Skip to main content

Membrane Fluidity and Receptor Function

  • Chapter
Membrane Fluidity

Part of the book series: Biomembranes ((B,volume 12))

Abstract

Membrane processes can be grossly divided into those driven by metabolic energy (active processes) and those carried out through diffusion (passive processes). Most of the membranal active processes are associated with polymerization-depolymerization processes in networks of muscle-type proteins underlying the inner membrane surface. The passive processes are spontaneous and comply with the thermodynamics of diffusion where the membrane lipid fluidity is a critical determinant. In many of the passive processes, the rates are determined by the lipid fluidity, and modulation of the membrane fluidity is directly reflected in the overall product. Manipulation of membrane processes by in vitro or in vivo alteration of lipid composition and fluidity was termed passive modulation (Shinitzky, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, G. R., and Mazo, R. M., 1980, Models for boundary effects on molecular rotation in membranes, Biopolymers 19:1597.

    Article  Google Scholar 

  • Austin, R. H., Chan, S. S., and Jovin, T. M., 1979, Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy, Proc. Natl. Acad. Sci. USA 76:5650.

    Article  PubMed  CAS  Google Scholar 

  • Avivi, A., Tramontano, D., Ambesi-Impiombato, L. S., and Schlessinger, J., 1981, Adenosine 3′,5′ monophosphate modulates thyrotropin receptor clustering and thyrotropin activity Science 214:1237.

    Article  PubMed  CAS  Google Scholar 

  • Barenholz, Y., and Thompson, T. E., 1980, Sphingomyelin in bilayers and biological membranes, Biochim. Biophys. Acta 604:129.

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal, R., Klausner, R. D., and Weinstein, J. N., 1980, Voltage-dependent translocation of the asialoglycoprotein receptor across lipid membranes, Nature (London) 288:333.

    Article  CAS  Google Scholar 

  • Borochov, H., and Shinitzky, M., 1976, Vertical displacement of membrane proteins mediated by changes in microviscosity, Proc. Natl. Acad. Sci. USA 73:4526.

    Article  PubMed  CAS  Google Scholar 

  • Carpantier, J. L., Gorden, P., Ambardt, M., Van Obberghen, E., Kahn, C. R., and Orci, L., 1978, 125I-inulin binding to cultured human lymphocytes: Initial localization and fate of hormone determined by quantitative electron microscopic autoradiography, J. Clin. Invest. 61:1057.

    Article  Google Scholar 

  • Cherry, R. J., 1979, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559:289.

    PubMed  CAS  Google Scholar 

  • Cherry, R. J., Muller, U., Holenstein, C., and Heyn, M. P., 1980, Lateral segregation of proteins induced by cholesterol in bacteriorhodopsin-phospholipid vesicles, Biochim. Biophys. Acta 596:145.

    Article  PubMed  CAS  Google Scholar 

  • Cogan, U., and Schachter, D., 1981, Asymmetry of lipid dynamics in human erythrocyte membranes studied with impermeant fluorophores, Biochemistry 20:6396.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, R. A., 1977, Abnormalities of cell membrane fluidity in the pathogenesis of disease, N. Engl.J. Med. 197:371.

    Google Scholar 

  • Cooper, R. A., 1978, Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells, J. Supramol. Struct. 8:413.

    Article  PubMed  CAS  Google Scholar 

  • Corda, D., Pasternak, C, and Shinitzky, M., 1982, Increase in lipid microviscosity of unilamellar vesicles upon the creation of transmembrane potential, J. Membr. Biol. 65:235.

    Article  PubMed  CAS  Google Scholar 

  • Elson, E. L., and Schlessinger, J., 1979, Long range motions on cell surfaces, in: The Neu-rosciences—Fourth Study Program (F. O. Schmidt and F. Worden, eds.), pp. 691–701, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Galla, H. J., Hartmann, W., Theilen, U., and Sackmann, E., 1979, On two-dimensional passive random walk in lipid bilayers and fluid pathways in biomembranes, J. Membr. Biol. 48:215.

    Article  PubMed  CAS  Google Scholar 

  • Gerson, D. F., 1982, Interfacial free energies of the positioning and aggregation of membrane proteins, Biophys. J. 37:145.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, R., and Katchalski, E., 1971, Kinetic behavior of a two-enzyme membrane carrying out a consecutive set of reactions, J. Theor. Biol. 32:243.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J. L., Anderson, R. G. W., and Brown, M. S., 1979, Coated pits, coated vesicles and receptor mediated endocytosis, Nature (London) 279:679.

    Article  CAS  Google Scholar 

  • Gorden, P., Carpantier, J., Cohen, S., and Orci, L., 1978, Epidermal growth factor: Morphological demonstration of binding internalization and lysosomal association in human fibro-blasts, Proc. Natl. Acad. Sci. USA 75:5025.

    Article  PubMed  CAS  Google Scholar 

  • Hackenbrock, C. R., 1981, Lateral diffusion and electron transfer in the mitochondrial inner membrane, Trends Biochem. Sci. 6:151.

    Article  CAS  Google Scholar 

  • Haigler, H. T., McClanna, J. A., and Cohen, S., 1979, Direct visualization of the binding and internalization of a territin conjugate of epidermal growth factor in human carcinoma cells A-431,7. Cell Biol. 81:382.

    Article  CAS  Google Scholar 

  • Hanski, E., Rimon, G., and Levitzki, A., 1979, Adenylate cyclase activation by the β-adrenergic receptors as a diffusion-controlled process, Biochemistry 18:846.

    Article  PubMed  CAS  Google Scholar 

  • Heron, D. S., Shinitzky, M., Hershkovitz, M., and Samuel, D., 1980, Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes, Proc. Natl. Acad. Sci. USA 77:7463.

    Article  PubMed  CAS  Google Scholar 

  • Heron, D. S., Israeli, M., Hershkovitz, M., Samuel, D., and Shinitzky, M., 1981, Lipid-induced modulation of opiate receptors in mouse brain membranes, Eur. J. Pharmacol. 72:361.

    Article  PubMed  CAS  Google Scholar 

  • Hershkovitz, M., Heron, D., Samuel, D., and Shinitzky, M., 1982, Modulation of protein phos-phorylation and receptor binding in brain membranes by changes in lipid microviscosity: Implications for aging, Prog. Brain Res. 56:419.

    Article  Google Scholar 

  • Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082.

    Article  PubMed  CAS  Google Scholar 

  • Houslay, M. D., Dipple, I., and Elliott, K. R. F., 1980, Guanosine 5′-triphosphate andguanosine 5′-[βα-imido] triphosphate effect a collisional coupling mechanism between glucagon receptor and catalytic unit of adenylate cyclase, Biochem. J. 186:649.

    PubMed  CAS  Google Scholar 

  • Kleeman, W., and McConnell, H. M., 1976, Interactions of proteins and cholesterol with lipid bilayer membranes, Biochim. Biophys. Acta 419:206.

    Article  Google Scholar 

  • Levi, A., Shechter, Y., Neufeld, E. J., and Schlessinger, J., 1980, Mobility, clustering and transport of nerve growth factor in embryonal sensory cells and in a sympathetic neuronal cell line, Proc. Natl. Acad. Sci. USA 77:3461.

    Google Scholar 

  • Luly, P., and Shinitzky, M., 1979, Gross structural changes in isolated liver cell plasma membranes upon binding of insulin, Biochemistry 18:445.

    Article  PubMed  CAS  Google Scholar 

  • Luly, P., Crifo, C, and Strom, R., 1979, Effect of insulin on lateral diffusion of pyrene in rat liver plasma membrane, Experientia 35:1300.

    Article  PubMed  CAS  Google Scholar 

  • Massa, E. M., Morezo, R. D., Bloj, B., and Farias, R. N., 1975, Hormone action and membrane fluidity: Effect of insulin and cortisol on the rate coefficient of rat erythrocyte membrane-bound acetylcholine esterase and Na-K-ATPase, Biochem. Biophys. Res. Commun. 66:115.

    Article  PubMed  CAS  Google Scholar 

  • Montai, M., Darzon, A., and Trissl, H. W., 1977, Transmembrane channel formation in rho-dopsin-containing bilayer membranes, Nature (London) 267:221.

    Article  Google Scholar 

  • Moreno, H., and Farias, R. N., 1976, Insulin decreases bacterial membrane fluidity: Is it a general event in its action?, Biochem. Biophys. Res. Commun. 72:74.

    Article  PubMed  CAS  Google Scholar 

  • Muller, C. P., and Shinitzky, M., 1981, Passive shedding of erythrocyte antigens induced by membrane rigidification, Exp. Cell Res. 136:52.

    Article  Google Scholar 

  • Puri, J., Shinitzky, M., and Lonai, P., 1980, Concomitant increase in antigen binding and in T-cell membrane lipid viscosity induced by the lymphocyte activating factor, LAF, J. Immunol. 124:1937.

    PubMed  CAS  Google Scholar 

  • Richter, P. H., and Eigen, M., 1974, Diffusion-controlled reaction rates in spheroidal geometry: Application to receptor-operator association and membrane-bound enzymes, Biophys. Chem. 2:255.

    Article  PubMed  CAS  Google Scholar 

  • Rimon, G., Hanski, E., Braun, S., and Levitzki, A., 1978, Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity, Nature (London) 276:394.

    Article  CAS  Google Scholar 

  • Rosenberg, P. H., 1979, Effects of halothane, lidocaine and 5-hydroxytryptamine on fluidity of synaptic plasma membranes, myelin membranes and synaptic mitochondrial membranes, Arch. Pharmacol. 307:199.

    Article  CAS  Google Scholar 

  • Saffman, P. G., and Delbruck, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. USA 72:3111.

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger, J., 1980, The mechanism and role of hormone-induced clustering of membrane receptors, Trends Biochem. Sci. 5:210.

    Article  CAS  Google Scholar 

  • Schlessinger, J., Shechter, Y., Willingham, M. C, and Pastan, I., 1978, Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells, Proc. Natl. Acad. Sci. USA 75:2659.

    Article  PubMed  CAS  Google Scholar 

  • Schneeweiss, F., Naquira, D., Rosenheck, K., and Schneider, A. S., 1979, Cholinergic stimulants and excess potassium ion increase the fluidity of plasma membranes isolated from adrenal chromaffin cells, Biochim. Biophys. Acta 555:460.

    Article  PubMed  CAS  Google Scholar 

  • Seelig, J., and Seelig, A., 1980, Lipid conformation in model membranes and biological membranes, Q. Rev. Biophys. 13:19.

    Article  PubMed  CAS  Google Scholar 

  • Segal, D. M., Taurog, J. T., and Metzger, H., 1977, Dimeric immunoglobulin E serves as a unit signal for mast cell degranulation, Proc. Natl. Acad. Sci. USA 74:2993.

    Article  PubMed  CAS  Google Scholar 

  • Shih, J. C, and Young, H., 1978, The alteration of serotonin binding sites in aged human brain, Life Sci. 23:1441.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M., 1979, The concept of passive modulation of membrane responses, Dev. Cell Biol. 4:173.

    Google Scholar 

  • Shinitzky, M., 1984, Membrane fluidity and cellular functions, in: Physiology of Membrane Fluidity, (M. Shinitzky, ed.), CRC Press, in press.

    Google Scholar 

  • Shinitzky, M., and Henkart, P., 1979, Fluidity of cell membranes: Current concepts and trends, Int. Rev. Cytol. 60:121.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M., and Yuli, I., 1982, Lipid fluidity at the submacroscopic level: Determination by fluorescence polarization, Chem. Phys. Lipids 30:261.

    Article  CAS  Google Scholar 

  • Shinitzky, M., Skornick, Y., and Haran-Ghera, N., 1979, Effective tumor immunization induced by cells of elevated membrane microviscosity, Proc. Natl. Acad. Sci. USA 76:5313.

    Article  PubMed  CAS  Google Scholar 

  • Tolkovsky, A. M., and Levitzki, A., 1978, Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes, Biochemistry 17:3795.

    Article  PubMed  CAS  Google Scholar 

  • Weber, G., 1972, Ligand binding and internal equilibria in proteins, Biochemistry 11:865.

    Article  Google Scholar 

  • Weinstein, J. N., Blumenthal, R., Van Renswoude, J., van Kempfe, C, and Klausner, R. D., 1982, Charge clusters and the orientation of membrane proteins, J. Membr. Biol. 66:203.

    Article  PubMed  CAS  Google Scholar 

  • Wunderlich, F., Ronai, V., Speth, J., Seelig, J., and Blumen, A., 1975, Thermotropic lipid clustering in Tetrahymena membranes, Biochemistry 14:3730.

    Article  PubMed  CAS  Google Scholar 

  • Yuli, I., Wilbrandt, W., and Shinitzky, M., 1981, Glucose transport through cell membranes of modified lipid fluidity, Biochemistry 20:4250.

    Article  PubMed  CAS  Google Scholar 

  • Yuli, I., Incerpi, S., Luly, P., and Shinitzky, M., 1982, Insulin stimulation of glucose and amino acid transport in mouse fibroblasts of elevated membrane micro viscosity, Experientia 38:114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Shinitzky, M. (1984). Membrane Fluidity and Receptor Function. In: Kates, M., Manson, L.A. (eds) Membrane Fluidity. Biomembranes, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4667-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4667-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4669-2

  • Online ISBN: 978-1-4684-4667-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics