Skip to main content

Bifurcations, Fluctuations and Dissipative Structures

  • Chapter
Nonlinear Phenomena in Physics and Biology

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 75))

  • 243 Accesses

Abstract

The purpose of the present lectures is to discuss the emergence of structures from dissipative processes in macroscopic systems. This class of phenomena, generally studied by means of nonequilibrium thermodynamics, is quite different from solitons and other structures appearing in nonlinear Hamiltonian systems, which were covered by many lecturers at this school.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

A. General References

  • De Groot, S., and Mazur, P., 1962, “Nonequilibrium Thermodynamics,” North-Holland, Amsterdam.

    Google Scholar 

  • Glansdorff, P., and Prigogine, I., 1971, “Thermodynamic Theory of Structure, Stability and Fluctuations,” Wiley-Interscience, London.

    MATH  Google Scholar 

  • Nicolis, G., and Prigogine, I., 1977, “Self-Organization in Non-equilibrium Systems,” Wiley-Interscience, New York.

    Google Scholar 

For the mathematical analyses, we mainly refer to

  • Feller, W., 1967 (first edition), 1971 (second edition), “An Introduction to Probability Theory and its Applications,” Wiley, New York.

    Google Scholar 

  • Minorski, N., 1962, “Nonlinear Oscillations,” Van Nostrand, Princeton.

    Google Scholar 

  • Sattinger, D., 1973, “Topics in Stability and Bifurcation Theory,” Lecture Notes in Mathematics 309, Springer-Verlag, Berlin.

    Google Scholar 

  • Sattinger, D., 1979, “Group Theoretic Methods in Bifurcation Theory,” Lecture Notes in Mathematics 762, Springer-Verlag, Berlin.

    Google Scholar 

B. Specialized References

  • Abramowitz, M., and Stegun, I., 1964, “Handbook of Mathematical Functions,” Dover Publications, New York.

    MATH  Google Scholar 

  • Ahlers, G., and Waiden, R.W., 1980, Turbulence near the onset of convection, Phys. Rev. Lett., 44: 445.

    Article  ADS  Google Scholar 

  • Andronov, A., Vitt, A., and Khaikin, O., 1966, “Theory of Oscillators,” Pergamon Press, Oxford.

    MATH  Google Scholar 

  • Arnold, L., 1973, “Stochastic Differential Equations,” Wiley, New York.

    Google Scholar 

  • Arnold, L., 1979, in: “Dynamics of Synergetic Systems,” H. Haken, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Bedeaux, D., Mazur, P., and Pasmanter, R., 1977, The ballast resistor; an electrothermal instability in a conducting wire I; the nature of the stationary states, Physica, 86 A:355.

    Google Scholar 

  • Bell, G., and Primbley, P., 1978, “Theoretical Immunology,” Dekker, New York.

    Google Scholar 

  • Berge, P., Dubois, M., Manneville, P., and Pomeau, Y., 1980, Intermittency in Rayleigh-Benard convection, Jour, de Physique — Lettres, 41: 341.

    Article  Google Scholar 

  • Berggren, K., and Huberman, B., 1978, Peierls state far from equilibrium, Phys. Rev. B, 18: 3369.

    Article  ADS  Google Scholar 

  • Boiteux, A., Goldbeter, A., and Hess, B., 1975, Control of oscilla-ting glycolysis of yeast by stochastic, periodic and steady source of substrate: A model and experimental study, Proc. of the Nat. Acad, of Sciences of the USA, 72: 3829.

    Article  ADS  Google Scholar 

  • Borckmans, P., Dewel, G., and Walgraef, D., 1980, Concepts in the theory of nonequilibrium phase transitions, Jour, de Physique — Collogue C4, 41: 101.

    MathSciNet  Google Scholar 

  • Briggs, T., and Rauscher, W., 1973, An oscillating iodine clock, Jour, of Chem. Educ., 50: 496.

    Article  ADS  Google Scholar 

  • Caroli, B., Caroli, C., and Roulet, B., 1979, Diffusion in a bistabl potential: a systematic WKB treatment, Jour, of Stat. Phys., 21: 415.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S., 1961, “Hydrodynamic and Hydromagnetic Stability,” Oxford University Press.

    MATH  Google Scholar 

  • Chorin, A., Marsden, J., and Smale, S., 1977, “Turbulence Seminar (Berkeley 1976/77),” Lecture Notes in Mathematics 615, Springer- Verlag, Berlin.

    Google Scholar 

  • Clavin, P., and Guyon, E., 1978, La flamme, La Recherche, 94: 954.

    Google Scholar 

  • Cole, J., 1968, “Perturbation Methods in Applied Mathematics,” Blaisdell Publishing Company, Waltham, Mass.

    Google Scholar 

  • Creel, C.L., and Ross, J., 1976, Multiple stationary states and hysteresis in a chemical reaction, Jour, of Chem. Phys., 65: 3779

    Article  ADS  Google Scholar 

  • Decker, D., and Keller, H., 1980, Multiple limit point bifurcation, Jour, of Math. Anal, and its Appl., 75: 417.

    Article  MathSciNet  MATH  Google Scholar 

  • Degn, H., 1972, Oscillating chemical reactions in homogeneous phase, Jour, of Chem. Educ., 49: 302.

    Article  ADS  Google Scholar 

  • de Pasquale, F., and Tombesi, P., 1979, The decay of an unstable equilibrium state near a “critical point”, Phys. Lett., 72 A: 7.

    Google Scholar 

  • Dewel, G., Walgraef, D., and Borckmans, P., 1977, Renormalization group approach to chemical instabilities, Zeits. fur Phys., B 28: 235.

    Article  ADS  Google Scholar 

  • Dubois, M., and Berge, P., 1980, Experimental evidence for the oscillators in a convective biperiodic regime, Phys. Lett., 76 A: 53.

    Google Scholar 

  • Eigen, M., and Schuster, P., 1979, “The Hypercycle, a Principle of Natural Self-Organization,” Springer-Verlag, Berlin.

    Google Scholar 

  • Ermentrout, G., and Cowan, J., 1978, Large scale spatially organized activity in neuronal nets, SIAM Jour, on Appl. Math., 38: 1.

    Article  MathSciNet  Google Scholar 

  • Erneux, T., and Herschkowitz-Kaufman, M., 1977, Rotating waves as asymptotic solutions of a model chemical reaction, Jour, of Chem. Phys. 66: 248.

    Article  ADS  Google Scholar 

  • Erneux, T., and Hiernaux, J., 1980, Transition from polar to dupli-cate patterns, Jour, of Math. Biol., 9: 193.

    Article  MathSciNet  MATH  Google Scholar 

  • Field, R., 1975, Limit cycle oscillations in the reversible oregonator, Jour, of Chem. Phys., 63: 2289.

    Article  ADS  Google Scholar 

  • Fife, P., 1978, Asymptotic states for equations of reacting and diffusion, Bull, of the Amer. Math. Soc., 84: 693.

    Article  MathSciNet  MATH  Google Scholar 

  • Fraedrich, K., 1978, Structural and stochastic analysis of a o-dimensional climate system, Quart. Jour, of the Royal Meteor. Soc., 104: 461.

    Article  ADS  Google Scholar 

  • Gardiner, C., 1976, A comment on chemical Langevin equations, Jour. of Stat. Phys., 15: 451.

    Article  MathSciNet  ADS  Google Scholar 

  • Gerisch, A., and Hess, B., 1974, Cyclic-AMP-controlled oscillations in suspended Dictyostelium cells: their relation to morphogenetic cell interactions, Proc. of thé Nat. Acad, of Sci. of the USA, 71: 2118.

    Article  ADS  Google Scholar 

  • Gierer, A., and Meinhardt, H., 1972, A theory of biological pattern foundation, Kybernetik, 12: 30.

    Article  Google Scholar 

  • Goldbeter, A., 1980, Models for oscillations and excitability in biochemical systems, in: “Mathematical Models in Molecular and Cellular Biology,” L.A. Segel, ed., Cambridge Univ. Press.

    Google Scholar 

  • Golubitsky, M., and Schaeffer, D., 1979, A theory for imperfect bifurcation via singularity theory, Commun, on Pure and Appl. Math., 32: 21.

    Article  MathSciNet  MATH  Google Scholar 

  • Grossman, S., 1976, Langevin forces in chemically reacting multi- component fluids, Jour, of Chem. Phys., 65: 2007.

    Google Scholar 

  • Haberman, R., 1977, On the behavior of spatially dependent nonlinear wave envelopes, SIAM Jour, on Appl. Math., 32: 154.

    Article  MathSciNet  MATH  Google Scholar 

  • Haberman, R., 1979, Slowly varying jump and transition phenomena ssociated with algebraic bifurcation problems, SIAM Jour. on Appl. Math., 57: 69.

    Article  MathSciNet  Google Scholar 

  • Haken, H., 1978, “Synergetics, an Introduction,” Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Haken, H., 1980, editor, “Dynamics of Synergetic Systems,” Proceedings of the International Symposium of Synergetics (Bielefeld 1979 ), Springer-Verlag, Berlin.

    Google Scholar 

  • Hentschel, H., 1978, Application of the dynamic renormalization group to non-equilibrium instabilities: The k = o hard mode transition, Zeits. fur Phys., B 31: 401.

    Google Scholar 

  • Horsthemke, 1980, “Proceedings of the XVIIth Solvay Conference on Physics (Washington 1980),” G. Nicolis, G. Dewel and J.W. Turner, ed., Wiley, N.Y.

    Google Scholar 

  • Jacobs, J.A., 1975, “The Earth’s Core,” Academic Press, London.

    Google Scholar 

  • Joseph, D., 1973, Remarks about bifurcation and stability of quasi- periodic solutions which bifurcate from periodic solutions of the Navier-Stokes equation, in: “Nonlinear Problems in the Physical Sciences and Biology,” I. Stakgold, D. Joseph, and D. Sattinger, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Joseph, D., and Sattinger, D., 1972, Bifurcating time-periodic solutions and their stability, Archive for Rational Mechanics and Analysis, 45: 79.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Karlin, S., and Mc Gregor, J., 1957, The differential equations of birth-and-death processes, and the Stieltjes moment problem, Trans, of the Amer. Math. Soc., 85: 489.

    Article  MathSciNet  MATH  Google Scholar 

  • Kauffman, S., and Wille, J., 1975, The mitotic oscillator in Physarum polycephalum, Jour, of Theor. Biol., 55: 47.

    Article  Google Scholar 

  • Kuramoto, Y., and Tsuzuki, T., 1975, On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach, Prog, of Theor. Phys., 54: 687.

    Article  ADS  Google Scholar 

  • Kurtz, T.G., 1976, Limit theorems and diffusion approximations for density dependent Markov chains, Math. Prog. Study, 5: 67.

    Article  MathSciNet  Google Scholar 

  • Kurtz, T.G., 1978, Strong approximation theorems for density dependent Markov chains, Stoch. Proc. and Their Appl., 6: 223.

    Article  MathSciNet  MATH  Google Scholar 

  • Landau, L., and Lifschitz, E., 1959, “Fluid Mechanics,” Addison- Wesley, Reading, Mass.

    Google Scholar 

  • Landauer, R., 1962, Fluctuations in bistable tunnel diode circuits, Jour, of Appl. Phys., 33: 2209.

    Article  ADS  Google Scholar 

  • Lanford III, 0., 1973, Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens, in: “Nonlinear Problems in the Physical Sciences and Biology,” I. Stakgold, D. Joseph and D. Sattinger, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Langer, J.S., 1980, Eutectic solidification and marginal stability, Phys. Rev. Lett., 44: 1023.

    Google Scholar 

  • Langer, J.S., 1980, Instabilities and pattern formation in crystal growth, Rev, of Mod. Phys., 52: 1.

    Article  ADS  Google Scholar 

  • Lefever, R., Herschkowitz-Kaufman, M. and Turner, J.W., 1977, Dissipative structures in a soluble non-linear reaction-diffusion system, Phys. Lett., 60 A: 389.

    Google Scholar 

  • Lefever, R., and Garay, R., 1978, A mathematical model of the immune surveillance against cancer, in: “Theoretical Immunology,” G. Bell and P. Primblely, ed., Dekker, N.Y.

    Google Scholar 

  • Lorenz, E., 1963, Deterministic nonperiodic flow, Jour, of Atmos. Sci., 20: 130.

    Google Scholar 

  • Lovett, R., Ortoleva, P., and Ross, J., 1978, Kinetic instabilities in first order phase transitions, Jour, of Chem. Phys., 69: 947.

    Article  ADS  Google Scholar 

  • Ma, S.K., 1976, “Modern Theory of Critical Phenomena,” Benjamin, Reading, Mass.

    Google Scholar 

  • Malek Mansour, M., and Nicolis, G., 1975, A master equation description of local fluctuations, Jour, of Stat. Phys., 13: 197.

    Article  MathSciNet  ADS  Google Scholar 

  • Malek Mansour, M., 1978, Sur la description stochastique des systemes de non-equilibre, Jour, de Phys. — Collogue C5, 39: 79.

    Google Scholar 

  • Malek Mansour, M. and Van Den Broeck, C., 1980a, Inhomogeneous fluctuations in reaction-diffusion systems, Preprint.

    Google Scholar 

  • Malek Mansour, M., Van Den Broeck, C., Nicolis, G., and Turner, J.W., 1980, Asymptotic properties of markovian master equations, Ann, of Phys., in press.

    Google Scholar 

  • Mandel, P., 1979, Lasers with saturable absorbers driven by a coherent field, Zeits. für Phys., B 33: 205.

    Google Scholar 

  • Manneville, P., and Pomeau, Y., 1980, Different ways to turbulence in dissipative dynamical systems, Physica, 1 D:219.

    Google Scholar 

  • Matijevic, E., 1978, “Surface and Colloid Science,” Vol. 10, Plenum Publishing Corporation.

    Book  Google Scholar 

  • Matsuo, K., 1977, Relaxation mode analysis of nonlinear birth and death processes, Jour, of Stat. Phys., 16: 169.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • May, R., 1976, Simple mathematical models with very complicated dynamics, Nature, 261: 459.

    Article  ADS  Google Scholar 

  • Miller, C.A., 1978, Stability of interfaces, in: “Surface and Colloid Science,” Vol. 10, E. Matijevic, ed., Plenum, N.Y.

    Google Scholar 

  • Misra, B., Courbage, M., and Prigogine, I., 1979, From deterministic dynamics to probabilistic descriptions, Proc. of thè Nat. Acad. of Sci. (USA), 76: 3607.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Moreau, M., 1980, Note on the reaction rate in non-ideal mixtures, Physica, 102 A:389.

    Google Scholar 

  • Mori, H., 1965, Transport, collective motion and brownian motion, Prog, of Theor. Phys., 33: 423.

    Article  ADS  MATH  Google Scholar 

  • Mori, H., 1975, Stochastic processes of macroscopic variables, Prog, of Theor. Phys., 53: 1617.

    Google Scholar 

  • Nakamura, K., 1977, Nonlinear fluctuations associated with instabilities in dissipative systems, Prog, of Theor. Phys., 57: 1874.

    Article  ADS  Google Scholar 

  • Nakaya, J., 1954, “Snow Crystals,” Harvard University Press, Cambridge.

    Google Scholar 

  • Nicolis, G., and Turner, J.W., 1977, Stochastic analysis of a non-equilibrium phase transition: some exact results, Physica, 89 A:326.

    Google Scholar 

  • Nicolis, G., and Turner, J.W., 1979, Effects of fluctuations on bifurcation phenomena, Ann, of the N.Y. Acad, of Sci., 316: 251.

    Article  MathSciNet  ADS  Google Scholar 

  • Nicolis, G., and Malek Mansour, M., 1980, Systematic analysis of the multivariate master equation for a reaction-diffusion system, Jour, of Stat. Phys., 22: 495.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Nicolis, G., Dewel, G., and Turner, J.W., 1980, ed., “Proceedings of the XVIIth Solvay Conference on Physics (Washington 1980),” Wiley, New York.

    Google Scholar 

  • Normand, C., Pomeau, Y., and Velarde, M., 1977, Convective instabilities: a physicist’s approach, Rev, of Mod. Phys., 49: 581.

    Article  MathSciNet  ADS  Google Scholar 

  • Prigogine, I., and Lefever, R., 1968, Symmetry breaking instabilities in dissipative systems. II, Jour, of Chem. Phys., 48: 1695.

    Article  ADS  Google Scholar 

  • Resibois, P., and de Leener, M., 1977, “Classical Kinetic Theory of Fluids,” Wiley-Interscience, New York.

    Google Scholar 

  • Rice, S., Freed, K., and Light, J., 1972, ed., “Statistical Mechanics: New Concepts, New Problems, New Applications,” Proceedings of the Sixth IUPAP Conference on Statistical Mechanics ( Chicago 1971 ), University of Chicago Press.

    Google Scholar 

  • Richter, F., 1973, Sea floor spreading, Rev. of Geophys. and Space Phys., pp. 233-287.

    Google Scholar 

  • Risken, H., and Nummedal, K., 1968, Self-pulsing in lasers, Jour. of Appi. Phys., 39: 4662.

    Article  ADS  Google Scholar 

  • Roux, J.C., Rossi, A., Bachelart, S., and Vidal, C., 1980, Representation of a strange attractor from an experimental study of chemical turbulence, Phys. Lett., 77 A: 391.

    Google Scholar 

  • Ruschin, S. and Bauer, S., 1979, Bistability, hysteresis and critical behavior of a CO2 laser, with SFg intracavity as a saturable absorber, Chem. Phys. Lett., 66: 100.

    Article  ADS  Google Scholar 

  • Scalapino, D., and Huberman, B., 1977, Onset of an inhomogeneous state in a nonequilibrium superconducting film, Phys. Rev. Lett., 39: 1365.

    Article  ADS  Google Scholar 

  • Schloegl, F., 1971, On stability of steady states, Zeits. fur Phys., 243: 303.

    Article  ADS  Google Scholar 

  • Schloegl, F., 1972, Chemical reaction models for nonequilibrium phase transitions, Zeits. fur Phys., 253: 147.

    Article  ADS  Google Scholar 

  • Schnakenberg, J., 1976, Network theory of microscopic and macroscopic behavior of master equation systems, Rev, of Mod. Phys., 48: 571.

    Article  MathSciNet  ADS  Google Scholar 

  • Schuss, Z., and Matkowsky, B., 1979, The exit problem: A new approach to diffusion across potential barriers, SIAM Jour. on Appl. Math., 36: 604.

    Article  MathSciNet  MATH  Google Scholar 

  • Segel, LA., 1980, ed., “Mathematical Models in Molecular and Cellular Biology,” Cambridge University Press.

    Google Scholar 

  • Stakgold, I., Joseph, D., and Sattinger, D., 1973, ed., “Nonlinear Problems in the Physical Sciences and Biology,” Proceedings of a Battelle Summer Institute, Seattle, July 3-28, 1972, Lecture Notes in Mathematics 322, Springer-Verlag, Berlin.

    Google Scholar 

  • Suzuki, M., 1976, Scaling theory of nonequilibrium systems near the instability point. I. General aspects of transient phenomena, Prog, of Theor. Phys., 56: 77.

    Article  ADS  MATH  Google Scholar 

  • Suzuki, M., 1976, Scaling theory of nonequilibrium systems near the instability point. II. Anomalous fluctuation theorems in the extensive region, Prog, of Theor. Phys., 56: 477.

    Article  ADS  Google Scholar 

  • Suzuki, M., 1980, in: “Proc. of the XVIIth Conf. on Phys.,” G. Nicolis, G. Dewel and J.W. Turner, ed., Wiley, New York.

    Google Scholar 

  • Thorn, R., 1972, “Stabilite Structurelle et Morphogenese,” Benjamin, New York.

    Google Scholar 

  • Turner, J.S., 1980, Private communication.

    Google Scholar 

  • Turner, J.W., 1979, Stationary and time-dependent solutions of master equations in several variables, jLn: “Dynamics of Synergetic Systems,” H. Haken, ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Tyson, J., and Kauffman, S., 1975, Control of mitosis by a continuous biochemical oscillation: Synchronization; Spatially inhomo-geneous oscillations, Jour, of Math. Biol., 1: 289.

    Article  MATH  Google Scholar 

  • Tyson, J., 1976, “The Belousov-Zhabotinski Reaction,” Lecture Notes in Biomathematics 10, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Van Den Broeck, C., Horsthemke, W., and Malek Mansour, M., 1977, On the diffusion operator of the multivariate master equation, Physica, 89 A:339.

    Google Scholar 

  • Van Den Broeck, C., Houard, J., and Malek Mansour, M., 1980, Chapman-Enskog development of the multivariate master equation, Physica, 101 A:167.

    Google Scholar 

  • Van Der Pol, B., 1930, Oscillations sinusoidales et de relaxation., L’Onde Electrique, 9: 245, 293.

    Google Scholar 

  • Van Kampen, N.G., 1977, A soluble model for diffusion in a bistable potential., Jour, of Stat. Phys., 17: 71.

    Article  ADS  Google Scholar 

  • Velarde, M., and Normand, C., 1980, Convection, Scientific American, July.

    Google Scholar 

  • Vidal, C., and Roux, J., 1980, La turbulence chimique existetelle?, La Recherche, 107: 66.

    Google Scholar 

  • Walgraef, D., Dewel, G., and Borckmans, P., 1980, Fluctuations near nonequilibrium phase transitions to nonuniform states, Phys. Rev., A 21: 397.

    Article  ADS  Google Scholar 

  • Walgraef, D., Dewel, G., and Borckmans, P., 1981 (in press), Non- equilibrium phase transitions and chemical instabilities, Advanc. in Chem. Phys.

    Google Scholar 

  • Zhabotinski, A., 1974, “Self-Oscillating Concentrations,” Nauka, Moscow.

    Google Scholar 

  • Zwanzig, R., 1972, Collective modes in classical liquids, in: “Statistical Mechanics: New Concepts, New Problems, New Applications,” S. Rice, K. Freed and J. Light, ed., U. of Chicago Press.

    Google Scholar 

  • Zwanzig, R., 1972, Nonlinear dynamics of collective modes, in: “Statistical Mechanics: New Concepts, New Problems, New Applications,” S. Rice, K. Freed and J. Light, ed., U. of Chicago Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Nicolis, G. (1981). Bifurcations, Fluctuations and Dissipative Structures. In: Enns, R.H., Jones, B.L., Miura, R.M., Rangnekar, S.S. (eds) Nonlinear Phenomena in Physics and Biology. NATO Advanced Study Institutes Series, vol 75. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4106-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4106-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4108-6

  • Online ISBN: 978-1-4684-4106-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics