition of sheep heart phosphofructokinase by orthovanadate. Fed. Proc. 37: 1433, (1978).

    Google Scholar 

  5. Simons, T.J.B. Vanadate–a new tool for biologist. Nature. 281: 337–338, 1979.

    Article  Google Scholar 

  6. De Master, E.G., and R.A. Mitchell. A comparison of arsenate and vanadate as inhibitors or uncouplers of mitochondrial and glycolytic energy metabolism. Biochemistry 12: 3616–3621, (1973).

    Article  Google Scholar 

  7. Climent, F., R. Bartrons, G. Pons, and J. Carreras. Effect of vana-date on phosphoryl transfer enzymes involved in glucose metabolism. Biochem. Biophys. Res. Commun. 101: 570–576, (1981).

    Article  Google Scholar 

  8. Carreras, J., and R. Bartrons. Vanadate inhibits 2,3-diphosphoglycerate dependent phosphoglycerate mutases but does not affect the 2,3-bisphosphoglycerate indepent phosphoglycerate mutases. Biochem. Biophys. Res. Commun. 96: 1267–1273, (1980).

    Article  Google Scholar 

  9. Carreras, J., F. Climent, R. Bartrons, and G. Pons. Effect of vanadate on the formation and stability of the phosphoenzyme forms of 2,3-bisphosphoglycerate dependent phosphoglycerate mutase and of phosphoglucomutase. Biochem. Biophys. Acta. 705: 238–242, (1982).

    Article  Google Scholar 

  10. Vives-Corrons, J. L1., J.M. Jou, A. Ester, and M. Ibars. Vanadate increases oxygen affinity and affects enzyme activities and membrane properties or erythocytes. Biochem. Biophys. Res. Commun. 103: 111–117, (1981).

    Google Scholar 

  11. Benabe, J.E., M.A. Cruz-Soto, and M. Martinez-Maldonado. Critical role of extracellular calcium in vanadate-induced renal vasoconstriction. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F317 - F322, (1984).

    Google Scholar 

  12. Varecka, L. and E. Carafoli. Vanadate-induced movements of Ca2+ and K+ in human red blood cells. J. Biol. Chem. 257: 7414–7421, (1982).

    Google Scholar 

  13. Epstein, F.H. Calcium and the kidney. Am. J. Med. 45: 700–714, (1968).

    Article  Google Scholar 

  14. Dousa, T.P., and H. Valtin. Cellular actions of vasopressin in the mammalian kidney. Kidney Int. 10: 46–63, (1976).

    Article  Google Scholar 

  15. Macara, I.G., K. Kustin, and L.C. Cantley Jr. Glutathione reduces cytoplasmic vanadate mechanism and physiological implications. Biochem. Biophys. Acta. 629: 95–106, (1980).

    Article  Google Scholar 

  16. Henderson, T.O., A.J.R. Costello, and A. Omachi. Pho?hate metabolism in intact human erythrocytes: determination by P Nuclear Magnetic Resonance spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 71: 2487–2490, (1974).

    Article  Google Scholar 

  17. Mood R.B., and J.H. Richards. Determination of intracellular pH by P magnetic resonance. J. Biol. Chem. 248: 7276–7278, (1973).

    Google Scholar 

  18. Omachi, A., W.E. Marshall, and T.O. Henderson. Phosphate metabolism in intact human erythrocytes investigated with phosphorus nuclear magnetic resonance (P NMR) spectroscopy. In. Bio-molecular structure and function. P.F. Agris, ed., Academic Press, New York, Pp. 225–231, (1978).

    Google Scholar 

  19. Klahr, S. The effect of diuretics on kidney intermediary metabolism. In Methods in Pharmacology. M. Martinez-Maldonado, ed., Plum Press, New York, Pp. 167–197, (1976).

    Google Scholar 

  20. Jorgensen, P.L. Sodium and potassium ion pump in kindey tubules. Physiol. Rev. 60: 864–917, (1980).

    Google Scholar 

  21. Simonoff, M., Y. Llabador, A. MacKenzie-Peers, and G.N. Simonoff. Vanadium in human serum, as determined by neutron activation analysis. Clin. Chem. 30: 1700–1703, (1984).

    Google Scholar 

  22. Stroop, S.D., G. Helinek, and H.L. Greene. More sensitive flame-less atomic absorption analysis of vanadium in tissue and serum. Clin. Chem. 28: 79–82, (1982).

    Google Scholar 

  23. Chasteen, N.D. The biochemistry of vanadium. In Structure and Bonding. Copper, molybdenum, and vanadium in biological systems. M.J. Clarke, J.B. Goodenough, P. Hemmrich, J.A. Ibers, C.K. Jorgensen, J.B. Neilands, D. Reineir, R. Weiss, and R.J.P. Williams eds. Springer Verlag, Berlin, Pp 103–136, (1983).

    Google Scholar 

  24. Lôpez-Novoa, J.M., V. Mayol and M. Martinez-Maldonado. Renal actions of orthovanadate in the dog. Proc. Soc. Exp. Biol. Med. 170: 418–426, (1982).

    Google Scholar 

  25. Lôpez-Novoa, J.M., J.C. Garcia, M.A. Cruz-Soto, J.E. Benabe, and M. Martinez-Maldonado. Effect of sodium orthovanadate on renal renin secretion in-vivo. J. Pharmacol. Exp. Ther. 222: 447–451, (1982).

    Google Scholar 

  26. Cruz-Soto, M.A., J.E. Benabe, J.M. López-Novoa, and M. M.rtinez-Maldonado. Na+, K+ - ATPase inhibitors and renin release: relationship to calcium. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol 16: F650 - F655, (1984).

    Google Scholar 

  27. Gordon, E.E., and de Hartog, M. Localization and characterization of the inhibitory action of ethacrynic acid on glycolysis. Biochem. Pharmacol. 20: 2339–234, (1971).

    Article  Google Scholar 

  28. Heinz, A., K.A. Rubinson, and J.J. Grantham. The transport and accumulation of oxyvanadium compounds in human erythrocytes in vitro. J. Lab. Clin. Med. 100: 593–612, (1982).

    Google Scholar 

  29. Ninfali, P., A. Accorsi, A. Fazi, R. Palma, and G. Fornaini. Vanadate affects of glycose metabolism of human erythrocytes. Arch. Biochem. and Biophys. 226: 441–447, (1983).

    Article  Google Scholar 

  30. Williamson, J.R. General features of metabolic control as applied to the erythrocyte in Advances in Experimental Medicine and Biology Vol. 6. G.J. Brewer, ed., Plenum Press, New York, Pp. 117–136, (1970).

    Google Scholar 

  31. Beutler, E. Energy metabolism and maintenance of erythrocytes Chapt. 35 in Hematology 3r edition. W.J. Wiliams, E. Beutler, A.J. Erslev, and M.A. Lichtman, eds. McGraw Hill, New York, Pp. 331–345, (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Benabe, J.E., Echegoyen, L.A., Martínez-Maldonado, M. (1986). Mechanism of Inhibition of Glycolysis by Vanadate. In: Massry, S.G., Olmer, M., Ritz, E. (eds) Phosphate and Mineral Homeostasis. Advances in Experimental Medicine and Biology, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5206-8_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5206-8_64

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5208-2

  • Online ISBN: 978-1-4684-5206-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics