Skip to main content

The Application of Restriction Fragment Length Polymorphism to Plant Breeding

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM,volume 8))

Abstract

With the advent of the use of restriction endonucleases to map gene sequences, molecular geneticists have encountered widespread polymorphism for the location of restriction sites among individuals of a species. This observation is not surprising considering the number of supposedly neutral mutations encountered at the protean level in recent years. The genetic heterogeneity, called restriction fragment length polymorphism (RFLP), has been used to map linked genes (1) and is a potential tool in prenatal diagnosis (2). Considerable attention has been placed on the use of RFLPs in constructing a genetic map of the human genome to establish linkages with loci determining genetic diseases (3). The purpose of this paper is to point out the possible uses of this technique in agronomic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grodzicker, T., Williams, J., Sharp, P. and Sambrook, J. (1974) Cold Spring Harbor Symp. Quant. Biol. 39, 439–445.

    Article  Google Scholar 

  2. Geever, R.F., Wilson, L.B., Nallaseth, F.S., Milner, P.F., Bittner, M. and Wilson, J.T. (1981) Proc. Nat. Acad. Sci. U.S.A. 78, 5081–5085.

    Article  CAS  Google Scholar 

  3. Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. (1980) Amer. J. Hum. Genet. 32, 314–331.

    PubMed  CAS  Google Scholar 

  4. Orkin, S.H., Kazazain, H.H., Antonarakis, S.E., Goff, S.C., Boehm, C.D., Sexton, J.P., Waber, P.G. and Giardina, P.J.V. (1982) Nature 296, 627–631.

    Article  PubMed  CAS  Google Scholar 

  5. Langley, C.H., Montgomery, E.A. and Quattlebaum, W.F. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 5631–5635.

    Article  CAS  Google Scholar 

  6. Zachar, Z. and Bingham, P.M. (1982) Cell 30, 529–541.

    Article  PubMed  CAS  Google Scholar 

  7. Wyman, A.R. and White, R. (1980) Proc. Nat. Acad. Sci. U.S.A. 77, 6754–6758.

    Article  CAS  Google Scholar 

  8. Bell, G.I., Selby, M.J. and Rutter, W.J. (1982) Nature 295, 31–35.

    Article  PubMed  CAS  Google Scholar 

  9. Burr, B. and Burr, F.A. (1982) Cell 24, 977–986.

    Article  Google Scholar 

  10. Page, D., de Mattinville, B., Barber, D., Wyman, A., White, R., Francke, U. and Botstein, D. (1982) Proc. Nat. Acad. Sci. U.S.A. 79, 5352–5356.

    Article  CAS  Google Scholar 

  11. King, R.C. (ed.) (1974) Handbook of Genetics, Vol. 2, Plenum Press, New York, NY.

    Google Scholar 

  12. Evola, S.V., Burr, F.A. and Burr, B. (1982) (submitted for publication).

    Google Scholar 

  13. Goss, S.J. (1978) Int. Rev. Cytol., Suppl. 8, 127–169.

    Article  CAS  Google Scholar 

  14. Kirsch, I.R., Morton, C.C., Nakahara, K. and Leder, P. (1982) Science 216, 301–303.

    Article  PubMed  CAS  Google Scholar 

  15. Roman, H. and Ullstrup, A.J. (1951) Agron. J. 43, 450–454.

    Article  Google Scholar 

  16. Beckett, J.B. (1978) J. Hered. 69, 27–36.

    Google Scholar 

  17. Sears, E.R. (1966) in Chromosome Manipulations and Plant Genetics (Riley, R. and Lewis, K.R., eds.), pp. 29–45, Oliver and Boyd, Edinburgh.

    Google Scholar 

  18. Sears, E.R. (1962) Genetics 47, 933.

    Google Scholar 

  19. García-Olmedo, R., Carbonero, P. and Jones, B.L. (1982) Adv. Cereal Sci. Technol. 5, 1–47.

    Google Scholar 

  20. O’Mara, J.G. (1940) Genetics 25, 401–408.

    PubMed  Google Scholar 

  21. Bielig, L.M. and Driscoll, C.J. (1971) Can. J. Genet. Cytol. 13, 424–436.

    Google Scholar 

  22. Islam, K.M.R., Shepherd, K.W. and Sparrow, B.H.B. (1981) Heredity 46, 161–174.

    Article  Google Scholar 

  23. Sears, E.R. (1953) Amer. Natur. 87, 245–252.

    Article  Google Scholar 

  24. Burr, B. and Burr, F.A. (1981) Genetics 98, 143–156.

    PubMed  CAS  Google Scholar 

  25. Stuber, C.W. and Goodman, M.M. (1982) Allozme genotypes for popular and historically important lines of corn, U.S. Agric. Res. Ser. (in press).

    Google Scholar 

  26. Beckmann, J.S. and Soller, M. (1982) (submitted for publication).

    Google Scholar 

  27. Shepherd, K.W. and Mayo, G.M.E. (1972) Science 175, 375–380.

    Article  PubMed  CAS  Google Scholar 

  28. Engels, W.R. (1981) Proc. Nat. Acad. Sci. U.S.A. 78, 6329–6333.

    Article  CAS  Google Scholar 

  29. Hudson, R.R. (1982) Genetics 100, 711–719.

    PubMed  CAS  Google Scholar 

  30. Sprague, G.F. (1982) Plant Breeding Research Forum, Johnston, IA.

    Google Scholar 

  31. Kleese, R.A. and Duvick, D.N. (1980) in Genetic Improvement of Crops: Emergent Techniques (Rubenstein, I., Gengenbach, B., Phillips, R. L. and Green, C.E., eds.), pp. 24–43, Univ. of Minn. Press, Minneapolis, MN.

    Google Scholar 

  32. Sax, K. (1923) Genetics 8, 552–560.

    PubMed  CAS  Google Scholar 

  33. Smith, H.H. (1937) Genetics 22, 361–375.

    PubMed  CAS  Google Scholar 

  34. Thoday, J.M. (1961) Nature 191, 368–370.

    Article  Google Scholar 

  35. Stuber, C.W., Moll, R.H., Goodman, M.M., Schaffer, H.E. and Weir, B. (1980) Genetics 95, 225–236.

    PubMed  CAS  Google Scholar 

  36. Stuber, C.W., Goodman, M.M. and Moll, R.H. (1982) Crop Sci. (in press).

    Google Scholar 

  37. Tanksley, S.D., Medina-Filho, H. and Rick, C.M. (1981) Theor. Appl. Genet. 60, 291–296.

    Article  Google Scholar 

  38. Leigh Brown, A.J. and Langley, C.H. (1979) Proc. Nat. Acad. Sci. U.S.A. 76, 2381–2384.

    Article  CAS  Google Scholar 

  39. Langley, C.H., Voeller, R.A., Leigh Brown, A.J., Ohnishi, S., Dickson, B. and Montgomery, E. (1981) Genetics 99, 151–156.

    PubMed  CAS  Google Scholar 

  40. Abrahamson, S., Wurgler, F.E., DeJongh, C. and Unger Meyer, H. (1980) Environ. Mutagenesis 2, 447–453.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Burr, B., Evola, S.V., Burr, F.A., Beckmann, J.S. (1983). The Application of Restriction Fragment Length Polymorphism to Plant Breeding. In: Setlow, J.K., Hollaender, A. (eds) Genetic Engineering. Genetic Engineering, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4556-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4556-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4558-9

  • Online ISBN: 978-1-4684-4556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics