Skip to main content

Lipoproteins in Nutrition and Transport

  • Chapter
Book cover Principles of Applied Clinical Chemistry

Abstract

Before discussing the lipoproteins, it is necessary to identify the nature of the lipids being transported by these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading

Texts

  • Eisenberg, S. Ed., Lipoprotein Metabolism, S. Karger, New York (1979).

    Google Scholar 

  • Greten, H., Ed., Lipoprotein Metabolism, Springer Verlag, Berlin (1976).

    Google Scholar 

  • Nelson, G. J., Blood Lipids and Lipoproteins: Quantitation and Metabolism, Wiley-Interscience, New York (1972).

    Google Scholar 

  • Burton, R. M., and Guerra, F. C., Eds., Fundamentals of Lipid Chemistry, Bi-Science International, Webster Groves, Missouri, 63119 (1974).

    Google Scholar 

  • Gurr, A. I., and James, A. T., Lipid Biochemistry, 2nd ed., Cornell University Press, Ithaca, N.Y. (1976).

    Google Scholar 

  • Peeters, T., Ed., Lipoprotein Molecules, Plenum Press, New York (1978).

    Google Scholar 

  • Snyder, Ed., Lipid Metabolism in Mammals, 2 Vols., Plenum Press, New York (1977).

    Google Scholar 

  • Marinette, G., Ed., Lipid Chromatographic Analysis, 3 vols., Marcel Dekker, New York (1976).

    Google Scholar 

  • Kommel, K., and Bohmer, R., Lipid Absorption: Biochemical and Clinical Aspects, University Park Press, Baltimore (1976).

    Google Scholar 

  • Christie, W. W., Lipid Analysis, Pergamon Press, Elmsford, New York (1973).

    Google Scholar 

  • Wakil, S. J., Ed., Lipid Metabolism, Academic Press, New York (1970).

    Google Scholar 

  • Amsell, G. B., Ed., Form and Function of the Phospholipids, Elsevier, New York (1973).

    Google Scholar 

  • Deluca, M. F., Ed., The Fat-Soluble Vitamins, Vol. 2, Handbook of Lipid Research, Plenum Press, New York (1978).

    Google Scholar 

Review Articles

  • Saudek, C. D., and Eder, H. A., Lipid metabolism in diabetes mellitus, Am. J. Med. 66: 843–852 (1979).

    Google Scholar 

  • Boulton, T. J., Craig, I. H., and Hill, G., Screening of cord blood low density lipoprotein cholesterol in the diagnosis of familial hypercholesterolemia. A study of 2000 infants, Acta Paediatr. Scand. 68: 363–370 (1979).

    Google Scholar 

  • Brunzell, J. D., Chait, A., and Bierman, E. L., Pathophysiology of lipoprotein transport, Metabolism 27: 1198–1127 (1978).

    Google Scholar 

  • Erkelens, D. W., Functional aspects of proteins involved in lipid transport., Neth. J. Med. 21: 129–137 (1978).

    Google Scholar 

  • Osborne, J. C., Jr., and Brewer, H. B., Jr., The Plasma lipoproteins, Ada. Protein Chem. 31: 253–337 (1977).

    Google Scholar 

  • Smith, L. C., Pownall, H. J., and Gotto, A. M., Jr., The plasma lipoproteins: Structure and metabolism., Ann. Rev. Biochem. 47: 751–757 (1978).

    Google Scholar 

  • Schaefer, E. J., Eisenberg, S., and Levy, R. I., Lipoprotein apoprotein metabolism, J. Lipid Res. 19: 667–687 (1978).

    Google Scholar 

  • Scanu, A. M., Edelstein, C., and Keim, P., Serum Lipoproteins, in The Plasma Proteins, F. W. Putnam, Ed., Vol. I. Academic Press, New York, (1975), pp. 317–399.

    Google Scholar 

  • Levy, R. I., The plasma lipoproteins: An Overview, Prog. Clin. Biol. Res. 5: 25–42 (1976).

    Google Scholar 

  • Lewis, B., Plasma lipoprotein interrelationships, Biochem. Rev. 5: 589–601 (1977).

    Google Scholar 

  • Lloyd, J. K., and Fosbrooke, A. S., Plasma lipoproteins, in Structure and Function of Plasma Proteins, A. C. Allison, Ed., Plenum Press, New York (1974).

    Google Scholar 

  • Karlin, J. B., Juhn, D. J., Goldberg, R., and Rubenstein, A. H., Recent progress in the development of radioimmunoassays for human serum lipoproteins, Ann. Clin. Lab. Sci. 8: 142–154 (1978).

    Google Scholar 

  • Kottke, B. A., and Subbiah, M. T., Pathogenesis of atherosclerosis: Concepts based on animal models, Mayo Clin. Proc. 53: 35–48 (1978).

    Google Scholar 

  • Rapacz, J., Lipoprotein immunogenetics and atherosclerosis, Am. J. Med. Genet. 1: 377–405 (1978).

    Google Scholar 

  • Morrisett, J. D., Jackson, R. L., and Gotto, A. M., Jr., Lipid-protein interactions in the plasma proteins, Biochim. Biophys. Acta 472: 93–133 (1977).

    Google Scholar 

  • Segura, R., and Gotto, A. M., Lipid and lipoprotein abnormalities in renal disease, Perspect. Nephrol. Hypertens. 3: 159–200 (1976).

    Google Scholar 

  • World Health Organization, Memorandum. Classification of hyperlipidemias and hyperlipoproteinemias, Circulation 45: 501–508 (1972).

    Google Scholar 

  • Havel, R. J., Classification of the hyperlipidemias, Ann. Rev. Med. 28: 195–199 (1977).

    Google Scholar 

  • Andersen, G. E., Classification of inherited hypo-and hyperlipidemia, Acta Paediatr. Scand. 67: 543–547 (1978).

    Google Scholar 

  • Robinson, D. S., The clearing factor lipase and its action in the transport of fatty acids between the blood and tissues, Adv. Lipid Res. 1: 133–182 (1963).

    Google Scholar 

  • Hayes, T. M., Diabetes mellitus and hyperlipidaemia, J. Human Nuts. 31: 337–343 (1977).

    Google Scholar 

  • Blecher, M., Cell surface receptors in health and disease, Clin. Chem. 25: 11–19 (1979).

    Google Scholar 

References

  1. Drekter, I. J., Bernhard, A., and Leopold, J. S., Extraction of cholesterol from blood serum, J. Biol. Chem. 110: 541–549 (1935).

    Google Scholar 

  2. Bloor, W. R., Oxidative determination of phospholipid (lecithin and cephalin) in blood and tissues, J. Biol. Chem. 82: 273–286 (1929).

    Google Scholar 

  3. Schoenheimer, R., and Sperry, W. M., Micromethod for determination of free and combined cholesterol, J. Biol. Chem. 106: 745–760 (1934).

    Google Scholar 

  4. Folch, J., Lees, M., and Stanley, G. H. S., A simple method for the isolation and purification of total lipds from animal tissues, J. Biol. Chem. 226: 497–509 (1957).

    Google Scholar 

  5. Chedid, A., Haux, P., and Natelson, S., Use of thin-layer chromatography on silica gel for serum lipid fractionation and measurement in the routine laboratory, Clin. Chem. 18: 384–390 (1972).

    Google Scholar 

  6. Nelson, W. R., and Natelson, S., Improved staining characteristics of serum lipids after halogenation and esterification of thin-layer chromatograms, Clin. Chem. 23: 835–841 (1977).

    Google Scholar 

  7. Keys, A., Anderson, J., II, Fidanza, F., Keys, M. H., and Swahn, B., Effects of diet on blood lipids in man, particularly cholesterol and lipoproteins, Clin. Chem. 1:34–52 (1955).

    Google Scholar 

  8. Keys, A., Mickelsen, O., Miller, E. V. O., Hayes, E. R., and Todd, R. L., The concentration of cholesterol in the blood serum of normal man and its relation to age, J. Clin. Invest. 29: 1347–1353 (1950).

    Google Scholar 

  9. Klein, P. D., and Janssen, E. T., The fractionation of cholesterol esters by silicic acid chromatography, J. Biol. Chem. 234: 1417–1420 (1959).

    Google Scholar 

  10. Gyorgy, P., Rose, C. S., and Chu, E. H., Serum cholesterol and lipoproteins in premature infants: Effect of different formulas, Am. J. Dis. Child. 106: 165169 (1963).

    Google Scholar 

  11. Carlson, L. A., Serum lipids in normal men, Acta Med. Scand. 167: 377–397 (1960).

    Google Scholar 

  12. Wood, P. D. S., Shioda, R., and Kinsell, L. W., Dietary regulation of cholesterol metabolism, Lancet 2: 604–607 (1966).

    Google Scholar 

  13. Miehinen, T. A., Ahrens, E. A., and Grundy, S. M., Quantitative isolation and gas liquid chromatography analysis of total dietary and fecal neutral steroids, J. Lipid Res. 6: 411–424 (1965).

    Google Scholar 

  14. Saifer, A., and Goldman, L., The free fatty acids bound to human serum albumin, J. Lipid Res. 2: 268–270 (1961).

    Google Scholar 

  15. Rosseneu-Motreff, M., Baton, V., DeClerq, B., Vandamme, D., and Peeters, H., Size and shape determination of native and defatted bovine serum albumin monomers. I. Chemical characterization of lipids bound to native and defatted bovine serum albumin, J. Biochem. 68: 369–377 (1970).

    Google Scholar 

  16. Haahti, E. O. A., Nikkaki, T., and Koskinen, O. Fatty acid composition of human cerumen (earwax), Scand. J. Clin. Lab. Invest. 12: 249–250 (1960).

    Google Scholar 

  17. Wenke, M., Effects of catecholamines on lipid metabolism, Adv. Lipid Res. 4: 69–105 (1966).

    Google Scholar 

  18. Carlson, L. A., Liljedahl, S. O., and Wirsén, C., Blood and tissue changes in the dog during and after excessive free fatty acid mobilization: A biochemical and morphological study, Acta Med. Scand. 178: 81–102 (1965).

    Google Scholar 

  19. Jungas, R. L., Role of cyclic-3’,5’-AMP in the response of adipose tissue to insulin, Proc. Natl. Acad. Sci. USA 56: 757–763 (1966).

    Google Scholar 

  20. Eaton, R. P., Glucagon and lipoproteins, Metabolism 25: Suppl 1, 1415–1417 (1976).

    Google Scholar 

  21. Steinberg, D., Catecholamine stimulation of fat mobilization and its metabolic consequence, Pharmacol. Rev. 18: 217–235 (1966).

    Google Scholar 

  22. Rudman, D. L., The mobilization of fatty acids from adipose tissue by pituitary peptides and catecholamines, Ann. N.Y. Acad. Sci. 131: 102–112 (1965).

    Google Scholar 

  23. Vaughan, M., Berger, J. E., and Steinberg, D., Hormone sensitive lipase and monoglyceride lipase activities in adipose tissue, J. Biol. Chem. 239: 401–409 (1964).

    Google Scholar 

  24. Bergstrom, S., and Samuelsson, B., Prostaglandins, Annu. Rev. Biochem. 34: 101–108 (1965).

    Google Scholar 

  25. Bergstrom, S., Prostaglandins: Members of a new hormonal system, Science 157: 382–391 (1967).

    Google Scholar 

  26. Fain, J. N., Effect of dibutyryl-3,5 -AMP, theophylline and norepinephrine on lipolytic action of growth hormone and glucocorticoid in white fat cells, Endocrinology 82: 825–830 (1968).

    Google Scholar 

  27. Rich, C., Bierman, E. L., and Schwartz, I. L., Plasma nonesterified fatty acids in hyperthyroid states, J. Clin. Invest. 38: 275–278 (1959).

    Google Scholar 

  28. Haux, P., and Natelson, S., Microprocedure for serum triglyceride estimation, Microchem. J. 16: 68–76 (1971).

    Google Scholar 

  29. VanHandel, E., and Zilversmit, D. B., Micromethod for the direct determination of serum triglycerides, J. Lab. Clin. Med. 50: 153–157 (1957).

    Google Scholar 

  30. Natelson, S., and Sheid, B., X-ray spectroscopy in the clinical laboratory. IV. Phosphorus; total blood iron as a measure of hemoglobin content, Clin. Chem. 7: 115–129 (1961).

    Google Scholar 

  31. Schönbeck, M., Jakab, T., Risch, D., Werning, C., Lüthy, R., Knob, M., Rosemund, H., and Siegenthaler, W., Serum lipids in healthy people, Med. Klin. 65: 644–649 (1970).

    Google Scholar 

  32. Moline, C., and Barron, E. J., Determination of serum lipids, Clin. Biochem. 2: 321–333 (1969).

    Google Scholar 

  33. Bangham, A. D., Standish, M. M., and Watkins, J. C., Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Biol. 13: 238–252 (1965).

    Google Scholar 

  34. Renauds, S., Role of platelet factor 3 in hypercoagulable states, Thromb. Diath. Haemorrh. Suppl. 56: 11–20 (1973).

    Google Scholar 

  35. Glomset, J. A., Parker, F., Tjaden, M., and Williams, R. H., The esterification in vitro of free cholesterol in human and rat plasma, Biochim. Biophys. Acta 58: 398–406 (1962).

    Google Scholar 

  36. Hofmann, A. F., A physiochemical approach to the intraluminal phase of fat absorption, Gastroenterology 50: 56–64 (1966).

    Google Scholar 

  37. Macheboeuf, M., Researches on the phosphoaminolipids and steroids of serum and blood plasma; entrainment of phospholipids, sterols and sterol derivatives by the different fractions in the course of the fractionation of serum proteins, Bull. Soc. Chim. Biol. 11: 268–293 (1929).

    Google Scholar 

  38. Macheboeuf, M., Researches on the phosphoaminolipides of the steroids in serum and blood plasma; physico-chemical study of the protein fractions richest in phospholipids and steroids, Bull. Soc. Chim. Biol. 11: 485–503 (1929).

    Google Scholar 

  39. Gofman, J. W., Lindgren, F. T., and Elliott, H., Ultracentrifugal studies of lipoproteins of human serum, J. Biol. Chem. 179: 913–919 (1949).

    Google Scholar 

  40. Lindgren, F. T., Jensen, L. C., Wills, R. D., and Freema, N. K., Flotation rates, molecular weights and hydrated densities of low-density lipoproteins, Lipids 4: 337–344 (1969).

    Google Scholar 

  41. Gustafson, A., Alaupovic, P., and Furman, R. H., Studies of the composition and structure of serum lipoproteins: Isolation, purification and characterization of low density lipoproteins, Biochemistry 4: 596–605 (1965).

    Google Scholar 

  42. Fisher, W. R., and Gurin, S., Structure of lipoproteins: Covalently bound fatty acids, Science 143: 362–363 (1964).

    Google Scholar 

  43. Scanu, A. M., Factors affecting lipoprotein metabolism, Adv. Lipid Res. 3: 63–138 (1965).

    Google Scholar 

  44. Gofman, J. W., Glazier, F., Tamplin, A., Strisower, B., and DeLalla, O., Lipoproteins, coronary heart disease and atherosclerosis, Physiol. Rev. 34: 589–607 (1954).

    Google Scholar 

  45. Skipski, V. P., Barclay, M., Barclay, R. K., Fetzer, V. A., Good, J. J., and Archibald, F. M., Lipid composition of human serum lipoproteins., Biochem. J. 104: 340–353 (1967).

    Google Scholar 

  46. Ehnholm, C., Garoff, H., Renkonen, O., and Simons, K., Protein and carbohydrate composition of Lp (a) from human plasma, Biochemistry 11: 3229–3332 (1972).

    Google Scholar 

  47. Utermann, G., Lipp, K., and Wiegandt, H., Studies on the Lp (a) lipoprotein of human serum. IV. the disagregation of the Lp (a)-lipoprotein, Humangenetick 14: 142–149 (1972).

    Google Scholar 

  48. Levy, R. I., Blum, C. B., and Schaefer, E. J., The composition, structure and metabolism of high-density lipoprotein, in Lipoprotein Metabolism, H. Greten, Ed., Springer, Berlin (1976), pp. 56–64.

    Google Scholar 

  49. Scanu, A. M., and Ritter, M. C., The proteins of plasma lipoproteins: Properties and significance, Ada. Clin. Chem. 16: 111–151 (1973).

    Google Scholar 

  50. Brown, W. V., Levy, R. I., and Fredrickson, D. S., Studies of the proteins in human plasma very low density lipoproteins, Biochim. Biophys. Acta 200: 573–575 (1970).

    Google Scholar 

  51. Alaupovic, P., Lee, D. M., and McConathy, W. J., Studies on the composition and structure of plasma lipoproteins: Distribution of lipoprotein families in major density classes of normal human plasma lipoproteins, Biochem. Biophys. Acta 260: 689–707 (1972).

    Google Scholar 

  52. Alaupovic, P., Apolipoproteins and lipoproteins, Atherosclerosis, 13: 141–146 (1971).

    Google Scholar 

  53. Edelstein, C., Lim, C. T., and Scanu, A. M., On the subunit structure of the proteins of human serum high density lipoprotein. I. A study of its major polypeptide component (Sephadex Fraction III), J. Biol. Chem. 247: 58425849 (1972).

    Google Scholar 

  54. Baker, H. N., Delahunty, T., Gotto, A. M., Jr., and Jackson, R. L., The primary structure of high density apo-lipoprotein-glutamine-1, Proc. Natl. Acad. Sci. USA 71: 3631–3634 (1974).

    Google Scholar 

  55. Baker, H. N., Gotto, A. M., Jr., and Jackson, A. M., The primary structure of human plasma high-density apolipoprotein glutamine I (apoA-I): The amino acid sequence and alignment of cyanogen bromide fragments, 14, III and I., J. Biol. Chem. 250: 1345–1353 (1975).

    Google Scholar 

  56. Brewer, H. B., Jr., Fairwell, T., LaRue, A., Ronan, R., Houser, A., and Bronzert, T. J., The amino acid sequence of human apoA-I, an apolipoprotein isolated from high density lipoproteins, Biochem. Biophys. Res. Commun. 80: 623–630 (1978).

    Google Scholar 

  57. Schaefer, E. J., Eisenberg, S., and Levy, R. I., Lipoprotein apoprotein metabolism, J. Lipid Res. 19: 667–687 (1978).

    Google Scholar 

  58. Vitello, L. B., and Scanu, A. M., Studies on human serum high density lipoproteins: Self-association of apolipoprotein A-1 in aqueous solutions, J. Biol. Chem. 251: 1131–1136 (1976).

    Google Scholar 

  59. Lux, S. E., Hirz, R., Shrager, R. I., and Gotto, A. M., The influence of lipid on the conformation of human plasma high density apolipoproteins, J. Biol. Chem. 247: 2598–2606 (1972).

    Google Scholar 

  60. Jackson, R. L., Morrisett, J. D., Gotto, A. M., Jr., and Segrest, J. P., The mechanism of lipid binding by plasma lipoproteins, Mol. Cell. Biol. 6: 43–50 (1975).

    Google Scholar 

  61. Glomset, J. A., Recent studies of the role of the lecithin—cholesterol acyl transferase reaction in plasma lipoprotein metabolism, in Lipoprotein Metabolism, H., Greten, Ed., Springer, Berlin (1976), pp. 28–30.

    Google Scholar 

  62. Brewer, H. B., Lux, S. E., Ronan, R., and John, K. M., Amino acid sequence of human apoLP-Gln-H (ApoA-II): An apolipoprotein isolated from the high density lipoprotein complex, Proc. Natl. Acad. Sci. USA 69: 1304–1308 (1972).

    Google Scholar 

  63. Vitello, L. B., and Scanu, A. M., Studies on human serum high-density lipoproteins: Self-association of human serum apolipoprotein A-II in aqueous solutions, Biochemistry 15: 1161–1165 (1976).

    Google Scholar 

  64. Stone, W. L., and Reynolds, J. A., The self-association of the apo-Gln-I and apo-Gln-II polypeptides of human high density serum lipoproteins, J. Biol. Chem. 250: 8045–8048 (1975).

    Google Scholar 

  65. Morrisett, J. D., Jackson, R. L., and Gotto, A. M., Lipoproteins: Structure and function, Ann. Rev. Biochem. 44: 183–207 (1975).

    Google Scholar 

  66. Chen, C. H., and Aladjem, F., Subunit structure of the apoprotein of human serum low-density lipoprotein, Biochem. Biophys. Res. Commun. 60: 549–554 (1974).

    Google Scholar 

  67. Smith, R., Dawson, J. R., and Tanford, C., The size and number of polypeptide chains in human serum low density lipoprotein, J. Biol. Chem. 247: 3376–3381 (1972).

    Google Scholar 

  68. Hammond, M. G., and Fisher, W., The characterization of a discrete series of low density lipoproteins in the disease hyper-pre-beta lipoproteinemia, J. Biol. Chem. 246: 5454–5465 (1971).

    Google Scholar 

  69. Kostner, G. and Holasek, A., Characterization and quantitation of the apolipoproteins from chyle chylomicrons, Biochemistry 11: 1217–1223 (1972).

    Google Scholar 

  70. Shulman, R. S., Herbert, P. N., Wehrly, K., and Fredrickson, D. S., The complete amino acid sequence of C-I (apo Lp-Ser): An apolipoprotein from human very low density lipoproteins, J. Biol. Chem. 250: 182–190 (1975).

    Google Scholar 

  71. Jackson, R. L., Sparrow, J. T., Baker, H. N., Morrisett, J. D., Tanuton, O. D., and Gotto, A. M., Jr., The primary structure of apolipoprotein-serine, J. Biol. Chem. 249: 5308–5311 (1974).

    Google Scholar 

  72. Soutar, A. K., Garner, C. W., Baker, H. N., Sparrow, J. T., Jackson, R. L., Gotto, A. M., and Smith, L. C., Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin-cholesterol acyltransferase, Biochemistry 14: 3057–3064 (1975).

    Google Scholar 

  73. Gotto, A. M., and Jackson, R. L., Plasma lipoproteins: Recent developments, Adv. Exp. Med. Biol. 82: 15–33 (1977).

    Google Scholar 

  74. Jackson, R. L., Baker, H. N., Gilliam, E. B., and Gotto, A. M., Jr., Primary structure of very low density lipoprotein C-II of human plasma, Proc. Natl. Acad. Sci. USA 74: 1942–1944 (1977).

    Google Scholar 

  75. Brown, W. V., Levy, R. I., and Frederickson, D. S., Further characterization of apolipoproteins from the human plasma very low density lipoproteins, J. Biol. Chem. 245: 6588–6594 (1970).

    Google Scholar 

  76. Havel, R. J., Fielding, C. J., Olivecrona, T., Shore, V. G., Fielding, P. E., and Egelrud, T., Cofactor activity of protein components of human very low density lipoproteins in the hydrolysis of triglycerides by lipoprotein lipase from different sources, Biochemistry 12: 1828–1833 (1973).

    Google Scholar 

  77. Eisenberg, S., Bilheimer, D. W., Lindgren, F. T., et al., On the apoprotein composition of human plasma very low density lipoprotein subfractions, Biochim. Biophys. Acta 260: 329–303 (1972).

    Google Scholar 

  78. Brewer, H. B., Jr., Shulman, R., Herbert, P., Ronan, S., and Wehrly, K., The complete amino acid sequence of alanine apolipoprotein (apoC-III): An apolipoprotein from human plasma very low density lipoproteins, J. Biol. Chem. 249: 4975–4984 (1974).

    Google Scholar 

  79. Kane, J. P., Sata, T., Hamilton, R. L., and Havel, R. J., Apoprotein composition of very low density lipoproteins of human serum, J. Clin. Invest. 56: 1622–1634 (1975).

    Google Scholar 

  80. Kane, J. P., Richards, E. G., and Havel, R. J., Subunit heterogeneity in serum beta lipoprotein, Proc. Natl. Acad. Sci. USA 66: 1075–1082 (1976).

    Google Scholar 

  81. Brown, W. V., and Baginsky, M. I., Inhibition of lipoprotein lipase by an apoprotein of human low-density lipoprotein, Biochem. Biophys. Res. Commun. 46: 375–381 (1972).

    Google Scholar 

  82. Krauss, R. M., Herbert, P. N., Levy, R. I., and Fredrickson, D. S., Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins, Circ. Res. 33: 403–411 (1973).

    Google Scholar 

  83. McConathy, W. J., and Alaupovic, P., Studies on the isolation and partial characterization of apolipoprotein D and lipoprotein D of human plasma, Biochemistry 15: 515–520 (1976).

    Google Scholar 

  84. Kostner, G., Studies on the cofactor requirements for lecithin cholsterol acyl transferase, Scand. J. Clin. Lab. Invest. 33 Suppl.: 19–21 (1974).

    Google Scholar 

  85. Olofsson, S. O., and Gustafson, A., Degradation of high density lipoproteins (HDL) in vitro, Scand. J. Clin. Lab. Invest. 33: Suppl.: 57–62 (1974).

    Google Scholar 

  86. Fielding, C. J., Shore, V. G., and Fielding, P. E., A protein cofactor of lecithin-cholesterol acyltransferase, Biochem. Biophys. Res. Commun. 46: 1493–1494 (1972).

    Google Scholar 

  87. Shore, V. G., and Shore, B., Heterogeneity of human plasma very low density lipoproteins: Separation of species differing in protein components, Biochemistry 12: 502–507 (1973).

    Google Scholar 

  88. Shelburne, F. A., and Quarfordt, S. H., A new apoprotein of human plasma very low density lipoproteins, J. Biol. Chem. 249: 1428–1433 (1974).

    Google Scholar 

  89. Utermann, G., Isolation and partial characterization of an arginine-rich apolipoprotein from human plasma very-low-density lipoproteins: apolipoprotein E, Hoppe-Seyler’s Z. Physiol. Chem. 356: 1113–1121 (1975).

    Google Scholar 

  90. Neubeck, W., and Seidel, D., Direct method for measuring lipoprotein X in serum, Clin. Chem. 21: 853–856 (1975).

    Google Scholar 

  91. Hamilton, J. A., Oppenheimer, N. J., Addleman, R., Clouse, A. O., Cordes, E. H., Steiner, P. M., and Glueck, C. J., High-field 13CNMR studies of certain normal and abnormal human plasma lipoproteins, Science 194: 14241427 (1976).

    Google Scholar 

  92. Berg, K., The Lp system, Ser. Haematol. 1 111–136 (1968).

    Google Scholar 

  93. Ehnholm, C., Garoff, H., Renkonen, O., and Simons, K., Protein and carbohydrate composition of Lp (a) lipoprotein from human plasma, Biochim. Biophys. Acta 236: 431–439 (1971).

    Google Scholar 

  94. Ellefson, R. D., Jiminez, B. J., and Smith, R. C. Pre-ß (or a2) lipoprotein of high density in human blood, Mayo Clinic. Proc. 46: 328–332 (1971).

    Google Scholar 

  95. Walton, K. W., Hitchens, J., Magnani, H. N., and Khan, M., A study of methods of identification and estimation of Lp (a) lipoprotein and its significance in health, hyperlipidaemia and atherosclerosis, Atherosclerosis 20: 323–346 (1974).

    Google Scholar 

  96. Dahlén, G., Ericson, C., Furberg, C., Lundkvist, L., and Svärdsudd, K., Studies on extra pre-beta lipoprotein fraction, Acta Med. Scand. suppl. 531: 1–29 (1972).

    Google Scholar 

  97. Albers, J. J., Wahl, P., and Hazzard, W. R., Quantitative genetic studies of the human plasma Lp (a) lipoprotein, Biochem. Genet. 11: 475–486 (1974).

    Google Scholar 

  98. Avogaro, P., and Cazzalato, G., “Sinking” lipoprotein in normal hypoproteinemic and atherosclerotic patient, Clin. Chim. Acta. 61: 239–246 (1975).

    Google Scholar 

  99. Neubeck, W., and Seidel, D., Direct method for measuring lipoprotein-X in serum, Clin. Chem. 21: 853–856 (1975).

    Google Scholar 

  100. Ritland, S., A method for quantitative determination of the abnormal lipoprotein of cholestasis, Lp-X, Clin. Chico. Acta. 55: 359–366 (1974).

    Google Scholar 

  101. Seidel, D., Agostini, B., and Muller, P., Structure of an abnormal plasma (Lp-X) characterizing obstructive jaundice, Biochim. Biophys. Acta, 260: 146–152 (1972).

    Google Scholar 

  102. Hamilton, J. A., Oppenheimer, N. P., Addleman, R., Clouse, A. O., Cordes, E. H., Steiner, P. M., and Glueck, C. J., High-field 13CNMR studies of certain normal and abnormal human plasma lipoproteins, Science 194: 1424–1427 (1976).

    Google Scholar 

  103. Patsch, J. R., Patsch, W., Sailer, S., and Braunsteiner, H., Isolation and partial characterization of two abnormal human plasma lipoproteins: Lp-X1 and Lp-X2, Biochim. Biophys. Acta 434: 419–427 (1976).

    Google Scholar 

  104. Manzanato, E., Fellin, R., Baggio, G., Walch, S., Neubeck, W., and Seidel, D., Formation of lipoprotein -X: Its relationship to bile compounds, J. Clin. Invest. 51: 1248–1260 (1976).

    Google Scholar 

  105. Levy, R. I., and Eisenberg, S., The lipoprotein apoproteins: Their role in normal lipid transport and dyslipoproteinemia, Ann. Biol. Clin. 32: 1–8 (1974).

    Google Scholar 

  106. Stein, O., Baron, H., and Stein, Y., Lipoproteins and the liver, Progr. Liver Dis. 4: 45–62 (1972).

    Google Scholar 

  107. Jackson, R. L., Morrisett, J. D., and Gotto, A. M., Jr., Lipoprotein structure and metabolism, Physiol. Rev. 56:259–316 (1976).

    Google Scholar 

  108. Eaton, R. P., Crespin, S., and Kipnis, D. M., Incorporation of Se-selenomethionine into human apoproteins. III. Kinetic behavior of isotopically labeled plasma apoprotein in man, Diabetes 25: 679–690 (1976).

    Google Scholar 

  109. Phair, R. D., Hammond, M. G., Bowden, J. A., Fried, M., Fisher, W. R., and Berman, M., Preliminary model for human lipoprotein metabolism in hyperlipoproteinemia, Fed. Proc. 34 :2263–2270 (1975).

    Google Scholar 

  110. Sigurdson, G., Nicoll, A., and Lewis, B., The metabolism of low density lipoprotein in endogenous hypertriglyceridaemia, Eur. J. Clin. Invest. 6: 151158 (1976).

    Google Scholar 

  111. Blanchette-Mackie, E. J., and Scow, R. O., Sites of lipoprotein lipase activity in adipose tissue perfused with chylomicrons: Electron microscope cytochemical study, J. Cell. Biol. 51: 1–25 (1971).

    Google Scholar 

  112. Robinson, D. S., The clearing factor lipase and its action in the transport of fatty acids between the blood and tissues, Adv. Lipid Res. 1: 133–182 (1963).

    Google Scholar 

  113. Zieve, F. J., and Zieve, L., Post-heparin phospholipase and post-heparin lipase have different tissue origins, Biochem. Biophys. Res. Commun. 47: 14801485 (1972).

    Google Scholar 

  114. Augustin, J., Freeze, H., and Brown, W. V., Comparison of hepatic triglyceride lipase and lipoprotein lipase from human post-heparin plasma, Circulation 52:325 (abstr.), II - 83 (1975).

    Google Scholar 

  115. Ganesan, D., and Bass, H. B., The effect of two heparin preparations on the distribution of protamine insensitive triacylglycerol lipase and C-1 and C-2 activated lipoprotein lipases in human post-heparin plasma, Artery 2: 143–152 (1976).

    Google Scholar 

  116. Hamilton, R. L., Synthesis and secretion of plasma lipoproteins, Adv. Exp. Med. Biol. 26: 7–24 (1972).

    Google Scholar 

  117. Windmueller, H. G., Herbert, P. N., and Levy, R. I., Biosynthesis of lymph and plasma lipoprotein apoproteins by isolated perfused rat liver and intestine, J. Lipid Res. 14: 215–223 (1973).

    Google Scholar 

  118. Marsh, J. B., Apoproteins of the lipoproteins in a nonrecirculating perfusate of rat liver, J. Lipid Res. 17: 85–89 (1976).

    Google Scholar 

  119. Blum, C. B., Levy, R. I., Eisenberg, S., Hall, J., Goebel, R. H., and Berman, M., High density lipoprotein metabolism in man, J. Clin. Invest. 60: 795–807 (1977).

    Google Scholar 

  120. Gwynne, J., Hess, B., Schaefer, E., and Brewer, H. B. Jr., Binding and degradation of serum 1251 and HDL by adrenocortical tissue, Fed. Proc. 36:3502 (abstr.), 935 (1977).

    Google Scholar 

  121. Hamilton, R. L., Williams, M. C., Fielding, C. J., and Havel, R. J., Discoidal bilayer structure of nascent high-density lipoproteins from perfused rat liver, J. Clin. Invest. 58: 667–680 (1976).

    Google Scholar 

  122. Mahley, R. W., Weisgraber, K. H., Innerarity, T., and Brewer, H. B. Jr., Characterization of the lipoproteins and apoproteins of the erythrocebus patos monkey, Biochemistry 15: 1928–1933 (1976).

    Google Scholar 

  123. Stoffel, W., and Darr, W., Human high density apolipoprotein A-1-lysolecithin-lecithin and sphingomyelin complexes: A method for high yield recombinations to lipoprotein complexes of reproducible stoichiometry, Hoppe-Seyler’s Z. Physiol. Chem. 357: 127–137 (1976).

    Google Scholar 

  124. Batzri, S., and Korn, E. D., Single bilayer liposomes prepared without sonication, Biochim. Biophys. Acta 298: 1015–1019 (1973).

    Google Scholar 

  125. Morrisett, J. D., Jackson, R. L., and Gotto, A. M., Jr., Lipoprotein interaction in the plasma proteins, Biochim. Biophys. Acta 472: 93–133 (1977).

    Google Scholar 

  126. Jonas, A., and Seidel, D., Properties of the abnormal human plasma lipoprotein (Lp-X) characteristic of cholestasis after chemical modification with succinic anhydride, Arch. Biochem. Biophys. 163: 200–210 (1974).

    Google Scholar 

  127. Bell, F. P., Transfer of cholesterol between serum lipoproteins, isolated membranes and intact tissue, Exp. Mol. Pathol. 19: 293–303 (1973).

    Google Scholar 

  128. Blanchette-Mackie, E. J., and Scow, R. O., Effects of lipoprotein lipase on the structure of chylomicrons, J. Cell Biol. 58: 689–708 (1973).

    Google Scholar 

  129. Rubenstein, B., and Rubenstein, D., Comparison of the metabolic behavior in vitro of the apoproteins of rat serum very low density lipoprotein and high density lipoprotein, J. Lipid Res. 14: 347–363 (1973).

    Google Scholar 

  130. Levy, R. I., Blum, C. B., and Schaefer, E. J., The composition structure and metabolism of high density lipoprotein, in Lipoprotein Metabolism, H., Greten, Ed. (1976), pp. 56–64.

    Google Scholar 

  131. Eisenberg, S., Metabolism of very low density lipoproteins, in Lipoprotein Metabolism, H., Greten, Ed. (1975), pp. 32–42.

    Google Scholar 

  132. Lewis, B., Plasma-lipoprotein interrelationships, Biochem. Soc. Trans. 5: 589601 (1977).

    Google Scholar 

  133. Gotto, A. M., and Jackson, R. L., Plasma Lipoproteins: Recent developments, Adv. Exp. Med. Biol. 82: 15–33 (1977).

    Google Scholar 

  134. Bassen, F. A., and Kornzweig, A. L., Malformation of the erythrocytes in a case of atypical retinitis pigmentosa, Blood 5: 381–387 (1950).

    Google Scholar 

  135. Jampel, R. S., and Falls, H. F., Atypical retinitis pigmentosa, acanthocytosis and heredo-degenerative neuromuscular disease, Arch. Ophthal. 59: 818–820 (1958).

    Google Scholar 

  136. Mabry, C. C., DiGeorge, A. M., and Auerbach, V. H., Studies concerning the defect in a patient with acanthocytosis, Clin. Res. 8: 371 (1960).

    Google Scholar 

  137. Friedman, I. S., Cohn, H., Zymaris, M., and Goldner, M. G., Hypocholesteremia in idiopathic steatorrhea, Arch. Intern. Med. 105: 112–120 (1960).

    Google Scholar 

  138. Van Buchem, F. S. P., Pol, G. de Gier, J., Böttcher, C. J. F., and Pries, C., Congenital ß lipoprotein deficiency, Am. J. Med. 40: 794–804 (1966).

    Google Scholar 

  139. Scanu, M., Aggerbeck, L. P. Kruski, A. W., Lim, C. T., and Kayden, H. J. A study of the abnormal lipoproteins in abetalipoproteinemia, J. Clin. Invest. 53: 440–453 (1973).

    Google Scholar 

  140. Mars, H., Lewis, L. A., Robertson, A. L., Jr., Butkus, A., and Williams, G. H., Jr., Familial hypo-ß-lipoproteinemia, Am. J. Med. 46: 886–900 (1969).

    Google Scholar 

  141. Levy, R. I., Langer, T., Gotto, A. M., and Fredrickson, D. S., Familial hypobetalipoproteinemia, a defect in lipoprotein synthesis, Clin. Res. 18: 539 (1970).

    Google Scholar 

  142. Lim, C. T., Chung, J., Kayden, H., and Scanu, A. M., Apoprotein of human serum high density lipoprotein. Isolation and characterization of Sephadex fraction V from normal subjects and patients with abetalipoproteinemia, Biochim. Biophys. Acta 420: 332–341 (1976).

    Google Scholar 

  143. Roberts, J., Round, J. M., Lloyd, J. K., and Fosbrooke, A. S., Serum lecithin-cholesterol acyltransferase activity in children with familial hyperbetalipoproteinaemia, Clin. Chim. Acta 78: 311–314 (1977).

    Google Scholar 

  144. Glueck, C. J., Gartside, P. S., Mellies, M. J., and Steiner, P., Familial hypobeta-lipoproteinemia: Studies in 13 kindreds, Trans. Assoc. Am. Physicians 90: 184–203 (1977).

    Google Scholar 

  145. Glueck, C. J., Mellies, M. J., Tsang, R. C., Steiner, P. M., and Stein, E. A., Neonatal hypobetalipoproteinaemia, Pediatr. Res. 12: 665–668 (1978).

    Google Scholar 

  146. Fredrickson, D. S., Altrocchi, P. H., Avioli, L. V., Goodman, D. S., and Goodman, H. C., Tangier disease, Ann. Intern. Med. 55: 1016–1031 (1961).

    Google Scholar 

  147. Kracht, J., Huth, K., Schoenbarn, W., and Fuhrmann, W., Hypo-alipoproteinemia (Tangier disease), Verh. Deutsch. Ges. Path. 54: 355–360 (1970).

    Google Scholar 

  148. Kocen, R. S., Lloyd, J. K., Lascelles, P. T., Fosbrooke, A. S., and Williams, D., Familial a-lipoprotein deficiency (Tangier disease) with neurological abnormalities, Lancet 1: 1341–1345 (1967).

    Google Scholar 

  149. Kummer, H., Laissue, J., Spiess, H., Pflughaupt, R., and Bucher, U., Familial analphalipoproteinemia (Tangier disease)., Schweiz. Med. Wochenschr. 98: 406–412 (1968).

    Google Scholar 

  150. Haas, L. F., Austad, W. I., and Bergin, J. D., Tangier Disease, Brain 97: 351354 (1974).

    Google Scholar 

  151. Lux, S. E., Levy, R. I., Gotto, A. M., and Fredrickson, D. S., Studies on the protein defect in Tangier disease: Isolation and character of an abnormal high-density lipoprotein, J. Clin. Invest. 51: 2505–2519 (1972).

    Google Scholar 

  152. Assmann, G., Structure function relationships of lysoproteins in Tangier disease, in Lipoprotein Metabolism, H. Greten, Ed., Springer-Verlag, Berlin (1976), pp. 106–110.

    Google Scholar 

  153. Schaefer, E. J., Blum, C. B., Levy, R. I., Goebel, R., Brewer, H. B., and Berman, M., High density lipoprotein metabolism in Tangier disease, Circulation 54: I1–27 (1976).

    Google Scholar 

  154. Soutar, A. K., Myant, N. B., and Thompson, G. R., Simultaneous measurement of apolipoprotein B turnover in familiar hypercholesterolaemia, Atherosclerosis 28: 247–256 (1977).

    Google Scholar 

  155. Fredrickson, D. S., Levy, R. I., and Lees, R. S., Fat transport in lipoproteins: An integrated approach to mechanisms and disorders, N. Eng. J. Med. 276: 34–44, 94–103, 148–156,215–224, 273–281 (1967).

    Google Scholar 

  156. Beaumont, J. L., Carlson, L. A., Cooper, G. R., Fejfar, Z., Fredrickson, D. S., and Strasser, T., Classification of hyperlipidaemias Bull. W. H. O. 43: 891–915 (1970).

    Google Scholar 

  157. Brown, W. V., Shaw, W., Baginsky, M., Boberg, J., and Augustin, J., Lipases and lipoproteins, in Lipoprotein Metabolism, H. Greten, Ed., Springer-Verlag, Berlin (1976).

    Google Scholar 

  158. Breckenridge, W. C., Little, J. A., Steiner, G., Chow, A., and Poapst, M., Hypertriglyceridemia associated with deficiency of apolipoprotein C-II, N. Engl. J. Med. 298: 1265–1273 (1978).

    Google Scholar 

  159. Ganesan, D., and Bass, H. B., Isolation of C-1 and C-II activated lipoprotein lipases and protamine insensitive triglyceride lipase by heparin-Sepharose affinity chromatography, FEBS Lett. 53: 1–4 (1975).

    Google Scholar 

  160. Holt, L. E., Jr., Aylward, F. X., and Timbres, H. G., Idiopathic familial lipemia., Bull. Johns Hopkins Hosp. 64: 279–314 (1939).

    Google Scholar 

  161. Havel, R. J., and Gordon, R. S., Jr., Idiopathic hyperlipemia: Metabolic studies in an affected family, J. Clin. Invest. 39: 1777–1790 (1960).

    Google Scholar 

  162. Harlan, W. R., Jr., Winesett, P. S., and Wasserman, A. J., Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat, J. Clin. Invest. 46: 239–247 (1967).

    Google Scholar 

  163. Glueck, C. J., Levy, R. I., Glueck, H. I., Gralnick, H. R., Greten, H., and Fredrickson, D. S., Acquired Type I hyperlipoproteinemia with systemic lupus erythematosus, dysglobulinemia and heparin resistance, Am. J. Med. 47: 318–324 (1969).

    Google Scholar 

  164. Ham, J. M., and Lawrence, J. C., Heparin, heparin-activated enzymes and platelets, Haemostasis 6: 24–26 (1977).

    Google Scholar 

  165. Jensen, J., The story of xanthomatosis in England prior to the First World War, Clio. Med. 2: 289–305 (1967).

    Google Scholar 

  166. Fox, T. C., A case of xanthelasma multiplex, Lancet 2: 688–689 (1879).

    Google Scholar 

  167. Bloom, D., Kaufman, S. R., and Stevens, R. A., Hereditary xanthomatosis: Familial incidence of xanthoma tuberosum associated with hypercholesterolemia and cardiovascular involvement, with report of several cases of sudden death, Arch. Derm. Syph. 45: 1–18 (1942).

    Google Scholar 

  168. Thannhauser, S. J., Lipoidoses, Oxford Press, New York (1950).

    Google Scholar 

  169. Lever, W. F., Smith, P. A. J., and Hurley, N. A. Idiopathic hyperlipemic and primary hypercholesteremic xanthomatosis: Clinical data and analysis of plasma lipids, J. Invest. Derm. 22: 33–51 (1954).

    Google Scholar 

  170. Gofman, J. W., Rubin, L., McGinley, J. P., and Jones, H. B., Hyperlipoproteinemia, Am. J. Med. 17: 514–520 (1954).

    Google Scholar 

  171. Khachadurian, A. K., The inheritance of essential familial hypercholesterolemia, Am. J. Med. 37: 402–407 (1964).

    Google Scholar 

  172. Langer, T., Strober, W., and Levy, R. I., The metabolism of low density lipoprotein in familial Type II hyperlipoproteinemia, J. Clin. Invest. 51: 1528–1536 (1972).

    Google Scholar 

  173. Simons, L. A., and Williams, P. F., The biochemical composition and metabolism of lipoproteins in Type V hyperlipoproteinaemia, Clin. Chim. Acta 61: 341–352 (1975).

    Google Scholar 

  174. Sigurdson, G., Nicoll, A., and Lewis, B., Metabolism of very low density lipoproteins in hyperlipidaemia: Studies of apolipoprotein B kinetics in man, Eur. J. Clin. Invest. 6: 167–177 (1976).

    Google Scholar 

  175. Myant, N. B., The metabolic lesion in familial hypercholesterolaemia, Expos. Ann. Biochim. Med. 33: 39–52 (1977).

    Google Scholar 

  176. Brown, M. S., Luskey, K., Bohmfalk, H. A., Helgson, J., and Goldstein, J. L., Role of the LDL receptor in the regulation of cholesterol and lipoprotein metabolism, in Lipoprotein Metabolism, H. Greten, Ed., Springer-Verlag, Berlin (1976), pp. 82–89.

    Google Scholar 

  177. Brown, M. S., and Goldstein, J. L., Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylgutaryl coenzyme A reductase activity, Proc. Natl. Acad. Sci. 71: 788–792 (1974).

    Google Scholar 

  178. Brown, M. S., Dana, S. E., and Goldstein, J. L., Cholesterol ester formation in cultured human fibroblasts: Stimulation by oxygenated sterols, J. Biol. Chem. 250: 4025–4027 (1975).

    Google Scholar 

  179. Goldstein, J. L., and Brown, M. S., Binding and degradation of low density lipoproteins by cultured human fibroblasts, J. Biol. Chem. 249: 5153–5162 (1974).

    Google Scholar 

  180. Avigan, J., Bhathena, S. J., and Schreiner, M. E., Control of sterol synthesis and of hydroxymethylglutaryl COA reductase in skin fibroblasts grown from patients with homozygous type II hyperlipoproteinemia, J. Lipid Res. 16: 151–154 (1975).

    Google Scholar 

  181. Fogelman, A. M., Edmond, J., Seager, J., and Popjak, G., Abnormal induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase in leukocytes from subjects with heterozygous familial hypercholesterolemia, J. Biol. Chem. 250: 2045–2055 (1975).

    Google Scholar 

  182. Jackson, R. L., Taunton, O. D., Morrisett, J. D., and Gotto, A. M., Jr., The role of dietary polyunsaturated fat in lowering blood cholesterol in man, Circ. Res. 42 (4): 447–453 (1978).

    Google Scholar 

  183. Krehl, W. A., The nutritional epidemiology of cardiovascular disease, Ann. N.Y. Acad. Sci. 300: 335–359 (1977).

    Google Scholar 

  184. Khachadurian, A. K., Cholestyramine therapy in patients homozygous for familial hypercholesterolemia (familial hypercholesterolemic xanthomatosis), J. Atheroscler. Res. 8: 177–188 (1968).

    Google Scholar 

  185. Thompson, G. R., Lowenthal, R., and Myant, N. B., Plasma exchange in the management of homozygous familial hypercholesterolaemia, Lancet 1: 1208–1211 (1975).

    Google Scholar 

  186. Roberts, D. C., Round J. M., Lloyd, J. K., and Fosbrooke A. S., Serum lecithin-cholesterol acyltransferase activity in children with familial hyperbetalipoproteinaemia, Clin. Chico. Acta 78: 311–314 (1977).

    Google Scholar 

  187. Leonard, J. V., Fosbrooke, A. S., Lloyd, J. J., and Wolff, O. H., Screening for familial hyper-beta-lipoproteinaemia in children in hospital, Arch. Dis. Child. 51: 842–847 (1976).

    Google Scholar 

  188. Tsang, R. C., Fallat, R. W., and Glueck, C. J. Cholesterol at birth and age 1: Comparison of normal and hypercholesterolemic neonates, Pediatrics, 53: 458–470 (1974).

    Google Scholar 

  189. Bron, A. J., Dyslipoproteinemias and their ocular manifestations, Birth Defects 12: 257–270 (1976).

    Google Scholar 

  190. Brown, M. S., and Goldstein, T. L. Human mutations affecting the low density lipoprotein pathway, Am. J. Clin. Nutrition 30: 975–978 (1977).

    Google Scholar 

  191. Patrick, A. D., and Lake, B. D. Wolman’s disease, in Lysosomes and Storage Diseases, H. G. Hers, and F. VanHoff, Eds., Academic Press, New York (1973), pp. 453–473.

    Google Scholar 

  192. Matthews, R. J., Type III and IV familial hyperlipoproteinemia: Evidence that these two syndromes are different phenotypic expressions of the same mutant gene (s), Am. J. Med. 44: 188–199 (1968).

    Google Scholar 

  193. Fredrickson, D. S., Levy, R. I., and Lindgren, F. T., A comparison of heritable abnormal lipoprotein patterns as defined by two different techniques, J. Clin. Invest. 47: 2446–2457 (1968).

    Google Scholar 

  194. Hazzard, W. R., Lindgren, F. T., and Bierman, E. L., Very low density lipoprotein sub-fractions in a subject with broad-ß disease (Type III hyperlipoproteinemia) and a subject with endogenous lipemia (Type IV): Chemical composition and electrophoretic mobility, Biochim. Biophys. Acta 202: 517–525 (1970).

    Google Scholar 

  195. Olsson, A. G., and Carlson, L. A., Studies in asymptomatic primary hyperlipidamia: Types of hyperlipoproteinaemias, serum lipoprotein concentrations, compositions and interrelations, Acta Med. Scand. (suppl.): 580: 1–37 (1975).

    Google Scholar 

  196. Havel, R. J., Kane, T. P., and Kashyap, M. L., Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man, J. Clin. Invest. 52, 32–38 (1973).

    Google Scholar 

  197. Carlson, L. A., and Ericson, M., Quantitative and qualitative serum lipoprotein analysis. Part I. Studies in healthy men and women, Atherosclerosis 21: 417–423 (1975).

    Google Scholar 

  198. Utermann, G., Jaeschke, M., and Menzel, J. Familial hyperlipoproteinemia Type III: Deficiency of a specific apolipoprotein (apo E-III) in the very-low density lipoproteins, FEBS Lett. 56: 352–355 (1975).

    Google Scholar 

  199. Warnick, G. R., Mayfield, C., Albers, J. J., and Hazzard, W. R., Gel isoelectric focusing method for specific diagnosis of familial hyperlipoproteinemia Type 3, Clin. Chem. 25: 279–284 (1979).

    Google Scholar 

  200. Ganesan, D., Bradford, R. H., Ganesan, G., McConathy, W. J., Alaupovic, P., and Bass, H. B., Purified postheparin plasma lipoprotein lipase in primary hyperlipoproteinemias, J. Appl. Physiol. 39: 1022–1033 (1975).

    Google Scholar 

  201. Phair, R. D., Hall, M., Bilheimer, D. W., Levy, R. I., Goebel, R. H., and Berman, M., in Proc. 1976, Summer Computer Simulation Conference, Simulation Councils Inc., La Jolla, California, p. 846.

    Google Scholar 

  202. Carlson, L. A., Lipid composition of the major human serum lipoprotein density classes in different types of hyperlipoproteinemia, in Lipoprotein Metabolism, H. Greten, Ed., Springer-Verlag Berlin (1976), pp. 69–79.

    Google Scholar 

  203. Brunzell, J. D., Chait, A., and Bierman, E. L., Pathophysiology of lipid transport, Metabolism. 27: 1109–1127 (1978).

    Google Scholar 

  204. McGarry, J. D., and Foster, D. W., Ketogenesis and its regulation, Am. J. Med. 61: 9–13 (1976).

    Google Scholar 

  205. Olefsky, J. M., Farquhar, J. W., and Reaven, G. M., Reappraisal of the role of insulin in hypertriglyceridemia, Am. J. Med. 57: 551–560 (1974).

    Google Scholar 

  206. Brunzell, J. D., and Bierman, E. L., Plasma triglyceride and insulin levels in familial hypertriglyceridemia, Ann. Intern. Med. 87: 198–199 (1977).

    Google Scholar 

  207. Hazzard, W. R., Brunzell, J. D., Notter, D. T., et al., Estrogens and triglycerate transport: Increased endogenous production as the mechanism for the hypertriglyceridemia of oral contraceptive therapy, in R. D. Scow, Ed., Endocrinology Proceed. IV., Int. Congress Endocrinol., Excerpta Medica, Amsterdam, pp. 1006–1012 (1973).

    Google Scholar 

  208. EL-Shaboury, A. M., and Hayes, T. M., Hyperlipidemia in asthmatic patients receiving long-term steroid therapy, Br. Med. J. 2: 85–90 (1973).

    Google Scholar 

  209. Glueck, C. J., Scheel, D., Fishback, J., and Steiner, P., Estrogen-induced pancreatitis in patients with previously covert familial Type V hyperlipoproteinemia, Metabolism 21: 657–666 (1972).

    Google Scholar 

  210. Kekki, M., and Nikkila, E. A., Turnover of plasma total and very low density lipoprotein triglyceride in man, Scand. J. Clin. Lab. Invest. 35: 171–179 (1975).

    Google Scholar 

  211. Ford, S., Jr., Bozian, R. C., and Knowles, H. C., Jr., Interactions of obesity and glucose and insulin levels in hypertriglyceridemia, Am. J. Clin. Nutr. 21: 904–910 (1968).

    Google Scholar 

  212. Glueck, C. J., Levy, R. I., and Fredrickson, D. S., Immunoreactive insulin, glucose tolerance, and carbohydrate inducibility in Types II, III, IV and V hyperlipoproteinemia, Diabetes 18: 739–747 (1969).

    Google Scholar 

  213. Wolfe, B. M., Havel, J. R., Marliss, E. B., Kane, J. P., Seymour, R. J., and Ahuja, S. P., Effects of a 3-day fast and of ethanol on splanchnic metabolism of FFA, amino acids and carbohydrates in healthy young men, J. Clin. Invest. 57: 329–340 (1976).

    Google Scholar 

  214. Braunsteiner, H., Sandhofer, F., and Sailers, S., Hyperlipemia and acute pancreatitis, T. Gastroenterol. 12: 32–37 (1969).

    Google Scholar 

  215. Nixon, J. C., Martin, W. G., Kalab, M., and Monahan, G. J., Type V lipoproteinemia: A study of patient and family, Clin. Biochem. 2: 38–398 (1968).

    Google Scholar 

  216. Glueck, C. J., Brown, W. V., Levy, R. I., Greten, H., and Fredrickson, D. S., Amelioration of hypertriglyceridemia by progestational drugs in familial Type-V hyperlipoproteinaemia, Lancet 1:1290–1291 (1969).

    Google Scholar 

  217. Anderson, G. E., Classification of interited hypo-and hyperlipidemia, Acta Paediatr. Scand. 67: 543–547 (1978).

    Google Scholar 

  218. Barlow, K. A., Hyperlipidemia in primary gout, Metabolism 17: 289–299 (1968).

    Google Scholar 

  219. Fredrickson, D. S., Levy, R. I., Jones, E., Bonell., M. and Ernst, N., The Dietary Management of Hyperlipoproteinemia. A handbook for physicians. U.S. Dept. of Health, Education and Welfare, Public Health Service, Washington (1970), 83 pp.

    Google Scholar 

  220. Schwartz, M. J., Mirsky, S., and Schaefer, L. E., Phenformin serum lipids and diabetes mellitus, Lancet 1: 959 (1965).

    Google Scholar 

  221. Morris, J. N., West, D. A., and Bolinger, R. E., Effect of oral sulfonylurea on plasma triglycerides in diabetics, Diabetes 13: 87–89 (1964).

    Google Scholar 

  222. Levy, R. I., The plasma lipoproteins: An overview, Prog. Clin. Biol. Res. 5: 25–42 (1976).

    Google Scholar 

  223. Norum, K. R., Borsting, S., and Grundt, I., Familial lecithin: Cholesterol acyltransferase deficiency, Acta Med. Scand. 188: 323–326 (1970).

    Google Scholar 

  224. Gjone, E., and Bergaust, B. Corneal opacity in familial plasma cholesterol ester deficiency, Acta Ophthal. 47: 222–227 (1969).

    Google Scholar 

  225. Hamnström, B., Gjone, E., and Norum, K. R., Familial plasma lecithin: Cholesterol acyltransferase deficiency: Report of a Swedish family, Brit. Med. J. 2: 283–286 (1969).

    Google Scholar 

  226. Gjone, E., Javitt, N. B., Blomhoff, J. P., and Fausa, O., Studies on lipoprotein X (LP-X) and bile acids in familial LCAT deficiency: Preliminary report, Acta Med. Scand. 194: 377–378 (1973).

    Google Scholar 

  227. Glomset, J. A., The plasma lecithins: Cholesterol acyltransferase reaction, J. Lipid Res. 9: 155–167 (1968).

    Google Scholar 

  228. Glomset, J. A., Norum, K. R., and King, W., Plasma lipoproteins in familial lecthin: Cholesterol acyltransferase deficiency: Lipid composition and reactivity in vitro, J. Clin. Invest. 49: 1827–1837 (1970).

    Google Scholar 

  229. Gjone, E., Torsvik, H., and Norum, K. R., Familial plasma cholesterol ester deficiency: A study of the erythrocytes, Scand. J. Clin. Lab. Invest. 21: 327–332 (1968).

    Google Scholar 

  230. Gjone, E., and Norum, K. R., Plasma lecithin: Cholesterol acyltransferase and erythrocyte lipids in liver disease, Acta Med. Scand. 187: 153–161 (1970).

    Google Scholar 

  231. Norum, K. R., and Gjone, E., The effect of plasma transfusion on the plasma cholesterol esters in patients with familial plasma lecithin: Cholesterol acyltransferase deficiency, Scand, J. Clin. Lab. Invest. 32: 339–342 (1968).

    Google Scholar 

  232. Glomset, J. A., Norum, K. R., Nichols, A. V., King, W. C., Mitchell, C. D., Applegate, K. R., Gong, E. L., and Gjone, E., Plasma lipoproteins in familial lecithin: Cholesterol acyltransferase in vitro, plasma lipoproteins in familial lecithin: Cholesterol acyltransferase deficiency: Effect of dietary manipulation, Scand. J. Clin. Lab. Invest. 35, suppl. 142:3–30, 31–55 (1975).

    Google Scholar 

  233. Glomset, J. A., Recent studies of the role of lecithin: Cholesterol acyl transferase reaction in plasma lipoprotein metabolism, in Lipoprotein Metabolism, H. Greten, Ed., Springer-Verlag, Berlin (1976), pp. 28–30.

    Google Scholar 

  234. Natelson, S., Miletich, D. J., Seals, C. F., Visintine, D. J., and Albrecht, R. F., Clinical Biochemistry of Epilepsy. II. Observations on two types of epileptiform convulsions induced in rabbits with ACTH, Clin. Chem. 25: 898–913 (1979).

    Google Scholar 

  235. Blackall, J., Observation on the Nature and Cure of Dropsies, and particularly on the Presence of the Coagulable Part of the Blood in Dropsical Urine. Longman, Hurst, Rees, Orme and Brown, London (1813), pp. 50–80.

    Google Scholar 

  236. Berlyne, G. M., and Mallick, N. P., Ischemic heart disease as a complication of nephrotic syndrome, Lancet 2: 399–400 (1969).

    Google Scholar 

  237. Baxter, J. H., Goodman, H. C., and Havel, R. J., Serum lipid and lipoprotein alterations in nephrosis, J. Clin. Invest. 29: 455–465 (1960).

    Google Scholar 

  238. Gottfried, S. P., Steinman, J. F., and Kramer, B., Chemical studies in children with nephrotic syndrome, Am. J. Dis Child. 74: 283–304 (1947).

    Google Scholar 

  239. Chopra, J. S., and Mallick, N. P., Hyperlipoproteinemia in nephrotic syndrome, Lancet 1: 317–320 (1971).

    Google Scholar 

  240. Natelson, S., Techniques of Clinical Chemistry 3rd ed., Charles C Thomas (1971), p. 620.

    Google Scholar 

  241. McKenzie, I. F. C., and Nestel, P. J., Studies on the turnover of triglycerides and esterified cholesterol in subjects with the nephrotic syndrome, J. Clin. Invest. 47: 1685–1695 (1968).

    Google Scholar 

  242. Cohen, S. L., and Lindall, A. W., The lipid defect in uremia, J. Lab. Clin. Med. 74: 863 (1969).

    Google Scholar 

  243. Gitlin, D., Cornwell, D. G., Nakasato, D., Oncley, J. L., Hughes, W. L., Jr., and Janeway C. A., Studies on the metabolism of plasma proteins, in The Nephrotic Syndrome, II. The Lipoproteins, J. Clin. Invest. 37:172–184 (1958).

    Google Scholar 

  244. Segura, R., and Gotto, A., Lipid and lipoprotein abnormalities in renal disease, Perspect. Nephrol. Hypertens. 3: 159–200 (1976).

    Google Scholar 

  245. Yü, T-F, Dorph, D. J., and Smith, H., Hyperlipidemia in primary gout, Seminars in Arthritis and Rheumatism 7: 233–244 (1978).

    Google Scholar 

  246. Nelson, W. R., and Natelson, S., Improved staining characteristics of serum lipids after halogenation and esterification of thin-layer chromatograms, Clin. Chem. 23: 835–841 (1977).

    Google Scholar 

  247. Reinhold, J. G., Chemical abnormalities in blood serum associated with the carrier state of viral hepatitis, Clin. Chem. 1: 3–17 (1955).

    Google Scholar 

  248. Berenson, G. S., Srinivasan, S. R., Frerichs, R. R., and Weber, L. S., Serum high density lipoprotein and its relationship to cardiovascular disease: risk factor variables in children, Lipids 14: 91–98 (1979).

    Google Scholar 

  249. Miller, G. J., and Miller, N. E., Plasma high-density-lipoprotein concentration and the development of ischaemic heart-disease, Lancet 1: 16–19 (1975).

    Google Scholar 

  250. Castelli, W. P., Doyle, J. T., Gordon, T., et al., HDL cholesterol and other lipids in coronary heart disease (CHD): The cooperative lipoprotein phenotyping study, Circulation 55: 767–772 (1977).

    Google Scholar 

  251. Miller, N. E., Thelle, D. S., Forde, O. H., and Mjes, O. D., The Tromso heart-study: High-density lipoprotein and coronary heart-disease: prospective case-control study, Lancet 1: 965–968 (1977).

    Google Scholar 

  252. Carew, T. E., Koschinsky, T., Hayes, S. B., and Steinberg, D. A., Mechanism by which the high density lipoproteins may slow the atherogenic process, Lancet 1: 1315–1317 (1976).

    Google Scholar 

  253. Gordon, T., Castelli, W. P., Hjortland M. C., et al., High density lipoprotein as a protective factor against coronary heart disease: The Framingham Study, Am. J. Med. 62: 707–714 (1977).

    Google Scholar 

  254. Barr, D. P., Russ, E. M., and Eder, H. A., Protein lipid relationships in human plasma; in atherosclerosis and related conditions, Am. J. Med. 11: 480–493 (1951).

    Google Scholar 

  255. Rhoads, G. G., Gulbrandsen, C. L., and Kagan, A., Serum lipoproteins and coronary heart disease in a population study of Hawaii Japanese men, N. Engl. J. Med. 294: 293–298 (1976).

    Google Scholar 

  256. Glueck, C. J., Fallat, R. W., Millett, F., Gartside, P., Elston, R. C., and Go, R. C. P., Familial hyper-alpha-lipoproteinemia: Studies in eighteen kindreds. Metabolism 24: 1243–1265 (1975).

    Google Scholar 

  257. Schaefer, E. J., Eisenberg, S., and Levy, R. I., Lipoprotein apoprotein metabolism, J. Lipid Res. 19: 667–687 (1978).

    Google Scholar 

  258. Glueck, C. J., Mellies, M. J., Tsang, R. C., and Steiner, P. M., Low and high density lipoprotein cholesterol interrelationships in neonates with low density lipoprotein the 10th percentile and in neonates with high density lipoprotein cholesterol the 90th percentile, Pediatr. Res. 11: 957–959 (1977).

    Google Scholar 

  259. Carlson, K., Lipoprotein fractionation, J. Clin. Path. suppl. 5,26: 32–37 (1973).

    Google Scholar 

  260. Tsang, R. C., Fallat, R. W., and Glueck, C. J., Cholesterol at birth and age 1: Comparison of normal and hypercholesterolemic neonates, Pediatrics 53: 458–470 (1974).

    Google Scholar 

  261. Tsang, R. C., Glueck, C. J., Fallat, R. W., and Mellies, M., Neonatal familial hypercholesterolemia, Am. J. Dis. Child. 129: 83–91 (1975).

    Google Scholar 

  262. Krehl, W. A., The nutritional epidemiology of cardiovascular disease, Ann. N.Y. Acad. Sci. 300: 335–359 (1977).

    Google Scholar 

  263. Kritchevsky, D., Food products and hyperlipidemia, Arch. Surg. 113: 52–54 (1978).

    Google Scholar 

  264. Blackburm, H., How nutrition influences mass hyperlipidemia and atherosclerosis, Geriatrics 33: 42–46 (1978).

    Google Scholar 

  265. Conner, W. E., The effects of nutrition on lipid metabolism, Adv. Exp. Med. Biol. 82: 630–637 (1977).

    Google Scholar 

  266. Regression and progression of femoral atherosclerosis in human beings treated for hyperlipoproteinemia, Nutrition Rev. 35: 104–107 (1977).

    Google Scholar 

  267. Walker, W. J., Changing U.S. life-style and declining vascular mortality: Cause or coincidence, N. Engl. J. Med. 297: 163–165 (1977).

    Google Scholar 

  268. Stunkard, A., Obesity and the social environment: Current status, future prospects, Ann. N.Y. Acad. Sci. 300: 298–320 (1977).

    Google Scholar 

  269. Olefsky, J., Reaven, G. M., and Farquhar, J. W., Effects of weight reduction on obesity, J. Clin. Invest. 53: 64–76 (1974).

    Google Scholar 

  270. Galbraith, W. B., Connor, W. E., and Stone, D. B., Weight loss and serum lipid changes in obese subjects given low calorie diets of varied cholesterol content, Ann. Intern. Med. 64: 268–275 (1966).

    Google Scholar 

  271. Levy, R. I., The effect of hypolipidemic drugs on plasma lipoproteins, Ann. Rev. Pharmacol. Toxicol. 17: 499–510 (1977).

    Google Scholar 

  272. Moutafis, C. D., and Myant, N. B., The metabolism of cholesterol in two hypercholesterolemic patients treated with cholestyramine, Clin. Sci. 37: 443–454 (1969).

    Google Scholar 

  273. Oro, L., Olsson, A. G., Rossner, S., and Carlson, L. A., Cholestyramine, clofibrate and nicotinic acid as single or combined treatment of type Ila and IIb hyperlipoproteinemia, Postgrad. Med. J. 51: Suppl. 8, 76–79 (1975).

    Google Scholar 

  274. Levy, R. I., Fredrickson, D. S., Stone, N. J., Bilheimer, D. W., Brown, W. V., Glueck, C. J., Gotto, A. M., et al., Cholestyramine in Type II hyperlipoproteinemia, Ann. Intern. Med. 79: 51–58 (1973).

    Google Scholar 

  275. Gans, J. H., and Carter, M. R., Metabolic effects of clofibrate and of cholestyramine administration to dogs, Biochem. Pharmacol. 20: 3321–3329 (1971).

    Google Scholar 

  276. White, L. W., Regulation of hepatic cholesterol biosynthesis by clofibrate administration, J. Pharmacol. Exp. Ther. 178: 361–370 (1971).

    Google Scholar 

  277. Dujovne, C. A., Azarnoff, D. L., Huffman, D. H., Pentikainen, P., Hurwitz, A., and Shoeman, D. W., One year trial with halofenate, clofibrate and placebo, Clin. Pharmacol. Ther. 19: 352–359 (1976).

    Google Scholar 

  278. Levy, R. I., Fredrickson, D. S., Shulman, R., Bilheimer, D. W., et al., Dietary and drug treatment of primary hyperlipoproteinemia, Ann. Intern. Med. 77: 267–294 (1972).

    Google Scholar 

  279. Editorial: Clofibrate: A final verdict, Lancet 2: 1131–1132 (1978).

    Google Scholar 

  280. Committee of Principal Investigators, A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate, Br. Heart J. 40: 10691118 (1978).

    Google Scholar 

  281. Carlson, L. A., Reduction of myocardial infarction by the combined treatment with clofibrate and nicotinic acid, Atherosclerosis 28: 81–86 (1977).

    Google Scholar 

  282. Parsons, W. B., Use of Nicotinic Compounds in Treatment of Lipemia, in Treatment of Hyperlipidemia, H. R. Casdorph, Ed., Charles C Thomas, Springfield, Ill. (1971), pp. 333–345.

    Google Scholar 

  283. Mann, J. I., Harding, P. A., Turner, R. C., and Wilkinson, R. H., A comparison of cholestyramine and nicotinic acid in the treatment of familial type II hyperlipoproteinaemia, Brit. J. Pharmacol. 4: 305–308 (1977).

    Google Scholar 

  284. Coronary Drug Project Research Group: Clofibrate and niacin in coronary heart disease, JAMA 231: 4–25 (1975).

    Google Scholar 

  285. Ryan, J. R., and Jain, A., The effect of colestipol or cholestyramine on serum triglycerides in a long term controlled study, J. Clin. Pharmacol. 12: 268–273 (1972).

    Google Scholar 

  286. Rubulis, A., Lim, E. C., and Faloon, W. W., Effect of bile sequestrant colestipol, on serum cholesterol, fecal bile acids and neutral sterols in human subjects, Fed. Proc. 31: 727 (1972).

    Google Scholar 

  287. Kuo, P. T., Farr, W. C., Kostis, J. B., and Hayase, J. K., Combined para aminosalicylic acid and dietary therapy in long term control of hypercholesterolemia and hypertriglyceridemia (Types IIa and IIb hyperlipoproteinemia), Circulation 53: 338–341 (1976).

    Google Scholar 

  288. Strisower, E. H., Hypolipoproteinemic effect of d-thyroxine, Fed. Proc. 21: 96 (1962).

    Google Scholar 

  289. The Coronary Drug Project: Findings leading to further modification of its protocol with respect to dextrothyroxine, 220: 996–1008 (1972).

    Google Scholar 

  290. Holtzman, S. P., Meilman, E., and Sekowski, I., Reduction of serum cholesterol and triglyceride levels by the combined administration of neomycin and clofibrate, Circulation 41: 109–114 (1970).

    Google Scholar 

  291. Faloon, W. W., Paes, I. C., Woolfolk, D., Nankin, H., Wallace, K., and Haro, E. N., Effect of neomycin and kanamycin upon intestinal absorption, Ann. N.Y. Acad. Sci. 132: 879–883 (1966).

    Google Scholar 

  292. Bloor, W. R., The oxidative determination of phospholipid (lecithin and cephalin) in blood and tissues, J. Biol. Chem. 82: 273–286 (1939).

    Google Scholar 

  293. Sperry, W. M., Quantitative gravimetric fractionation of brain tissue, Clin. Chem., 9: 241–265 (1963).

    Google Scholar 

  294. Natelson, S., and Sheid, B., X-ray spectroscopy in the clinical laboratory. IV. Phosphorus, total blood iron as a measure of hemoglobin content, Clin. Chem. 7: 115–129 (1969).

    Google Scholar 

  295. Zak, B., Cholesterol methodologies: A review, Clin. Chem. 23: 1201–1214 (1977).

    Google Scholar 

  296. Cobb, S. A., and Sanders, J. L., Enzyme determination of cholesterol in serum lipoproteins separated by electrophoresis Clin. Chem. 24 :1116–1120 (1978).

    Google Scholar 

  297. Abell, L. L., Levy, B. B., Brodie, B. B., and Kendall, F. E., Simplified method for estimation of total cholesterol in serum and demonstration of its specificity, J. Biol. Chem. 195: 357–366 (1952).

    Google Scholar 

  298. Sperry, W. M., and Webb, M., Revision of Schonheimer-Sperry method for cholesterol determination, J. Biol. Chem. 187: 97–110 (1950).

    Google Scholar 

  299. Wybenga, D. R., Pileggi, V. J., Dirstine, P. H., and Di Giorgio, J., Direct manual determination of serum total cholesterol with a single stable reagent, Clin. Chem. 16: 980–984 (1970).

    Google Scholar 

  300. Zlatkis, A., Zak, B., and Boyle, A. J., New method for direct determination of serum cholesterol, J. Lab. Clin. Med. 41: 486–492 (1953).

    Google Scholar 

  301. Bucolo, G., and David, H., Quantitative triglyceride by the use of enzymes, Clin. Chem. 19: 476–482 (1973).

    Google Scholar 

  302. Mott, G. E., and Rogers, M. L., Enzymatic determination of triglycerides in human and baboon serum triglycerides, Clin. Chem. 24: 354–357 (1978).

    Google Scholar 

  303. Carlson, L. A., and Wadström, L. B., Studies on the glycerides during the clearing reaction, Clin. Chim. Acta 2: 9–15 (1957).

    Google Scholar 

  304. Haux, P., and Natelson, S., Microprocedure for serum triglyceride estimation, Microchem. J. 16: 68–76 (1971).

    Google Scholar 

  305. Eastman, J. W., and Pelton, J. K., Comparison of agarose and polyacrylamide techniques for lipoprotein electrophoresis, Clin. Chem. 24: 2066–2088 (1978).

    Google Scholar 

  306. Naroyan, K. A., Mary, E. S., and Friedman, H. P., Disc electrophoresis of subclasses of human serum: Low density lipoproteins, Microchem, J. 14: 235–241 (1969).

    Google Scholar 

  307. Warnick, G. R., and Albers, J. J., Heparin-Mn2+ quantitation of highdensity-lipoprotein cholesterol: An ultrafiltration procedure for lipemic samples, Clin. Chem. 24: 900–904 (1978).

    Google Scholar 

  308. Bachorik, P. S., Wood, P. D., Albers, J. J., Steiner, P., et al., Plasma high-density lipoprotein cholesterol concentrations determined after removal of other lipoproteins by heparin/manganese precipitation or by ultracentifugation, Clin. Chem. 22: 1828–1834 (1976).

    Google Scholar 

  309. Finley, P. R., Schifman, R., Williams, R. J., and Lichti, D. A., Cholesterol in high-density lipoprotein: Use of Mgt+/dextran sulfate in its enzymic measurement, Clin. Chem. 24: 931–933 (1978).

    Google Scholar 

  310. Stein, E. A., Familial hypo-ß-lipo-proteinemia, a family detected by cord blood tests, Am. J. Dis. Child. 131: 1363–1365 (1977).

    Google Scholar 

  311. Karlin, J. B., Juhn, D. J., Goldberg, R., and Rubenstein, A. H., Recent progress in the development of radioimmunoassays for human serum lipoproteins, Ann. Clin. Lab. Sci., 8: 142–154 (1978).

    Google Scholar 

  312. Karlin, J. B., and Rubenstein, A. H., Serum lipoprotein quantification by immunochemical methods, in Biochemistry of Atherosclerosis, A. M. Scanu, Ed., Dekker, New York (1978).

    Google Scholar 

  313. Ritland, S., Sauar, J., Holme, R., and Blomhoff, J. P., The electrophoretic mobility of lipoprotein X in postheparin plasma, Clin. Chim. Acta 75: 129–135 (1977).

    Google Scholar 

  314. Gerson, B., Rock, R., Ireland, J., et al., Lipoprotein X and alkaline phosphatase as indicators of cholestasis, Clin. Chem. 24: 1048 (Abs.) (1978).

    Google Scholar 

  315. Jacobs, W. H., Intrahepatic cholestasis following the use of Atromid-S, Am. J. Gastroenterol. 66: 69–71 (1976).

    Google Scholar 

  316. Rumpf, K. W., et al., Diabetic nephropathy, hypothyroidism and clofibrateinduced myopathy, Med. Klin. 71: 2023–2027 (1976).

    Google Scholar 

  317. Pierce, E. H., and Chessler, D. L., Possible association of granulomatous hepatitis with clofibrate therapy, N. Engl. J. Med. 299: 314 (1978).

    Google Scholar 

  318. Smals, A. G. H., Beex, L. V. A. M., and Kloppenborg, P. W. C., Clofibrateinduced muscle damage with myoglobinuria and cardiomyopathy, N. Engl. J. Med. 296: 942 (1977).

    Google Scholar 

  319. Krasno, L. R., and Harrison, D. C., Clofibrate and gallbladder disease, N. Engl. J. Med. 297: 669 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Natelson, S., Natelson, E.A. (1980). Lipoproteins in Nutrition and Transport. In: Principles of Applied Clinical Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3584-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3584-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3586-3

  • Online ISBN: 978-1-4684-3584-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics