Skip to main content

Recent Methods for the Elucidation of Lipid Structure

  • Chapter
Methods in Membrane Biology

Abstract

The first essentially correct structure for a phosphatidylcholine was published by Strecker in 1868. Indeed the structure shown corresponds, perhaps fortuitously, to the single molecular species 1-palmitoyl-2-oleoyl-3-sn-glyceryl-phosphorylcholine. The precise position of the two fatty acids was still under debate 90 years later (Tattrie, 1959; Hanahan et al., 1960; de Haas et al., 1960; de Haas and van Deenen, 1961). This was a truly remarkable achievement, given that Strecker possessed none of the highly sensitive or selective analytical methods currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasen, A. J., Hofstetter, H. H., Iyengar, B. T. R., and Holman, R. T., 1971, Identification and analysis of wax esters by mass spectrometry, Lipids 6: 502.

    CAS  Google Scholar 

  • Aasen, A. J., Lauer, W. M., and Holman, R. T., 1970, Mass spectrometry of triglycerides and elucidation of fragmentation mechanisms, Lipids 5: 869.

    PubMed  CAS  Google Scholar 

  • Abernethy, D., Fitzgerald, T. J., and Walaszek, E. J., 1974, NMR investigation of histamine—phospholipid interaction, Biochem. Biophys. Res. Commun. 59: 535.

    PubMed  CAS  Google Scholar 

  • Ackman, R. G., 1963, Structural correlation of unsaturated fatty acid esters by graphical comparison of gas-liquid chromatographic retention times on a polyester substrate, J. Am. Oil Chem. Soc. 40: 558.

    Google Scholar 

  • Ackman, R. G., 1972a, Influence of methyl substituent position on retention times in the GLC of higher monomethyl-branched fatty acid esters and hydrocarbons, J. Chromatog. Sci. 10: 243.

    CAS  Google Scholar 

  • Ackman, R. G., 1972b, The analysis of fatty acids and related materials by gas-liquid chromatography, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 12 ( R. T. Holman, ed.), p. 165, Pergamon Press, Oxford.

    Google Scholar 

  • Ahrens, E. H., 1956, Application of countercurrent distribution to the study of lipids, in: Biochemical Problems of Lipids ( G. Popjak and E. Le Breton, eds.), p. 30, Butter-worths Scientific Publications, London.

    Google Scholar 

  • Albro, P. W., and Dittmer, J. C., 1968, Determination of the distribution of the aliphatic groups of glyceryl ethers by gas-liquid chromatography of the diacetyl derivatives, J. Chromatog. 38: 230.

    CAS  Google Scholar 

  • Allen, C. F., Good, P., Davis, H. F., Chisum, P., and Fowler, S. D., 1964, Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae, J. Am. Oil Chem. Soc. 43: 223.

    Google Scholar 

  • Allen, R. R., and Kiess, A. A., 1955, Isomerization during hydrogenation. I. Oleic Acid, J. Am. Oil Chem. Soc. 32: 400.

    CAS  Google Scholar 

  • Allerhand, A., Doddrell, D., and Komoroski, R., 1971, Natural abundance carbon-13 partially relaxed fourier transform nuclear magnetic resonance spectra of complex molecules, J. Chem. Phys. 55: 189.

    CAS  Google Scholar 

  • Almqvist, S. O., Andersson, R., Shahab, Y., and Olsson, K., 1972, Lanthanide induced PMR chemical shifts in triglycerides, Acta Chem. Scand. 26: 3378.

    PubMed  CAS  Google Scholar 

  • American Oil Chemists Society, Isolated trans isomers infrared spectrophotometric method, Tentative Method Cd 14-61.

    Google Scholar 

  • Anderson, R. E., Garrett, R. D., Blank, M. L., and Snyder, F., 1969, The quantitative production of aldehydes from O-alk-I-enyl glycerols, Lipids 4: 327.

    CAS  Google Scholar 

  • Anderson, R. L., and Hollenbach, E. J., 1965, Large-scale separation of fatty acid methyl esters by column chromatography on acid-washed Florisil impregnated with silver nitrate, J. Lipid Res. 6: 577.

    PubMed  CAS  Google Scholar 

  • Andersson, B. A., Heimermann, W. H., and Holman, R. T., 1974, Comparison of pyrrolidides with other amides for mass spectral determination of structure of unsaturated fatty acids, Lipids 9: 443.

    PubMed  CAS  Google Scholar 

  • Andersson, B. A., and Holman, R. T., 1974, Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids, Lipids 9: 185.

    PubMed  CAS  Google Scholar 

  • Andersson, B. A., Karlsson, K. A., Pascher, I., Samuelsson, B. E., and Steen, G. 0., 1972, Mass spectra of acetyl derivatives of homogeneous cerebrosides (monoglycosyl-ceramides), Chem. Phys. Lipids 9: 89.

    PubMed  CAS  Google Scholar 

  • Andersson, B. A., Christie, W. W., and Holman, R. T., 1975, Mass spectrometric determination of positions of double bonds in polyunsaturated fatty acid pyrrolidides, Lipids 10: 215.

    CAS  Google Scholar 

  • Ando, N., Ando, S., and Yamakawa, T., 1971, The structure and formation mechanism of N-acetone derivatives of phosphatidylethanolamine, J. Biochem. (Tokyo) 70: 341.

    CAS  Google Scholar 

  • Andrews, S. B., Faller, J. W., Gilliam, J. M., and Barrnett, R. J., 1973, Lanthanide ioninduced isotropic shifts and broadening for nuclear magnetic resonance structural analysis of model membranes, Proc. Nat. Acad. Sci. 70: 1814.

    Google Scholar 

  • Andrieux, A., Dufourcq, J., and Lussan, C., 1972, Conformation du groupe polaire de la phosphatidyl choline en solution aqueuse déterminée par resonance magnétique nucléaire, Comptes Rendus 274D: 2358.

    CAS  Google Scholar 

  • Ansell, G. B!, Dawson, R. M. C., and Hawthorne, J. N., 1973, Form and Function of Phospholipids, Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • Aplin, R. T., and Coles, L., 1967, A simple procedure for localization of ethylenic bonds by mass spectrometry, Chem. Commun. 1967: 858.

    Google Scholar 

  • Arcus, A. E., and Dunckley, G. G., 1961, Chromatography of some lipids on polytetrafluoroethylene, J. Chromatog. 5: 272.

    CAS  Google Scholar 

  • Argoudelis, C. J., and Perkins, E. G., 1968, Determination of double bond position in monounsaturated fatty acids using combination gas chromatography mass spectrometry, Lipids 3: 379.

    PubMed  CAS  Google Scholar 

  • Arpino, P., Baldwin, M. A., and McLafferty, F. W., 1974, Liquid chromatography mass spectrometry. II. Continuous monitoring, Biomed. Mass. Spectrom. 1: 80.

    PubMed  CAS  Google Scholar 

  • Arsenault, G. P., Dolhun, J. J., and Biemann, K., 1971, Alternate or simultaneous electron impact—chemical ionization mass spectrometry of gas chromatographic effluent, Anal. Chem. 43: 1720.

    CAS  Google Scholar 

  • Arunga, R. O., and Morrison, W. R., 1971, The structural analysis of wheat flour glycerolipids, Lipids 6: 768.

    CAS  Google Scholar 

  • Arvidson, G. A. E., 1965, Fractionation of naturally occurring lecithins according to degree of unsaturation by thin-layer chromatography, J. Lipid Res. 6: 574.

    PubMed  CAS  Google Scholar 

  • Arvidson, G. A. E., 1967, Reversed-phase partition thin-layer chromatography of rat liverleci thins to yield eight simple phosphatidyl cholines, J. Lipid Res. 8: 155.

    PubMed  CAS  Google Scholar 

  • Arvidson, G. A. E., 1968, Structural and metabolic heterogeneity of rat liver glycerophosphatides, Eur, J. Biochem. 4: 478.

    CAS  Google Scholar 

  • Assmann, G., Sokoloski, E. A., and Brewer, H. B., Jr., 1974, 81P nuclear magnetic resonance spectroscopy of native and recombined lipoproteins, Proc. Nat. Acad. Sci. U.S.A. 71: 549.

    Google Scholar 

  • Audier, H., Borg, S., Fetizon, M., Longevialle, P., Toubiana, R., 1964, Orientation de la fragmentation en spectrometrie de masse par introduction de groupes fonctionnelles. VI. Localisation des liaisons ethyleniques, Bull. Soc. Chim. Fr. 1964: 3034.

    Google Scholar 

  • Axen, U., Green, K., Horlin, D., and Samuelsson, B., 1971, Mass spectrometric determination of picomole amounts of prostaglandins E 2 and F 2, using synthetic deuterium labelled carriers, Biochem. Biophys. Res. Commun. 45: 519.

    PubMed  CAS  Google Scholar 

  • Aylward, F., and Rao, C. V. N., 1956a, Use of hydrazine as a reducing agent for unsaturated compounds. I. The hydrogenation of oleic acid, J. Appl. Chem. 6: 248.

    CAS  Google Scholar 

  • Aylward, F., and Rao, C. V. N., 1956b, Use of hydrazine as a reducing agent for unsaturated compounds. II. The hydrogenation of elaidic and ricinoleic Acids, J. Appl. Chem. 6: 559.

    CAS  Google Scholar 

  • Aylward, F., and Rao, C. V. N., 1957a, Use of hydrazine as a reducing agent for unsaturated compounds. III. Hydrogenation of linoleic acid, J. Appl. Chem. 7: 134.

    CAS  Google Scholar 

  • Aylward, F., and Rao, C. V. N., 1957b, Use of hydrazine as a reducing agent for unsaturated compounds. IV. The hydrogenation of elaeostearic acid from tung (china wood) oil, J. Appl. Chem. 7: 137.

    CAS  Google Scholar 

  • Baer, E., Buchnea, D., and Newcombe, A. G., 1956, Synthesis of unsaturated L-a-lecithins. I. L-a-(dioleyl)-lecithin, J. Am. Chem. Soc. 78: 232.

    CAS  Google Scholar 

  • Bailey, G. F., and Horvat, R. J., 1972, Raman spectroscopic analysis of cis/trans isomer composition of edible vegetable oils, J. Am. Oil Chem. Soc. 49: 494.

    CAS  Google Scholar 

  • Baker, N., and Wulson, L., 1974, UV oxidized linolenic acid in high yield for cancer study, Lipids 9: 346.

    PubMed  CAS  Google Scholar 

  • Baldwin, M. A., and McLafferty, F. W., 1973, The abundances of metastable peaks measured by the major defocusing technique, Int. J. Mass Spectrom. Ion Phys. 12: 86.

    CAS  Google Scholar 

  • Bangham, A. D., and Hill, M. W., 1972, Distillation and storage of water, Nature 237: 408.

    CAS  Google Scholar 

  • Barber, M., and Elliott, R. M., 1964, Comparison of metastable spectra from single-and double-focusing mass spectrometers. Abstracts, 12th Annual Conference on Mass Spectrometry and Allied Topics, A.S.T.M. Committee E-14, Montreal, p. 150.

    Google Scholar 

  • Barber, M., Merren, T. O., and and Kelly, W., 1964, The mass spectrometry of large molecules. I. The triglycerides of straight chain fatty acids, Tetrahedron Lett. 18: 1063.

    Google Scholar 

  • Barber, M., Wolstenholme, W. A., and Jennings, K. R., 1967, Metastable ions in a double-focusing mass spectrometer, Nature 214: 664.

    CAS  Google Scholar 

  • Barber, M., Chapman, J. R., and Wolstenholme, W. A., 1968, Lipid analysis by coupled mass spectrometry—gas chromatography (MS-GLC). I. Diglycerides, Int. J. Mass Spectrom. Ion. Phys. 1: 98.

    CAS  Google Scholar 

  • Barker, R. W., Bell, J. D., Radda, G. K., and Richards, R. E., 1972, Phosphorus nuclear magnetic resonance in phospholipid dispersions, Biochim. Biophys. Acta 260: 161.

    PubMed  CAS  Google Scholar 

  • Barsukov, L. I., Shapiro, Yu. E., Viktorov, A. K., Volkova, V. I., Bystrov, V. F., and Bergelson, L. D. 1975, Intervesicular phospholipid exchange: An NMR study, Chem. Phys. Lipids 14: 211.

    PubMed  CAS  Google Scholar 

  • Barye, J. A., Gunstone, F. D., Jacobsberg, F. R., and Winlow, P., 1972, Fatty acids. Part 34. Behavior of all the methyl octadecenoates in argentation chromatography and gas—liquid chromatography, Chem. Phys. Lipids 8: 117.

    Google Scholar 

  • Batchelor, J. G., Prestegard, J. H., Cushley, R. J., and Lipsky, S. R., 1973, Electric field effects in the 13C nuclear magnetic resonance spectra of unsaturated fatty acids. A potential tool for conformational analysis, J. Am. Chem. Soc. 95: 6358.

    PubMed  CAS  Google Scholar 

  • Batchelor, J. G., Cushley, R. J., and Prestegard, J. H., 1974, Carbon-13 Fourier transform nuclear magnetic resonance. VIII. Role of steric and electric field effects in fatty acid spectra, J. Org. Chem. 39: 1698.

    PubMed  CAS  Google Scholar 

  • Batt, R. D., Hodges, R., and Robertson, J. G., 1971, Gas chromatography and mass spectrometry of the trimethylsilyl ether methyl ester derivatives of long-chain hydroxy acids from Nocardia corallina, Biochim. Biophys. Acta 239: 368.

    CAS  Google Scholar 

  • Baumann, W. J., Seufert, J., Hayes, H. W., and Holman, R. T., 1969, Mass spectrometric analysis of long-chain esters of diols, J. Lipid. Res. 10: 703.

    PubMed  CAS  Google Scholar 

  • Baumann, W. J., Aasen, A. J., Kramer, J. K. G., and Holman, R. T., 1973, Evidence for the electron impact induced formation of prominent cyclic acetal ions from aliphatic ester lipids, J. Org. Chem. 38: 3767.

    CAS  Google Scholar 

  • Beckey, H. D., 1971, Field Ionization Mass Spectrometry, Pergamon Press, Oxford, New York, Toronto and Sydney.

    Google Scholar 

  • Beckey, H. D., Migahed, M. D., and Röllgen, F. W., 1972, Dissociation of multiply charged organic ions in the field ionization mass spectrometer, Int. J. Mass Spectrom. Ion Phys. 10: 471.

    Google Scholar 

  • Beijer, K., and Nyström, E., 1972, Reversed-phase chromatography of fatty acids on hydrophobic Sephadex, Anal. Biochem. 48: 1.

    PubMed  CAS  Google Scholar 

  • Beiss, U., 1964, Zur papierchromatographischen Auftrennung von Pflanzenlipiden, J. Chromatog., 13: 104.

    CAS  Google Scholar 

  • Beiss, U., and Armbuster, 0., 1958, Die qualitative Bestimmung von Phosphatiden durch Papierchromatographie, Z. Naturforsch 13B: 79.

    Google Scholar 

  • Bellamy, L. J., 1958, The Infra-red Spectra of Complex Molecule.), Methuen amp; Co., London, Wiley, New York.

    Google Scholar 

  • Bengtsson, B., and Bosund, I., 1966, Lipid hydrolysis in unblanched frozen peas (Pisum sativum), J. Food Sci. 31: 474.

    CAS  Google Scholar 

  • Bentley, T. W., 1975, Structure and mechanism in mass spectrometry, in: Mass Spectrometry, Vol 3 (R. A. W. Johnstone, ed.), p. 59, The Chemical Society, London. Bergelson, L. D., 1969, Diol lipids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 10 (R. T. Holman, ed.), p. 239, Pergamon Press, Oxford.

    Google Scholar 

  • Bernstein, H. J., Pople, J. A., and Schneider, W. G., 1957, The analysis of nuclear magnetic resonance spectra. 1. Systems of two and three nuclei, Can. J. Chem. 35: 65.

    CAS  Google Scholar 

  • Beynon, J. H., 1960, Mass Spectrometry and its Application to Organic Chemistry, p. 459, Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • Beynon, J. H., and Williams, A. E., 1963, Mass and Abundance Tables for Use in Mass Spectrometry, Elsevier Publishing Company, Amsterdam, London, and New York.

    Google Scholar 

  • Beynon, J. H., Saunders, R. A., and Williams, A. E., 1965, Dissociation of metastable ions in mass spectrometers with release of internal energy, Z. Naturforsch 20a: 180.

    Google Scholar 

  • Beynon, J. H., Hopkinson, J. A., and Lester, G. R., 1969, Mass spectrometry—the appearance potentials of “metastable peaks” in some aromatic nitrocompounds—a chemical reaction in the mass spectrometer, Int. J. Mass Spectrom Ion. Phys. 2: 291.

    CAS  Google Scholar 

  • Biemann, K., 1962, Mass Spectrometry:Organic Chemical Applications, McGraw-Hill Book Co. Inc., New York.

    Google Scholar 

  • Biemann, K., and Mc Closkey, J. A., 1962, Mass spectra of organic molecules II Amino acids, J. Am. Chem. Soc. 84: 3192.

    CAS  Google Scholar 

  • Bierl, B. A., and Beroza, M., 1974, Electron-impact mass spectrometry for location of epoxide position in long-chain vic-dialkyl and trialkyl epoxides, J. Am. Oil Chem. Soc. 51: 466.

    CAS  Google Scholar 

  • Binks, R., Goodfellow, R. J., MacMillan, J., and Pryce, R. J., 1970, Acetyl tri-n-butyl citrate, a common laboratory contaminant, Chem. Ind. 1970: 565.

    Google Scholar 

  • Birdsall, N. J. M., Feeney, J., Lee, A. G., Levine, Y. K., and Metcalfe, J. C., 1972, Dipalmitoyllecithin. Assignment of the 1H and 13C nuclear magnetic resonance spectra and conformational studies, J. Chem. Soc. Perkin II, 1972: 1441.

    Google Scholar 

  • Bischel, M. D., and Austin, J. H., 1963, A modified benzidine method for the chromatographic detection of sphingolipids and acid polysaccharides, Biochim. Biophys. Acta 70: 598.

    PubMed  CAS  Google Scholar 

  • Bjerve, K. S., Daae, L. N. W., and Bremer, J., 1974, The selective loss of lysophospholipids in some commonly used lipid-extraction procedures, Anal Biochem. 58: 238.

    PubMed  CAS  Google Scholar 

  • Björkhem, I., Bloomstrand, R., and Svensson, L., 1974, Serum cholesterol determination by mass fragmentography, Clin. Chim. Acta 54: 185.

    PubMed  Google Scholar 

  • Björkman, L. R., Karlsson, K. A., Pascher, I., and Samuelsson, B. E., 1972, The identification of large amounts of cerebroside and cholesterol sulfate in the sea star, Asterias rubens, Biochim. Biophys. Acta 270: 260.

    Google Scholar 

  • Blank, M. L., and Snyder, F., 1970, Specificities of alkaline and acid phosphatases in the dephosphorylation of phospholipids, Biochemistry 9: 5034.

    PubMed  CAS  Google Scholar 

  • Bligh, E. G., 1961, Lipid hydrolysis in frozen cod muscle, J. Fisheries Res. Board Can. 18: 143.

    Google Scholar 

  • Bligh, E. G., and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37: 911.

    PubMed  CAS  Google Scholar 

  • Blomquist, G. J., and McCain, D. C., 1975, Incorporation of oxygen-18 into secondary alcohols of grasshopper Melanoplus sanguinipes, Lipids, 10: 303.

    CAS  Google Scholar 

  • Boldingh, J., 1950, Fatty acid analysis by partition chromatography, Rec Tray. Chim. Pays-Bas. 69: 247.

    CAS  Google Scholar 

  • Bonelli, E. J., Story, M. S., and Knight, J. B., 1971, Computerized gas chromatography and quadrupole mass spectrometry, Dynamic Mass Spectrom. 2: 177.

    CAS  Google Scholar 

  • Booth, H., 1969, Applications of [1H] nuclear magnetic resonance spectroscopy to the conformational analysis of cyclic compounds, in: Progress in Nuclear Magnetic Resonance Spectroscopy, Vol 5 ( J. W. Emsley, J. Feeney, and L. H. Sutcliffe, eds), p. 149, Press, Pergamon Oxford.

    Google Scholar 

  • Bottino, N. R., 1971, The composition of marine-oil triglycerides as determined by silver-ion thin-layer chromatography, J. Lipid Res. 12: 24.

    PubMed  CAS  Google Scholar 

  • Boudreaux, G. J., Bailey, A. V., and Tripp, V. W., 1972, Induced chemical shifts in the NMR spectrum of methyl petroselinate, J. Am. Oil Chem. Soc. 49: 200.

    CAS  Google Scholar 

  • Breimer, M. E., Karlsson, K. A., and Samuelsson, B. E., 1975, Presence of phytosphingosine combined with 2-hydroxy fatty acids in sphingomyelins of bovine kidney and intestinal mucosa, Lipids 10: 17.

    PubMed  CAS  Google Scholar 

  • Brian, G. L., Gracy, R. W., and Scholes, V. E., 1972, Gas chromatography of cyclopropane fatty acid methylesters prepared with methanolic boron trichloride and boron trifluoride, J. Chromatog. 66: 138.

    CAS  Google Scholar 

  • Brockerhoff, H., 1963, Breakdown of phospholipids in mild alkaline hydrolysis, J. Lipid Res. 4: 96.

    PubMed  CAS  Google Scholar 

  • Brockerhoff, H., 1971, Stereospecific analysis of triglycerides, Lipids 6: 942.

    PubMed  CAS  Google Scholar 

  • Brockerhoff, H., 1975, Determination of the positional distribution of fatty acids in glycerolipids, in: Methods in Enzymology, Vol XXXV, Part B (J. M. Lowenstein, ed.), p. 315, Academic Press, New York.

    Google Scholar 

  • Brooks, C. J. W., 1971, Gas chromatography—mass spectrometry, in: Mass Spectrometry, Vol. 1 ( D. H. Williams, ed.), p. 288, The Chemical Society, London.

    Google Scholar 

  • Brooks, C. J. W., and Middleditch, B. S., 1973 a, Gas chromatography—mass spectrometry, in: Mass Spectrometry, Vol 2 (D. H. Williams, ed.), p. 302, The Chemical Society, London.

    Google Scholar 

  • Brooks, C. J. W., and Middleditch, B. S., 1973b, Some aspects of mass spectrometry in steroid analysis, in: Modern Methods of Steroid Analysis ( E. Heftmann, ed.), p. 139, Academic Press, New York.

    Google Scholar 

  • Brooks, C. J. W., and Middletitch, B. S., 1975, Gas chromatography—mass spectrometry, in: Mass Spectrometry Vol. 3 ( R. A. W. Johnstone, ed.), p. 296, The Chemical Society, London.

    Google Scholar 

  • Brooks, C. J. W., Henderson, W., and Steel, G., 1973, The use of trimethylsilyl ethers in characterization of natural sterols and steroid diols by gas chromatography—mass spectrometry, Biochim. Biophys. Acta 296: 431.

    PubMed  CAS  Google Scholar 

  • Brown, P., 1970, Kinetic studies in mass spectrometry. VII. Competing cleavage and rearrangement processes in molecular ion decomposition reactions, Org. Mass Spectrom. 3: 1175.

    CAS  Google Scholar 

  • Brown, J. B., and Kolb, D. K., 1955, Applications of low temperature crystallization in the separation of the fatty acids and their compounds, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 3 ( R. T. Holman, W. O. Lundberg, and T. Malkin, eds.), p. 57, Pergamon Press, London.

    Google Scholar 

  • Budzikiewicz, H., 1972, Steroids, in: Biochemical Applications of Mass Spectrometry, ( G. R. Waller, ed.), p. 251, Wiley Interscience, New York.

    Google Scholar 

  • Budzikiewicz, H., Djerassi, C., and Williams, D. H., 1964, Structural Elucidation of Natural Products by Mass Spectrometry, Vols. 1 and 2, Holden—Day Inc., San Francisco. Budzikiewicz, H., Djerassi, C., and Williams, D. H., 1967, Mass Spectrometry of Organic Compounds, Holden—Day Inc., San Francisco.

    Google Scholar 

  • Budzikiewicz, H., Rullkötter, J., and Heinz, E., 1973, Massenspektroskopische Untersuchungen an Glycosylglyceriden, Z. Naturforsch. 28C: 499.

    CAS  Google Scholar 

  • Bulgozdy, E. L., and Wagner, E. L., 1951, The Preparation of anhydrous hydrazine and deutero-hydrazine from hydrazine dihydrochloride, J. Am. Chem. Soc. 73: 5866.

    CAS  Google Scholar 

  • Bu’Lock, J. D., and Smith, G. N., 1967, The origin of naturally occurring acetylenes, J. Chem. Soc. 1967C: 332.

    Google Scholar 

  • Burchfield, H. P., and Storrs, E. E., 1962, Biochemical Applications of Gas Chromatography, Academic Press, New York.

    Google Scholar 

  • Burlingame, A. L., 1970, Topics in Organic Mass Spectrometry, Wiley, New York. Burlingame, A. L., and Johnson, G. A., 1972, Mass spectrometry, Anal. Chem. 44: 337R.

    Google Scholar 

  • Burlingame, A. L., Cox, R. E., and Derrick, P. J., 1974, Mass spectrometry, Anal. Chem. 46: 248R.

    CAS  Google Scholar 

  • Bus, J. and Frost, D. J., 1974, 12CMR analysis of methyl octadecenoates, Rec. Tray. Chim. 93: 213.

    Google Scholar 

  • Bus, J. and Frost, D. J., 1975, Determination of the positions of double bonds in unsaturated fatty acids by carbon-13 and proton NMR spectrometry, Proc. ISF Congress, Milan

    Google Scholar 

  • Bystrov, V. F., Dubrovina, N. I., Barsukov, L. I., and Bergelson, L. D., 1971, NMR differentiation of the internal and external phospholipid membrane surface using paramagnetic Mn2+ and Eu3+ ions, Chem. Phys. Lipids 6: 343.

    CAS  Google Scholar 

  • Campbell, I. M., and Naworal, J., 1969a, Mass spectral discrimination between monoenoic and cyclopropanoid and between normals, iso-and anteiso fatty acid methyl esters, J. Lipid Res. 10: 589.

    PubMed  CAS  Google Scholar 

  • Campbell, I. M., and Naworal, J., 1969b, Composition of the saturated and monounsaturated fatty acids of Mycobacterium phlei, J. Lipid Res. 10: 593.

    CAS  Google Scholar 

  • Capella, P., and Zorzut, C. M., 1968, Determination of double bond position in monounsaturated fatty acid esters by mass spectrometry of their trimethylsilyloxy derivatives, Anal. Chem. Field, F. H., 1972: 1458.

    Google Scholar 

  • Carroll, K. K., 1969, Quantitative estimation of peak areas in gas—liquid chromatography, Nature (Lond.) Field, F. H., 1972: 377.

    Google Scholar 

  • Carroll, K. K., and Serdarevich, B., 1967, Column chromatography of neutral glycerides and fatty acids, in: Lipid Choromatographic analysis Vol. 1 ( G. V. Marinetti, ed.), p. 205, Marcel Dekker, New York.

    Google Scholar 

  • Carter, H. E., and Weber, E. J., 1966, Preparation and properties of various salt forms of plant phosphatidyl inositols, Lipids Field, F. H., 1972: 16.

    Google Scholar 

  • Cason, J., and Lange, G. L., 1964, Nuclear magnetic resonance determination of substituent methyls in fatty acids, J. Org . Chem. 29: 2107.

    CAS  Google Scholar 

  • Casy, A. F., 1971, PMR Spectroscopy in Medicinal and Biological Chemistry, Academic Press, New York.

    Google Scholar 

  • Chait, E. M., 1972, Ionization sources in mass spectrometry, Anal. Chem. 44: 77A.

    CAS  Google Scholar 

  • Chang, S. P., Ridgway, R. W., and Riser, G. R., 1975, Oligomeric plasticizers from crambe-oil derived dicarboxylic acids for poly (vinylchloride), J. Am. Oil Chem. Soc. 52: 10.

    CAS  Google Scholar 

  • Chapman, D., 1963, The high resolution proton resonance spectra of glycerides, J. Chem. Soc. 1963: 131.

    Google Scholar 

  • Chapman, D., 1965, The Structure of Lipids by Spectroscopic and X-ray Techniques, Methuen amp; Co., London.

    Google Scholar 

  • Chasin, D. G., and Perkins, E. G., 1971a, The mass spectra of alkyl 2-diethyl-phosphonoalkanoates, Chem. Phys. Lipids 6: 311.

    CAS  Google Scholar 

  • Chasin, D. G., and Perkins, E. G., 1971b, Synthesis and mass spectra of esters of branched-chain fatty acids, Chem. Phys. Lipids 6: 8.

    Google Scholar 

  • Chemical Society, 1971, Mass Spectrometry, Vol 1 ( D. H. Williams, ed. ).

    Google Scholar 

  • Chemical Society, 1973, Mass Spectrometry, Vol. 2 ( D. H. Williams, ed. ).

    Google Scholar 

  • Chemical Society, 1975, Mass Spectrometry, Vol. 3 ( R. A. W. Johnstone, ed. ).

    Google Scholar 

  • Chemical Society, 1972, 1973, 1974, Nuclear Magnetic Resonance Vol. 1, 2, 3 ( R. K. Harris, ed. ).

    Google Scholar 

  • Chipault, J. R., 1962, High energy irradiation, in: Lipids and their Oxidation, ( Schultz, H. W., Day, E. A., and Sinnhuber, R. O., eds.), pp. 151–169, Avi Publ. Co., Conn., U.S.A.

    Google Scholar 

  • Christie, W. W., 1969, The glyceride structure of Sapium sebiferum seed oil, Biochem. Biophys. Acta 187: 1.

    PubMed  CAS  Google Scholar 

  • Christie, W. W., 1970, Cyclopropane and cyclopropene fatty acids, in: Topics in Lipid Chemistry, Vol. 1 ( F. D. Gunstone, ed.), p. 1, Logos Press, London.

    Google Scholar 

  • Christie, W. W., 1973, Lipid Analysis, Pergamon Press, Oxford.

    Google Scholar 

  • Christie, W. W., and Holman, R. T., 1966, Mass spectrometry of lipids. I. Cyclopropane fatty acid esters, Lipids 1: 176.

    PubMed  CAS  Google Scholar 

  • Christie, W. W., Gunstone, F. D., Prentice, H. G., and Sen Gupta, S. C., 1964, Shellac. Part II. Some minor aliphatic constituents, J. Chem. Soc. 1964 (5): 5833.

    Google Scholar 

  • Christopherson, S. W., and Glass, R. L., 1969, Preparation of milk fat methyl esters by alcoholysis in an essentially nonalcoholic solution, J. Dairy Sci. 52: 1289.

    CAS  Google Scholar 

  • Chupka, W. A., 1959, Effect of unimolecular decay kinetics on the interpretation of appearance potentials, J. Chem. Phys. 30: 191.

    CAS  Google Scholar 

  • Cicero, T. J., and Sherman, W. R., 1971a, Combined gas chromatography-mass spec- trometry of brain polyphosphoinositide, Biochem. Biophys. Res. Comm. 42: 428.

    PubMed  CAS  Google Scholar 

  • Cicero, T. J., and Sherman, W. R., 1971b, Combined gas chromatography-mass spectrometry of trimethyl silyl deacylated cardiolipin from rat brain, Biochem. Biophys. Res. Commun. 43: 451.

    PubMed  CAS  Google Scholar 

  • Conway, B. E., Angerstein-Kozlowska, H., Sjarp, W. B. A., and Criddle, E. E., 1973, Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation, Anal. Chem. 45: 1331.

    CAS  Google Scholar 

  • Cooks, R. G., 1969, Bond formation upon electron impact, Org. Mass Spectrom. 2: 481.

    CAS  Google Scholar 

  • Cooks, R. G., and Johnson, G. S., 1971, Natural products; including oligopeptides, oligonucleotides and oligosaccharides, in: Mass Spectrometry Vol 1 ( D. H. Williams, ed.), p. 139, The Chemical Society, London.

    Google Scholar 

  • Cooks, R. G., Howe, I., and Williams, D. H., 1969, Structure and fragmentation mechanisms of organic ions in the mass spectrometer, Org. Mass Spectrom. 2: 137.

    CAS  Google Scholar 

  • Cooks, R. G., Beyon, J. H., Caprioli, R. M., and Lester, G. R., 1973, Metastable Ions, Elsevier Publishing Co., Amsterdam, London, and New York.

    Google Scholar 

  • Cooper, G. F., and Fried, J., 1973, Carbon-13 Nuclear magnetic resonance spectra of prostaglandins and some prostaglandin analogues, Proc. Nat. Acad. Sci. U.S.A. 70: 1579.

    CAS  Google Scholar 

  • Corio, P. L., Smith, S. L., and Wasson, J. R., 1972, Nuclear magnetic resonance spectrometry, Anal. Chem. 44: 407R.

    CAS  Google Scholar 

  • Cornell, B. A., Pope, J. M., and Troup, G. J. F., 1974, A pulsed NMR study of D2O bound to 1,2-dipalmitoyl phosphatidylcholine, Chem. Phys. Lipids 13: 183.

    PubMed  CAS  Google Scholar 

  • Craig, L. C., and Craig, D., 1950, Extraction and distribution, in: Technique of Organic

    Google Scholar 

  • Chemistry l. 3, 1st edition (A. Weissberger, ed.), p. 171, Interscience Publishers Inc., New York.

    Google Scholar 

  • Craig, L. C., and Craig, D., 1956, Laboratory extraction and countercurrent distribution, in: Technique of Organic Chemistry, Vol. 3, 2nd edition ( A. Weissberger, ed.), p. 149, Interscience Publishers Inc., New York.

    Google Scholar 

  • Crain, P. F., Desiderio, D. M., and McCloskey, J. A., 1975, Mass spectrometry of prostaglandins, in: Methods in Enzymology Vol. XXXV, Part B ( J. M. Lowenstein, ed.), p. 359, Academic Press, New York.

    Google Scholar 

  • Crawford, R. V., and Hilditch, T. P., 1950, The component fatty acids of tobacco-seed oils, J. Sci. Fd. Agric. 1: 230.

    CAS  Google Scholar 

  • Critchley, C., and Heinz, E., 1973, Characterization and enzymatic synthesis of acyl galactosyl monoglyceride, Biochim. Biophys. Acta 326: 184.

    PubMed  CAS  Google Scholar 

  • Crocken, B. J. and Nyc, J. F., 1964, Phospholipid variations in mutant strains of Neuro-spora crassa, J. Biol. Chem. 239: 1727.

    CAS  Google Scholar 

  • Curstedt, T., 1974, Mass spectra of trimethylsilyl ethers of [2H]-labeled monoglycerides and diglycerides, Biochim. Biophys. Acta 360: 12.

    PubMed  CAS  Google Scholar 

  • Curstedt, T., and Sjövall, J., Analysis of molecular species of [2H]-labelled phosphatidylcholines by liquid-gel chromatography and gas chromatography—mass spectrometry, Biochim. Biophys. Acta 360: 24.

    Google Scholar 

  • Dahle, L. K., Hill. E. G., and Holman, R. T., 1962, The thiobarbituric acid reaction and the autoxidations of polyunsaturated fatty acid methyl esters, Archiv. Biochem. Biophys. 98: 253.

    CAS  Google Scholar 

  • Daly, N. R., McCormick, A., Powell, R. E., and Hayes, R., 1973, A new type of ion detector having special advantages for the study of metastable transitions of organic ions produced by electron impact, Int. J. Mass Spectrom. Ion Phys. 11: 255.

    CAS  Google Scholar 

  • Darke, A., Finer, E. G., Flook, A. G., and Phillips, M. C., 1972, Nuclear magnetic reso- nance study of lecithin—cholesterol interactions, J. Mol. Biol. 63: 265.

    PubMed  CAS  Google Scholar 

  • Dawidowicz, E. A., and Thompson, T. E., 1971, Artifacts produced by boron trifluoride methanolysis of a synthetic lecithin containing cyclo-propane fatty acids, J. Lipid Res. 12: 636.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., 1967, Analysis of phosphatides and glycolipids by chromatography of their partial hydrolysis products, in: Lipid Chromatographic Analysis Vol 1 ( G. V. Marinetti, ed), p. 163, Marcel Dekker, New York.

    Google Scholar 

  • Dawson, R. M. C., 1973, Specificity of enzymes involved in the metabolism of phospholipids, in: Form and Function of Phospholipids ( G. B. Ansell, R. M. C. Dawson and J. N. Hawthorne, eds.), p. 97, Elsevier, London.

    Google Scholar 

  • Dawson, R. M. C., and Eichberg, J., 1965, Disphosphoinositide and triphosphoinositide in animal tissues. Extraction, estimation and changes post mortem, Biochem. J. 96: 634.

    CAS  Google Scholar 

  • Dawson, R. M. C., and Kemp, P., 1967, The aminoethylphosphonate-containing lipids of rumen protozoa, Biochem. J. 105: 837.

    PubMed  CAS  Google Scholar 

  • Dawson, G., and Sweeley, C. C., 1971, Mass spectrometry of neutral mono-and disialoglycosphingolipids, J. Lipid Res. 12: 56.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Mann, T., and White, I. G., 1957, Glycerylphosphorylcholine and phosphorylcholine in semen, and their relation to choline, Biochem. J. 65: 627.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Hemington, N., and Davenport, J. B., 1962, Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses, Biochem. J. 84: 497.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Clarke, N., and Quarles, R. H., 1969, N-Acylphosphatidylethanolamine, a phospholipid that is rapidly metabolized during the early germination of pea seeds, Biochem. J. 114: 265.

    PubMed  CAS  Google Scholar 

  • Dehmlow, E. V., 1974, Phase-transfer catalyzed two-phase reactions in preparative organic chemistry, Angew. Chem. Internat Edit. 13: 170.

    Google Scholar 

  • Demarco, P. V., Elzey, T. K., Burton Lewis, R., and Wenkert, E., 1970a, Paramagnetic induced shifts in the proton magnetic resonance spectra of alcohols using tris(dipivalomethanato)europium (III), J. Am. Chem. Soc. 92: 5734.

    CAS  Google Scholar 

  • Demarco, P. V., Elzey, T. K., Burton Lewis, R., and Wenkert, E., 1970b, Tris(dipivalomethanato)europium (III). A shift reagent for use in the proton magnetic resonance analysis of steroids and terpenoids, J. Am. Chem. Soc. 92: 5737.

    CAS  Google Scholar 

  • Derrick, P. J., and Robertson, A. J. B., 1972, Field ionization mass spectrometry with conditioned razor blades, Int. J. Mass Spectrom. Ion Phys. 10: 315.

    CAS  Google Scholar 

  • Desiderio, D. M., and Hagele, K., 1971, Chemical Ionization Mass Spectrometry of Prostaglandins, J. Chem. Soc. D. Chem. Commun. 1971: 1074.

    Google Scholar 

  • Dias, J. S., and Djerassi, C., 1973, Mass spectrometry in structural and stereochemical problems CCXXIV. Fragmentation of cyclopropanes, Org. Mass Spectrom. 7: 753.

    CAS  Google Scholar 

  • Dijkstra, A., 1969, Quantitative estimation of peak areas in gas—liquid chromatography, Nature (Lond.) 192: 965.

    Google Scholar 

  • Dils, R. R. A., 1958, The fractionation of animal phospholipids, Thesis. University of Birmingham.

    Google Scholar 

  • Dinh-Nguyen, Ng., and Ryhage, R., 1959, Mass spectrometric demonstration of extensive replacement of hydrogen by deuterium during catalytic deuteration of methyl oleate, methyl 9,10-dibromostearate and methyl 12,chlorostearate, Acta Chem. Scand. 13: 1032.

    Google Scholar 

  • Dinh-Nguyen, Ng., Ryhage, R., and Ställberg-Stenhagen, S., 1960, Determination de la position des doubles liaisons carbone-carbone par spectrometrie de masse. I. Double liaison dans les esters methyliqués des acides cis-petroselinique, oleique et elaidique, Ark. Kemi. 15: 433.

    Google Scholar 

  • Dinh-Nguyen, Ng., Ryhage, R., Ställberg-Stenhagen, S., and Stenhagen, E., 1961, Mass spectrometric studies. VIII. A study of the fragmentation of normal long-chain methyl esters and hydrocarbons under electron impact with the aid of deuterium-substituted compounds, Ark. Kemi. 18: 393.

    CAS  Google Scholar 

  • Dittmer, J. C., and Dawson, R. M. C., 1961, The isolation of a new lipid, triphosphoinositide, and monophosphoinositide from ox brain, Biochem J. 81: 535.

    PubMed  CAS  Google Scholar 

  • Dittmer, J. C., and Lester, R. L., 1964, A simple specific spray for the detection of phospholipids on thin-layer chromatograms, J. Lipid Res. 5: 126.

    CAS  Google Scholar 

  • Dittmer, J. C., and Wells, M. A., 1969, Quantitative and qualitative analysis of lipids and lipid components, in: Methods in Enzymology, Vol. XIV (J. M., Lowenstein, ed.), p. 482, Academic Press, New York and London.

    Google Scholar 

  • Djerassi, C., and Fenselau, C., 1965, Mass spectrometry in structural and stereochemical problems. LXXXVI. The hydrogen-transfer reactions in butyl propionate, benzoate and phthalate, J. Amer. Chem. Soc. 87: 5756.

    CAS  Google Scholar 

  • Dockx, J., 1973, Quaternary ammonium compounds in organic synthesis, Synthesis 1973: 441.

    Google Scholar 

  • Doering, W. von E., and Henderson, W. A., 1958, The electron-seeking demands of dichlorocarbene in its addition to olefins, J. Am. Chem. Soc. 80: 5274.

    CAS  Google Scholar 

  • Doering, W. von E., and Hoffmann, A. K., 1954, The addition of dichlorocarbene to olefins, J. Am. Chem. Soc. 76: 6162.

    CAS  Google Scholar 

  • Dorman, D. E., Jautelat, M., and Roberts, J. D., 1971, Carbon-13 nuclear magnetic resonance spectroscopy. Quantitative correlations of the carbon chemical shifts of acyclic alkenes, J. Org . Chem. 36: 2757.

    Google Scholar 

  • Downing, D. T., and Greene, M. S., 1968, Rapid determination of double-bond positions in monoenoic fatty acids by periodate-permanganate oxidation, Lipids, 3: 96.

    PubMed  CAS  Google Scholar 

  • Dufourcq, J., and Lussan, C., 1972, Conformations of phosphatidylcholine and phosphatidylethanolamine polar groups determined by NMR spectroscopy, FEBS Lett. 26: 35.

    PubMed  CAS  Google Scholar 

  • Duncan, J. H., Lennarz, W. J., and Fenselau, C. C., 1971, Mass spectral analysis of glycerophospholipids, Biochemistry 10: 927.

    PubMed  CAS  Google Scholar 

  • Dutton, H. J., 1954, Countercurrent fractionation of lipids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 2 ( R. T. Holman, W. O. Lundberg, and T. Malkin, eds.), p. 292, Pergamon Press, London.

    Google Scholar 

  • Dwek, R. A., 1973, Nuclear Magnetic Resonance (N.M.R.) in Biochemistry, Clarendon Press, Oxford.

    Google Scholar 

  • Egge, H., Murawski, U., Chatranon, W., and Zilliken, F., 1971, The branched chain fatty acids of Staphylococcus aureus, a gas chromatographic-mass spectrometric analysis, Z. Naturforsch 26b: 893.

    CAS  Google Scholar 

  • Eglinton, G., Hunneman, D. H., and McCormick, A., 1968, Gas chromatography—mass spectrometric studies of long chain hydroxy acids. III. The mass spectra of the methyl esters trimethylsilylethers of aliphatic hydroxy acids. A facile method of double bond location. Org . Mass Spectrom. 1: 593.

    CAS  Google Scholar 

  • Eglinton, G., Simonteit, B. R. T., and Zoro, J. A., 1975, The recognition of organic pollutants in aquatic sediments, Proc. Roy. Soc. Lond. B. 189: 415.

    CAS  Google Scholar 

  • Einolf, W. N., and Fenselau, C., 1974, Phospholipids in pulmonary alveolar proteinosis, Biomed. Mass Spectrom. 1: 195.

    PubMed  CAS  Google Scholar 

  • Eisele, T. A., Libbey, L. M., Pawlowski, N. E., Nixon, J. E., and Sinnhuber, R. 0., 1974, Mass spectrometry of the silver nitrate derivatives of cyclopropenoid compounds, Chem. Phys. Lipids 12: 316.

    PubMed  CAS  Google Scholar 

  • Eletr, S., and Keith, A. D., 1972, Spin-label studies of dynamics of lipid alkyl chains in biological membranes: role of unsaturated sites, Proc. Nat. Acad. Sci. U.S.A. 69: 1353.

    CAS  Google Scholar 

  • Ellingboe, J., Nyström, E., and Sjövall, J., 1969, Chromatography on lipophilic Sephadex, in: Methods in Enzymology (J. M. Lowenstein, ed.), Academic Press, New York. Emken, E. A., 1971, Determination of cis and trans in monoene and diene fatty esters by gas chromatography, Lipids 6: 686.

    Google Scholar 

  • Emken, E. A., 1972, Cis and trans analysis of fatty esters by gas chromatography: octadecenoate and octadecadienoate isomers, Lipids 7: 459.

    CAS  Google Scholar 

  • Emken, E. A., and Dutton, H. J., 1974, Sequential gas chromatographic procedure for microanalysis of monoenoic double bond position in hydrogenated oils, Lipids 9:272. E.ken, E. A., Schofield, C. R., and Dutton, H. J., 1964, Chromatographic separation of cis and trans fatty esters by argentation with a macroreticular exchange resin, J. Am. Oil Chem. Soc. 41: 388.

    Google Scholar 

  • Emsley, J. W., Feeney, J., and Sutcliffe, L. H., 1965, High Resolution Nuclear Magnetic Resonance Vols. I and I I, Pergamon Press, Oxford.

    Google Scholar 

  • Engel, R., Halpern, D., and Funk, B. A., 1973, Multiply charged ions in the mass spectra of aromatics, Org. Mass Spectrom. 7: 177.

    CAS  Google Scholar 

  • Entressangles, B., Sari, H., Desnuelle, P., 1966, On the positional specificity of pancreatic lipase, Biochim. Biophys. Acta 125: 597.

    PubMed  CAS  Google Scholar 

  • Esders, T. W., and Light, R. J., 1972, Characterization and in vivo production of three glycolipids from Candida bugoriensis 13-glucopyranosylglucopyranosyloxydocosanoic acid and its mono and diacetylated derivatives, J. Lipid. Res. 13: 663.

    PubMed  CAS  Google Scholar 

  • Ettre, L. S., Open Tubular Columns Plenum Press, New York.

    Google Scholar 

  • Ettre, L. S., Purcell, J. E., and Norem, S. D., 1965, Support coated open tubular columns, J. Gas Chrom. 3: 181.

    CAS  Google Scholar 

  • Evans, D. F., and Wyatt, M., 1972, Direct observation of free and complexed substrate in a lanthanide shift reagent system. Chem. Comm. 1972: 312.

    Google Scholar 

  • Evans, N., Games, D. E., Harwood, J. L., and Jackson, A. H., 1974, Field desorption

    Google Scholar 

  • mass spectrometry of triglycerides and phosphoglycerides, Biochem. Soc. Trans. 2:1091.

    Google Scholar 

  • Fales, H. M., 1966, The mass spectrum of a compound of formula C72H24O8F128N4P4 and molecular weight. 3628, Anal. Chem. 38: 1058.

    CAS  Google Scholar 

  • Fales, H. M., 1971, Newer ionization techniques, in: Mass Spectrometry—Techniques and Applications ( G. W. A. Milne, Ed.), p. 179, Wiley Interscience, New York.

    Google Scholar 

  • Fan, G. M., and Marinetti, G. V., 1969, Chromatography of lipids on silica gel-loaded filter paper, in: Methods in Enzymology, Vol. XIV ( Lowenstein, J. M. Ed.), p. 598, Academic Press, New York.

    Google Scholar 

  • Farmer, E. H., and Sutton, D. A., 1943a, The course of autoxidation reactions in polyisoprenes and allied compounds. Part IV. The isolation and constitution of photochemically-formed methyl oleate peroxide, J. Chem. Soc. 1943: 119.

    Google Scholar 

  • Farmer, E. H., and Sutton, D. A., 1943b, The course of autoxidation reactions in polyisoprenes and allied compounds. Part V. Observations on fish-oil acids, J. Chem. Soc. 1943: 122.

    Google Scholar 

  • Field, F. H., 1972, Chemical ionization mass spectrometry, in: MTP International Review of Science, Vol. 5 ( A. Maccoll, ed.), pp. 133–181, Butterworths, London.

    Google Scholar 

  • Field, F. H., and Munson, M. S. B., 1965, Reactions of gaseous ions. XIV. Mass spectrometric studies of methane at pressures to 2 torr, J. Amer. Chem. Soc. 87: 3289.

    CAS  Google Scholar 

  • Fields, E. K., 1962, Insertion of dichlorocarbene into aromatic hydrocarbons, J. Amer. Chem. Soc. 84: 1744.

    CAS  Google Scholar 

  • Finar, I. L., 1967, Organic Chemistry, 4th ed., Longmans, Green amp; Co. Ltd., London. Finer, E. G., and Darke, A., 1974, Phospholipid hydration studied by deuteron magnetic resonance spectroscopy, Chem. Phys. Lipids 12: 1.

    Google Scholar 

  • Finney, C. D., Sung, J. P., and Finney, K. A., 1974, On the selection of nominal ionization efficiency threshold laws for onset potential determinations, Int. J. Mass Spectrom. Ion Phys. 13: 459.

    CAS  Google Scholar 

  • Flesch, G. D., and Svec, H. J., 1971a, Deconvolution of ionization efficiency data as a means of determining fragmentation mechanisms in the mass spectrometer, J. Chem. Phys. 55: 2681.

    Google Scholar 

  • Flesch, G. D., and Svec, H. J., 1971b, Fragmentation mechanisms for metal hexacarbonyls by deconvolution-convolution of ionization efficiency data, J. Chem. Phys. 55: 4310.

    CAS  Google Scholar 

  • Flesch, G. D., White, R. M., and Svec, H. J., 1969, The positive and negative ion spectra of chromyl chloride and chromyl fluoride, Int. J. Mass Spectrom. Ion Phys. 3: 339.

    CAS  Google Scholar 

  • Folch, J., J., 1949, Complete fractionation of brain cephalin: isolation from it of phosphatidyl serine, phosphatidyl ethanolamine, and diphosphoinositide, J. Biol. Chem. 177: 497.

    PubMed  CAS  Google Scholar 

  • Folch, J., Lees, M., and Sloane-Stanley, G. H., 1957, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226: 497.

    PubMed  CAS  Google Scholar 

  • Francis, G. W., 1972, Factors affecting the intensity ratio of M-92/M-106 ions in mass spectra of carotenoids, Acta Chem. Scand. 26: 1443.

    CAS  Google Scholar 

  • Franklin, J. L., Dillard, J. G., Rosenstock, H. M., Herron, J. T., Draxl, K., and Field, F. H., 1969, Ionization potentials, appearance potentials and heats of formation of gaseous positive ions National Bureau of Standards (U.S. Department of Commerce) NSRDS-NBS26.

    Google Scholar 

  • Fraser, R. R., Petit, M. A., and Miskow, M., 1972, Separation of nuclear magnetic resonance signals of internally enantiotropic protons using a chiral shift reagent. The deuterium isotope effect on geminal proton–proton coupling constants. J. Am. Chem. Soc. 94: 3253.

    CAS  Google Scholar 

  • Frost, D. J., and Barzilay, J., 1971a, Proton magnetic resonance identification of non-conjugated cis-unsaturated fatty acids and esters, Anal. Chem. 43: 1316.

    CAS  Google Scholar 

  • Frost, D. J., and Barzilay, J., 1971b, PMR cis/trans analysis of double bonds using alkyl substituent effects, Rec. Tray. Chim. Pays. Bas 90: 705.

    CAS  Google Scholar 

  • Frost, D. J., and Sies, I., 1974, PMR analysis of alkenoic esters using shift reagents, Chem. Phys. Lipids 13: 173.

    PubMed  CAS  Google Scholar 

  • Frost, D. J., Bus, J., Keuning, R., and Sies, I., 1975, PMR analysis of unsaturated tri-glycerides using shift reagents, Chem. Phys. Lipids 14: 189.

    PubMed  CAS  Google Scholar 

  • Fulk, W. K., and Shorb, M. S., 1970, Production of an artifact during methanolysis of lipids by boron trifluoride-methanol, J. Lipid Res. 11: 276.

    PubMed  CAS  Google Scholar 

  • Galanos, D. S., and Kapoulas, V. M., 1962, Isolation of polar lipids from triglyceride mixtures, J. Lipid Res. 3: 134.

    CAS  Google Scholar 

  • Galliard, T., Phillips, D. R., and Frost, D. J., 1973, Novel divinyl ether fatty acids in extracts of Solanum tuberosum, Chem. Phys. Lipids 11: 173.

    CAS  Google Scholar 

  • Games, D. E., 1975, Natural products, in: Mass Spectrometry, Vol, 3 ( R. A. W. Johnstone, ed.), pp. 224–261, The Chemical Society, London.

    Google Scholar 

  • Gaver, R. C., and Sweeley, C. C., 1965, Methods for methanolysis of sphingolipids and direct determination of long-chain bases by gas chromatography, J. Am. Oil Chem. Soc. 42: 294.

    PubMed  CAS  Google Scholar 

  • Giessner, B. G., and Meisels, G. G., 1970, On the threshold law for ionization by electrons, Int. J. Mass Spectrom. Ion Phys. 4: 84.

    CAS  Google Scholar 

  • Gilbert, M. T., Gilbert, J. D., and Brooks, C. J. W., 1974, Gas phase analytical resolution of enantiomeric amines as diasteroisomeric amides. Gas chromatography—mass spectrometry of a-phenylbutyramides, a-phenylpropionamides and a-chlorophenylacetamides, Biomed. Mass Spectrom. 1: 274.

    PubMed  CAS  Google Scholar 

  • Goering, H. L., Eikenberry, J. N., and Koermer, G. S., 1971, Tris (3-(trifluoromethylhydroxymethylene)-D-camphorato)europium(III). A chiral shift reagent for direct determination of enantiomeric compositions. J. Am. Chem. Soc. 93: 5913.

    CAS  Google Scholar 

  • Goerke, A., De Gier, J. J., and Bonsen, P. P. M., 1971, Silica gel stimulates the hydrolysis of lecithin by phospholipase A. Biochim. Biophys. Acta 248: 245.

    PubMed  CAS  Google Scholar 

  • Gohlke, R. S., Happ, G. P., Maier, D. P., and Stewart, D. W., 1972, Exact mass measurement accuracy from CEC 21–110B mass spectrometer and commercial data system DS-30, Anal. Chem. 44: 1484.

    CAS  Google Scholar 

  • Gordon, A. J., and Ford, R. A., 1972, The Chemist’s Companion, Wiley, New York amp; London.

    Google Scholar 

  • Grant, D. M., and Paul, E. G., 1964, Carbon-13 magnetic resonance. II. Chemical shift data for alkanes, J. Am. Chem. Soc. 86: 2984.

    CAS  Google Scholar 

  • Gray, G. M., 1967, Gas chromatography of long-chain aldehydes, in: Lipid Chromato- graphic Analysis, Vol. I ( G. V. Marinetti, ed.), p. 401, Marcel Dekker, New York.

    Google Scholar 

  • Green, T., Howitt, F. O., and Preston, R., 1955, The use of polyethylene in the separation of fatty acids by reverse-phase chromatography, Chem. Ind. 1955: 591.

    Google Scholar 

  • Groff, T. M., Raykoff, H., and Holman, R. T., 1968, Mass spectrometry of lipids. Isomeric methyl nonynoates and the corresponding nonenoates and dideuterononenoates, Arkiv. Kemi. 29: 179.

    CAS  Google Scholar 

  • Guess, W. L., and Haberman, S., 1968, Toxicity profiles of vinyl and polyolefinic plastics and their additives, J. Biomed. Mater. Res. 2: 313.

    PubMed  CAS  Google Scholar 

  • Guide to Collection of Mass Spectral Data 1974, American Society for Mass Spectrometry, Committee VI, Biological Applications.

    Google Scholar 

  • Gunstone, F. D., 1958, An Introduction to the Chemistry of Fats and Fatty Acids, pp. 114115, Wiley, New York.

    Google Scholar 

  • Gunstone, F. D., 1967, An Introduction to the Chemistry and Biochemistry of Fatty Acids and Their Glycerides, 2d ed. Chapman amp; Hall, London.

    Google Scholar 

  • Gunstone, F. D., and Jacobsberg, F. R., 1972, Fatty acids Part 36. The synthesis, silver ion chromatographic, and NMR spectroscopic properties of the nine 9,12-diunsaturated n-C18 acids, Chem. Phys. Lipids 9: 112.

    CAS  Google Scholar 

  • Gunstone, F. D., and Padley, F. B., 1965, Glyceride studies. Part. III. The component glycerides of five seed oils containing linolenic acid, J. Am. Oil Chem. Soc. 42: 957.

    PubMed  CAS  Google Scholar 

  • Gunstone, F. D., and Perera, B. S., 1973, The synthesis and chromatographic and spectroscopic properties of the disubstituted cyclopropanes derived from all the methyl trans-octadecenoates. Chem. Phys. Lipids 10: 303.

    PubMed  CAS  Google Scholar 

  • Gunstone, F. D., Ismail, I. A., and Lie Ken Jie, 1967, Fatty acids. Part 16. Thin layer and gas-liquid chromatographic properties of the cis and trans methyl octadecenoates and of some acetylenic esters, Chem. Phys. Lipids 1:376

    Google Scholar 

  • Gunstone, F. D., Lie Ken Jie, M., and Wall, R. T., 1971, The synthesis and chromatographic and spectroscopic properties of some methyl cis, cis-dimethylene-octadecanoates, Chem. Phys. Lipids 6: 147.

    CAS  Google Scholar 

  • de Haas, G. H., and van Deenen, L. L. M., 1961, The mode of action of phospholipase A on synthetic “mixed-acid” L-a-phosphatidylethanolamines, Biochim. Biophys. Acta 48: 215.

    PubMed  Google Scholar 

  • de Haas, G. H., Mulder, I., and van Deenen, L. L. M., 1960, On the specificity of phospholipase A, Biochem. Biophys. Res. Commun. 3: 287.

    PubMed  Google Scholar 

  • Hagen, R., and Roberts, J. D., 1969, Nuclear magnetic resonance spectroscopy. 13C Spectra of aliphatic carboxylic acids and carboxylate anions, J. Am. Chem. Soc. 91: 4504.

    CAS  Google Scholar 

  • Haighton, A. J., Vermaas, L. F., and den Hollander, C., 1971. Determination of the solid-liquid ratio of fats by wide-line nuclear magnetic resonance, J. Am. Oil Chem. Soc. 48: 7.

    CAS  Google Scholar 

  • Haighton, A. J., van Putte, K., and Vermaas, L. F., 1972, Determination of the solid contents of fats by wide-line nuclear magnetic resonance: The signal of liquid oils, J. Am. Oil. Chem. Soc. 49: 153.

    CAS  Google Scholar 

  • Hällgren, B., and Larsson, S. 0., 1959, Separation and identification of alkoxyglycerols. Acta Chem. Scand. 13: 2147.

    Google Scholar 

  • Hällgren, B., and Larsson, S., 1962, The glyceryl ethers in the liver oils of elasmobranch fish. J. Lipid Res. 3: 31.

    Google Scholar 

  • Hällgren, B., Ryhage, R., and Stenhagen, E., 1959, The mass spectra of methyl oleate, methyl linoleate and methyl linolenate. Acta Chem. Scand. 13: 845.

    Google Scholar 

  • Hamberg, M., 1971, Resolution of stereoisomers of w2-hydroxy acids and 2-alkanols by gas-liquid chromatography. Chem. Phys. Lipids 6: 152.

    CAS  Google Scholar 

  • Hammarström, S., 1969, Configuration of 2-hydroxy acids from brain cerebrosides determined by gas chromatography. FEBS lett. 5: 192.

    PubMed  Google Scholar 

  • Hammarström, S., 1971a, On the biosynthesis of cerebrosides containing non-hydroxy acids. I. Mass spectrometric evidence for the psychosine pathway, Biochem. Biophys. Res. Comm. 45: 459.

    PubMed  Google Scholar 

  • Hammarström, S., 197 lb, On the biosynthesis of cerebrosides containing non-hydroxy acids. 2. Mass spectrometric evidence for the ceramide pathway, Biochem. Biophys. Res. Comm. 45: 468.

    Google Scholar 

  • Hammarström, S., 1971c, Brain glucosyl ceramides containing 2-hydroxy acids. Identification of molecular species by gas–liquid chromatography—mass spectrometry, Eur. J. Biochem. 21: 388.

    PubMed  Google Scholar 

  • Hammarström, S., 1975, Microdetermination of stereoisomers of 2-hydroxy and 3-hydroxy fatty acids, in: Methods in Enzymology, vol. 35, Part B (J. M. Lowenstein, ed.) Academic Press, New York.

    Google Scholar 

  • Hammarström, S., and Hamberg, M., 1973, Steric analysis of 3-, w4-, w3-, and w2-hydroxy acids and various alkanols by gas–liquid chromatography, Anal. Biochem. 52: 169.

    PubMed  Google Scholar 

  • Hammarström, S., and Samuelsson, B., 1972, On the biosynthesis of cerebrosides containing 2-hydroxy acids. Mass spectrometric evidence for biosynthesis via the ceramide pathway, J. Biol. Chem. 247: 1001.

    PubMed  Google Scholar 

  • Hanahan, D. J., 1960, Lipide Chemistry, Ch. 2, p. 11, Wiley, New York.

    Google Scholar 

  • Hanahan, D. J., 1962, L-a-Glycerylphosphorylcholine, Biochem. Prep. 9 :55.

    Google Scholar 

  • Hanahan, D. J., and Brockerhoff, H., 1960, A synthetic route to mixed-acid L-a-Lecithins and D-a, ß-diglycerides, Arch. Biochem. Biophys. 91: 326.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. J., Brockerhoff, H., and Barron, E. J., 1960, The site of attack of phospholipase (lecithinase) A on lecithin: A reevaluation, J. Biol. Chem. 235: 1917.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. J., Ekholm, J., and Jackson, C. M., 1963, Studies on the structure of glyceryl ethers and the glyceryl ether phospholipids of bovine erythrocytes, Biochemistry, 2: 630.

    PubMed  CAS  Google Scholar 

  • Hancock, A. J., and Kates, M., 1971, A sulfate ester of phosphatidyl glycerol (diether analogue) from Halobacterium cutirubium, Chem. Phys. Lipids 8: 87.

    Google Scholar 

  • Hasegawa, K., and Suzuki, T., 1973, Determination of molecular species of ovolecithin using gas chromatography—mass spectrometry. Lipids, 8: 631.

    PubMed  CAS  Google Scholar 

  • Haskins, N. J., Games, D. E., and Taylor, K. T., 1974, Comparison of the field desorption, chemical ionization and electron impact mass spectra of some steroids, Biomed. Mass Spectrom. 1: 423.

    PubMed  CAS  Google Scholar 

  • Hauser, G., and Eichberg, J., 1973, Improved conditions for the preservation and extraction of polyphosphoinositides, Biochim. Biophys. Acta 326: 201.

    PubMed  CAS  Google Scholar 

  • Hayashi, A., and Matsubara, T., 1971, Determination of the structure of sphinga-4, 8, dienine from oyster glycolipids by gas chromatography and mass spectrometry Biochim. Biophys. Acta 248: 306.

    PubMed  CAS  Google Scholar 

  • Hayashi, A., and Matsuura, F., 1973, 2-Hydroxy fatty acid and phytosphingosine-containing ceramide 2-N-methyl amino-ethylphosphonate from Turbo cornutus, Chem. Phys. Lipids 10:51.

    Google Scholar 

  • Hayashi, A., Matsubara, T., and Matsuura, F., 1975, Characterization of Docosa-4, 15-sphingadienine and 4-hydroxy-docosa-15-sphingenine in sphingophosphono-lipids from Turbo cornutus by gas chromatography mass spectrometry, Chem. Phys. Lipids 14: 102.

    CAS  Google Scholar 

  • Haydar, M., and Hadziyev, D., 1973, Electron spin resonance of free radicals formed in irradiated fatty acid methyl esters, J. Am. Oil Chem. Soc. 50: 171.

    CAS  Google Scholar 

  • Hayes, L., Lowry, R. R., and Tinsley, I. J., 1971, Cholesterol interference in analysis of fatty acid methyl esters, Lipids 6: 65.

    PubMed  CAS  Google Scholar 

  • Hazlewood, G. P., and Dawson, R. M. C., 1976, A phospholipid deacylating system of bacteria active in a frozen medium, Biochem. J. 153: 49.

    PubMed  CAS  Google Scholar 

  • Heinen, H. J., Hotzel, Ch., and Beckey, H. D., 1974, Combination of a field desorption ion source with a quadrupole mass analyzer, Int. J. Mass Spectrom. Ion. Phys. 13: 55.

    CAS  Google Scholar 

  • Heller, S. R., 1972, Conversational mass spectral retrieval system and its use as an aid in structure determination, Anal. Chem. 44: 1951.

    CAS  Google Scholar 

  • Heller, S. R., Chang, C. L., and Chu, K. C., 1974a, Interpretation of mass spectrometry data using cluster analysis—alkyl thiolesters, Anal. Chem. 46: 951.

    CAS  Google Scholar 

  • Heller, S. R., Koniver, D. A., Fales, H. M., and Milne, G. W. A., 1974b, Conversational mass spectral search system display and plotting of spectra and dissimilarity comparison, Anal. Chen,. 46: 947.

    CAS  Google Scholar 

  • Helmy, F. M., and Hack, M. H., 1966, An ethanolamine plasmalogen artifact formed by acetone extraction of freeze-dried tissue, Lipids 1: 279.

    PubMed  CAS  Google Scholar 

  • Hertz, H. S., Rites, R. A., and Biemann, K., 1971, Identification of mass spectra by computer-searching a file of known spectra, Anal. Chem. 43: 681.

    CAS  Google Scholar 

  • Hesse, M., and Leuzinger, F., 1968, A thermal substitution reaction in the mass spectrometer, Adv. Mass Spectrom. 4: 163.

    CAS  Google Scholar 

  • Heyns, K., and Grutzmacher, H. F., 1966, Massenspektromische Analysen von Aminosauren and Peptiden, Fortschr. Chem. Forsch. 6: 536.

    CAS  Google Scholar 

  • Hill, E. E., Husbands, D. R., and Lands, E. M., 1968, The selective incorporation of “C glycerol into different species of phosphatidic acid, phosphatidyl ethanolamine, and phosphatidylcholine, J. Biol. Chem. 243: 4440.

    PubMed  CAS  Google Scholar 

  • Hinckley, C. C., 1969, Paramagnetic shifts in solutions of cholesterol and the dipyridine adduct of tris-dipivalomethanato/europium(III). A shift reagent, J. Amer. Chem. Soc. 91: 5160.

    CAS  Google Scholar 

  • Hinckley, C. C., 1973, Applications of lanthanide shift reagents, in: Modern Methods of Steroid Analysis, Ch. 11, pp. 265–279 ( E. Heftmann, ed.), Academic Press, New York.

    Google Scholar 

  • Hine, J., 1950, Carbon dichloride as an intermediate in the basic hydrolysis of chloroform. A mechanism for substitution reactions at a saturated carbon atom, J. Amer. Chem. Soc. 72: 2438.

    CAS  Google Scholar 

  • Hine, J., and Dowell, A. M., 1954, Carbon dihalides as intermediates in the basic hydrolysis of haloforms. III. Combination of carbon dichloride with halide ions, J. Amer. Chem. Soc. 76: 2688.

    CAS  Google Scholar 

  • Hintze, U., Roper, H., and Gercken, G., 1973, Gas chromatography mass spectrometry of Cl–C20 fatty acid benzyl esters, J. Chromatog. 87: 481.

    CAS  Google Scholar 

  • Hippie, J. A., 1947, Peak contour and half-life of metastable ions appearing in mass spectra, Phys. Rev. 71: 594.

    Google Scholar 

  • Hipple, J. A., and Condon, E. U., 1945, Detection of metastable ions with the mass spectrometer, Phys. Rev. 68: 54.

    CAS  Google Scholar 

  • Hipple, J. A., Fox, R. E., and Condon, E. U., 1946, Metastable ions formed by electron impact in hydrocarbon gases, Phys, Rev. 69: 347.

    CAS  Google Scholar 

  • Hirsch, J., 1963, Factice chromatography: An automatically monitored, liquid-gel system for the separation of non-polar lipids, J. Lipid Res. 4: 1.

    PubMed  CAS  Google Scholar 

  • Hites, R. A., 1970, Quantitative analysis of triglyceride mixtures by mass spectrometry, Anal. Chem. 42: 1736.

    CAS  Google Scholar 

  • Hites, R. A., 1975, Mass spectrometry of triglycerides, in: Methods in Enzymology, Vol. 35, Part B ( J. M. Lowenstein, ed.), p. 348, Academic Press, New York.

    Google Scholar 

  • Holla, K. S., and Cornwell, D. G., 1965, Acetic anhydride-trifluoroacetic acid acetolysis for the estimation of glycerol in phosphatidyl choline by gas-liquid chromatography, J. Lipid Res. 6: 322.

    PubMed  CAS  Google Scholar 

  • Holla, K. S., Horrocks, L. A., and Cornwell, D. G., 1964, Improved determination of glycerol and fatty acids in glycerides and ethanolamine phosphatides by gas-liquid chromatography, J. Lipid Res. 5: 263.

    PubMed  Google Scholar 

  • Holm, C. H., 1957, Observation of chemical shielding and spin coupling of 13C nuclei in various chemical compounds by nuclear magnetic resonance, J. Chem. Phys. 26: 707.

    CAS  Google Scholar 

  • Holman, R. T., 1954, Autoxidation of fats and related substances, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 2 ( R. T. Holman, W. O. Lundberg, and T. Malkin, eds.), p. 51, Pergamon Press, London.

    Google Scholar 

  • Holman, R. T., 1966, General introduction to polyunsaturated acids, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 ( R. T. Holman, ed.), p. 6, Pergamon Press, London.

    Google Scholar 

  • Holman, R. T., and Elmer, O. C., 1947, The rates of oxidation of unsaturated fatty acids and esters, J. Am. Oil Chem. Soc. 24: 127.

    CAS  Google Scholar 

  • Holmes, J. L., and Benoit, F. M., 1972, Metastable ions in mass spectrometry, in: MTP International Review of Science, Vol. 5 ( A. Maccoll, ed.), p. 259, Butterworths, London.

    Google Scholar 

  • Holtz, R. B., Swenson, P., Abel, M., and Walter, T. A., 1971, Detection of a sebacate contaminant from chloroform, Lipids 6: 523.

    CAS  Google Scholar 

  • Holub, B. H., Kuksis, A., and Thompson, W., 1970, Molecular species of mono-, di-, and triphosphoinositides of bovine brain, J. Lipid Res. 11: 558.

    PubMed  CAS  Google Scholar 

  • Honig, R. E., 1948, Ionization potentials of some hydrocarbon series, J. Chem. Phys. 16: 105.

    CAS  Google Scholar 

  • Hopkins, C. Y., 1961, Nuclear magnetic resonance in lipid analysis, J. Am. Oil Chem. Soc. 38: 664.

    CAS  Google Scholar 

  • Hopkins, C. Y., 1965, Nuclear magnetic resonance in fatty acids and glycerides, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 8 ( R. T. Holman, ed.), p. 213, Pergamon Press, Oxford.

    Google Scholar 

  • Hopkins, C. Y., 1968, High-resolution NMR spectroscopy and some examples of its use, J. Am. Oil Chem. Soc. 45: 778.

    PubMed  CAS  Google Scholar 

  • Horning, M. G., Casparrini, G., and Horning, E. C., 1969, The use of gas-phase analytical methods for the analysis of phospholipids, J. Chromatog. Sci. 7: 267.

    CAS  Google Scholar 

  • Horning, M. G., Murakami, S., and Horning, E. C., 1971, Analyses of phospholipids, ceramides, and cerebrosides by gas chromatography and gas chromatography—mass spectrometry, Am. J. Clin. Nutr. 24: 1086.

    PubMed  CAS  Google Scholar 

  • Horrocks, L. A., and Cornwell, D. G., 1962, The simultaneous determination of glycerol and fatty acids in glycerides by gas-liquid chromatography, J. Lipid Res. 3: 165.

    CAS  Google Scholar 

  • Horrocks, W. de W., and Sipe, J. P., 1971, Lanthanide shift reagents, a survey, J. Am. Chem. Soc. 93: 6800.

    CAS  Google Scholar 

  • Horsley, W., Sternlicht, H., and Cohen, J. S., 1970, Carbon-13 magnetic resonance studies of amino acids and peptides. II. J. Am. Chem. Soc. 92: 680.

    CAS  Google Scholar 

  • Hoshi, M., Williams, M., and Kishimoto, Y., 1973, Esterification of fatty acids at room temperature by chloroform methanolic HC1-cupric acetate, J. Lipid Res. 14: 599.

    PubMed  CAS  Google Scholar 

  • Howe, I., 1971, Energetics, kinetics and ion structures, in: Mass Spectrometry, Vol. I ( D. H. Williams, ed.), p. 31, The Chemical Society, London.

    Google Scholar 

  • Howe, I., 1973, Kinetic and energetic studies of organic ions, in: Mass Spectrometry, Vol. 2 ( D. H. Williams, ed.), p. 33, The Chemical Society, London.

    Google Scholar 

  • Howe, I., and Williams, D. H., 1968, Variation of relative ion abundances with accelerator potential in the mass spectrometer, Chem. Comm. 4: 220.

    Google Scholar 

  • Hübscher, G., Hawthorne, J. N., and Kemp, P., 1960, The analysis of tissue phospholipids: hydrolysis procedure and results with pig liver, J. Lipid Res. 1: 433.

    Google Scholar 

  • Huckerby, T. N., 1972, A general review of proton magnetic resonance, in: Annual Reports on NMR Spectroscopy, Vol. 5A ( E. F. Mooney, ed.), pp. 1–98, Academic Press, New York.

    Google Scholar 

  • Hughes, R. C., Murau, P. C., and Gundersen, G., 1971, Ultrapure water, Anal. Chem. 43: 691.

    CAS  Google Scholar 

  • Hunneman, D. H., and Richter, W. J., 1972, Migration of dimethylsilyl substituents upon electron-impact: The fragmentation of methyl 12-dimethylsilyl oxyoctadecanoate, Org. Mass Spectrom. 6: 909.

    CAS  Google Scholar 

  • Hvistendahl, G., and Undheim, K., 1970, High-resolution mass spectrometry of trimethylamine, Org. Mass Spectrom. 3: 821.

    CAS  Google Scholar 

  • Ikeda, N., and Fukusumi, K., 1974, Study on quantitative analyses of hydroperoxides and alcohols by NMR shift reagent, J. Am. Oil Chem. Soc. 51: 340.

    CAS  Google Scholar 

  • Iverson, A., 1964, The measured resistivity of pure water and determination of the limiting mobility of OH- from 5 to 55°, J. Phys. Chem. 68: 515.

    CAS  Google Scholar 

  • Jacini, G., and Fedeli, E., 1969, New approaches to the fractionation of lipids, in: Advances in Experimental Medicine and Biology, Vol. 4 ( W. L. Holmes, L. A. Carlson, and R. Paoletti, eds.), pp. 639–650, Plenum Press, New York.

    Google Scholar 

  • Jackman, L. M., 1966, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon Press, Oxford.

    Google Scholar 

  • Jacob, J., and Poltz, J., 1974, Chemical composition of uropygial gland secretion in owls, J. Lipid Res. 15: 243.

    PubMed  CAS  Google Scholar 

  • Jaeger, R. J., and Rubin, R. J., 1970, Plasticizers from plastic devices. Extraction, metabolism, and accumulation by biological systems, Science 170: 460.

    PubMed  CAS  Google Scholar 

  • Jalonen, J., and Pihlaja, K., 1973, Ionization and appearance potentials in structure analysis, a review, Org. Mass Spectrom. 7: 1203.

    CAS  Google Scholar 

  • James, A. T., Ravenhill, J. R., and Scott, R. P., 1964, A new method for the automatic detection of zones eluted from the liquid chromatogram, Chem. Ind. 1964: 746.

    Google Scholar 

  • Jatzkewitz, H., and Mehl, E., 1960, Fur Dünnschicht-chromatographic der Gehirn-lipoide, ihrer um-and Abbauprodukte, Hoppe-SeyL Z. Physiol. Chem. 320: 251.

    CAS  Google Scholar 

  • Jelus, B. L., Munson, B., and Fenselau, C., 1974, Reagent gases for GC-MS analyses, Biomed. Mass Spectrom. 1: 96.

    PubMed  CAS  Google Scholar 

  • Jennings, K. R., 1965, Metastable transitions in the mass spectrum of benzene, J. Chem. Phys. 43: 4176.

    CAS  Google Scholar 

  • Jennings, K. R., 1971, Some aspects of metastable transitions, in: Mass Spectrometry: Techniques and Applications ( G. W. A. Milne, ed.), pp. 419–458, Wiley Interscience, New York.

    Google Scholar 

  • Johnson, A. R., Murray, K. E., Fogerty, A. C., Kennett, B. H., Pearson, J. A., and Shen-stone, F. S., 1967, The reaction of methyl sterculate and malvalate with silver nitrate silica gel and its use as a basis for the estimation of cyclopropene fatty acids, Lipids 2: 316.

    PubMed  CAS  Google Scholar 

  • Johnson, B. M., and Taylor, J. W., 1972a, Hexafluoroacetone ketals as derivatives for positionals and geometrical characterization of double bonds, Anal. Chem. 44: 1438.

    CAS  Google Scholar 

  • Johnson, B. M., and Taylor, J. W., 1972b, Photoionization mass spectrometry. III. Comparison of photon and electron impact excitation of cis-and trans-2-decene, Int. J. Mass Spectrom. Ion Phys. 10: 1.

    CAS  Google Scholar 

  • Johnson, C. B., 1973, Separation of cis-and trans-isomers of 1,2-benzylidene glyceryl esters, Lipids 8: 479.

    CAS  Google Scholar 

  • Johnson, C. B., and Holman, R. T., 1966, Mass spectrometry of lipids. II. Monoglycerides, their diacetyl derivatives and their trimethylsilyl ethers, Lipids 1: 371.

    PubMed  CAS  Google Scholar 

  • Johnson, C. B., Pearson, A. M., and Dugan, Jr., L. R., 1970, Gas chromatographic analysis of the dimethylhydrazones of long chain aldehydes, Lipids 5: 958.

    PubMed  CAS  Google Scholar 

  • Johnson, L. F., and Jankowski, W. C., 1972, Carbon-13 NMR Spectra, pp. 455, 463, Wiley, New York.

    Google Scholar 

  • Johnston, P. V., and Roots, B. I., 1964, A source of contamination in the ultramicro analysis of methyl esters of fatty acids by gas-liquid chromatography, J. Lipid Res. 5: 477.

    PubMed  CAS  Google Scholar 

  • Jost, P., Libertini, L. J., Herbert, V. C., and Griffith, O. H., 1971, Lipid spin labels in lecithin multilayers. A study of motion along fatty acid chains, J. Mol. Biol. 59: 77.

    PubMed  CAS  Google Scholar 

  • Jungalwala, F. B., Turel, R. J., Evans, J. E., and McCluer, R. H., 1975, Sensitive analysis of ethanolamine-and serine-containing phosphoglycerides by high-performance liquid chromatography, Biochem. J. 145: 517.

    PubMed  CAS  Google Scholar 

  • Junk, G. A., 1972, Gas chromatograph-mass spectrometer combinations and their applications, Int. J. Mass Spectrom. Ion Phys. 8: 1.

    CAS  Google Scholar 

  • Junk, G., and Svec, H., 1963, The mass spectra of the a-amino acids, J. Am. Chem. Soc. 85: 839.

    CAS  Google Scholar 

  • Kanfer, J. N., 1969, Preparations of gangliosides, in: Methods in Enzymology, Vol. 14 ( J. M. Lowenstein, ed.), p. 660, Academic Press, New York.

    Google Scholar 

  • Karlander, S. G., Karlsson, K. A., Leffler, H., Lilja, A., Samuelsson, B. E., and Steen, G. 0., 1972, The structure of sphingomyelin of the honey bee (Apis melifera), Biochim. Biophys. Acta 270: 117.

    CAS  Google Scholar 

  • Karlander, S. G., Karlsson, K. A., and Pascher, I., 1973, Analysis of polar pairs of phospholipids. N-Demethylation of choline-containing lipids for gas chromatography and mass spectrometry, Biochim. Biophys. Acta 326: 174.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., 1967, The chemical structure of a dienoic long-chain base of human blood plasma sphingomyelins, Acta Chem. Scand. 21: 2577.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., 1968, Enzymatic hydrolysis of sphingomyelins: Use in structure analysis, Acta Chem. Scand. 22: 3050.

    CAS  Google Scholar 

  • Karlsson, K. A., 1970a, Analysis of compounds containing phosphate and phosphonate by gas-liquid chromatography and mass spectrometry, Biochem. Biophys. Res. Comm. 39: 847.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., 19706, On the chemistry and occurence of sphingolipid long-chain bases, Chem. Phys. Lipids 5: 6.

    Google Scholar 

  • Karlsson, K. A., 1973, Carbohydrate composition and sequence analysis of cell surface components by mass spectrometry, characterization of the major monosialoganglioside of brain, FEBS Lett. 32: 317.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., and Pascher, I., 1974, Resolution and chromatographic configuration analysis of 2-hydroxy fatty acids, Chem. Phys. Lipids 12: 65.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., Samuelsson, B. E., and Steen, G. 0., 1969, Mass spectrometry of polar complex lipids. Analysis of a sulfatide derivative, Biochem. Biophys. Res. Comm. 37: 22.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., Pascher, I., Samuelsson, B. E., and Steen, G. O., 1972a, Mass spectra of trimethylsilyl derivatives of homogeneous cerebrosides (monoglycosyl ceramides), Chem. Phys. Lipids 9: 230.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 19726, Identification of a xylose- containing cerebroside in the salt gland of the herring gull, J. Lipid Res. 13: 169.

    Google Scholar 

  • Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 1973a, Separation of monoglycosylceramides (cerebrosides) of bovine kidney into subgroups and characterization by mass spectrometry, Biochim. Biophys. Acta 306: 317.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 1973b, Improved identification of monomethyl paraffin chain branching (close to the methyl end) of long-chain compounds by gas chromatography and mass spectrometry, Chem. Phys. Lipids 11: 17.

    CAS  Google Scholar 

  • Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 1973c, Detailed structure of sphingomyelins and ceramides from different regions of bovine kidney with special reference to long-chain bases, Biochim. Biophys. Acta 316: 336.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., Pascher, I., Pimlott, W., and Samuelsson, B. E., 1974a, Use of mass spectrometry for the carbohydrate composition and sequence analysis of glycosphingolipids, Biomed. Mass Spectrom. 1: 49.

    PubMed  CAS  Google Scholar 

  • Karlsson, K. A., Pascher, I., and Samuelsson, B. E., 1974b, Analysis of intact gangliosides by mass spectrometry. Comparison of different derivatives of a hematoside of a tumor and the major monosialoganglioside of brain, Chem. Phys. Lipids 12: 271.

    PubMed  CAS  Google Scholar 

  • Karplus, M., 1959, Contact electron-spin coupling of nuclear magnetic moments, J. Chem. Phys. 30: 11.

    CAS  Google Scholar 

  • Kates, M., 1967, Paper chromatography of phosphatides and glycolipids on silicic-acidimpregnated filter paper, Lipid chrom. Anal. 1: 1.

    CAS  Google Scholar 

  • Kates, M., 1972, Techniques of lipidology: Isolation, analysis and identification of lipids, in: Laboratory Techniques in Biochemistry and Molecular Biology ( T. S. Work and E. Work, eds.), North-Holland/American Elsevier, Amsterdam and New York.

    Google Scholar 

  • Kates, M., and Hancock, A. J., 1971, Determination of ionizable acid groups in phosphatidyl glycerophosphate (diphytanyl ether analogue) by proton magnetic resonance spectroscopy, Biochim. Biophys. Acta 248: 254.

    PubMed  CAS  Google Scholar 

  • Kaufmann, H. C., and Wessels, H., 1964, Thin-layer chromatography in the field of fats. XIV. Separation of triglycerides by the combination of adsorption and reversed phase chromatography, Fette Seifen Anstrichm. 66: 81.

    CAS  Google Scholar 

  • Kawanami, J., and Otsuka, H., 1969, Lipids of Streptomyces sioyaensis. VI. On the ß-hydroxy fatty acids in siolipin, Chem. Phys. Lipids 3: 135.

    PubMed  CAS  Google Scholar 

  • Kawanami, J., Kumura, A., Nakagawa, Y., and Otsuka, H., 1969, Lipids of Streptomyces sioyaensis. V. On the 2-hydroxy-l3-methyl-tetradecanoic acid from phosphatidyl ethanolamine, Chem. Phys. Lipids 3: 29.

    CAS  Google Scholar 

  • Kaye, G. W. C., and Laby, T. H., 1971, Tables of Physical and Chemical Constants, 13th ed., Longmans Groups Ltd., London.

    Google Scholar 

  • Ke, P. J., Ackman, R. G., and Hooper, D. L., 1974, NMR determination of wax esters in marine lipids, Anal. Chim. Acta 69: 253.

    CAS  Google Scholar 

  • Kemp, P., and Dawson, R. M. C., 1968, Isomerisation of linolenic acid by rumen microorganisms, Biochem. J. 109: 477.

    PubMed  CAS  Google Scholar 

  • Kemp, P., and Dawson, R. M. C., 1969, Isolation of a new phospholipid, phosphatidyl-N(2-hydroxyethyl)-alanine, from rumen protozoa, Biochem. J. 113: 555.

    PubMed  CAS  Google Scholar 

  • Kemp, P., Hübscher, G., and Hawthorne, J. N., 1969, Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipide, Biochem. J. 79: 193.

    Google Scholar 

  • Kemp, P., Dawson, R. M. C., and Klein, R. A., 1972, A new bacterial sphingophospholipid containing 3-aminopropane-1,2-diol, Biochem. J. 130: 221.

    PubMed  CAS  Google Scholar 

  • Kemp, P., White, R. W., and Lander, D. J., 1975, The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species, J. Gen. Microbiol. 90: 100.

    PubMed  CAS  Google Scholar 

  • Kenner, G. W., and Stenhagen, E., 1964, Location of double bonds by mass spectrometry, Acta Chem. Scand. 18: 1551.

    CAS  Google Scholar 

  • Keulemans, A. I. M., 1959, Gas Chromatography, p. 134, Reinhold, New York. Kiesenbach, R., 1961, Gas chromatography. The effect of gaseous diffusion on mass transfer in packed columns, Anal. Chem. 33: 23.

    Google Scholar 

  • Kircher, H. W., 1964, The addition of mercaptans to methyl sterculate and sterculene: an hypothesis concerning the nature of the biological activity exhibited by cyclopropene derivatives, J. Am. Oil Chem. Soc. 41: 4.

    CAS  Google Scholar 

  • Kirkland, J. J., 1971, Modern Practice of Liquid Chomatography, Wiley Interscience, New York.

    Google Scholar 

  • Kiser, R. W., 1965, Introduction to Mass Spectrometry and Its Applications, Prentice-Hall, Englewood Cliffs, N. Y.

    Google Scholar 

  • Kleiman, R., and Spencer, G. F., 1973, Gas chromatography—mass spectrometry of methyl esters of unsaturated oxygenated fatty acids, J. Amer. Oil Chem. Soc. 50:31. Klein, R. A., 1970a, The detection of oxidation in liposome preparations, Biochim. Biophys. Acta 210: 486.

    Google Scholar 

  • Klein, R. A., 1970b, The large-scale preparation of unsaturated phosphatidyl cholines from egg yolk, Biochim. Biophys. Acta 219: 496.

    PubMed  CAS  Google Scholar 

  • Klein, R. A., 197la, Mass spectrometry of the phosphatidyl cholines: dipalmitoyl, dioleoyl, and stearoyl-oleoyl glycerylphosphorylcholines, J. Lipid Res. 12: 123.

    Google Scholar 

  • Klein, R. A., 197 lb, Mass spectrometry of the phosphatidylcholines: fragmentation processes for dioleoyl and stearoyl-oleoyl glycerylphosphorylcholine, J. Lipid Res. 12: 628.

    Google Scholar 

  • Klein, R. A., 1972, Mass spectrometry of the phosphatidyl amino alcohols: Detection of molecular species and use of low-voltage spectra and metastable scanning in the elucidation of structure, J. Lipid Res. 13: 672.

    PubMed  CAS  Google Scholar 

  • Klein, R. A., 1973, Phosphatidyl choline molecular species, Ph. D. thesis, University of Cambridge.

    Google Scholar 

  • Klein, R. A., 1974, Mass spectrometry as a microanalytical tool in lipid analysis, Biochem. Soc. Trans. 2: 1057.

    CAS  Google Scholar 

  • Klem, H. P., Hintze, U., and Gerken, G., 1973, Quantitative preparation and gas chromatography of short and medium chain fatty acid benzyl esters (C1–C12), J. Chromatog. 75: 19.

    Google Scholar 

  • Klopfenstein, W. E., 1971, On methylation of unsaturated acids using boron trihalidemethanol reagents, J. Lipid Res. 12: 773.

    PubMed  CAS  Google Scholar 

  • Knewstubb, P. F., 1971a, A ballistic model for ion breakdown, Int. J. Mass Spectrom. Ion Phys. 6: 217.

    CAS  Google Scholar 

  • Knewstubb, P. F., 1971b, On the detailed formulation of rate coefficients for unimolecular fragmentation processes, Int. J. Mass Spectrom. Ion Phys. 6: 229.

    CAS  Google Scholar 

  • Knewstubb, P. F., and Reid, N. W., 1970, The unimolecular decomposition of excited polyatomic ions studied by time of flight mass spectrometry, Int. J. Mass Spectrom. Ion Phys. 5: 361.

    CAS  Google Scholar 

  • Knoche, H. W., 1971, Incorporation of oxygen-18 into the oxirane ring of cis-9,10-epoxyoctadecanoic acid, Lipids 6: 581.

    CAS  Google Scholar 

  • Koritala, S., and Rohwedder, W. K., 1972, Formation of an artifact during methylation of conjugated fatty acids, Lipids 7: 274.

    CAS  Google Scholar 

  • Kornberg, R. D., and McConnell, H. M., 1971a, Inside-outside transitions of phospholipid in vesicle membranes, Biochemistry, 10: 1111.

    PubMed  CAS  Google Scholar 

  • Kornberg, R. D., and McConnell, H. M., 1971b, Lateral diffusion of phospholipids in a vesicle membrane, Proc. Nat. Acad. Sci. 68: 2564.

    PubMed  CAS  Google Scholar 

  • Kramer, J. K. G., Baumann, W. J., and Holman, R. T., 1971a, Mass spectrometric analysis of long-chain alk-1-enyl ether esters and alkyl ether esters of diols, Lipids 6: 492.

    CAS  Google Scholar 

  • Kramer, J. K. G., Holman, R. T., and Baumann, W. J., 1971b, Mass spectrometric analysis of mono-and dialkyl ethers of diols, Lipids 6 :727.

    Google Scholar 

  • Krisnangkura, K., and Sweeley, C. C., 1974, Mass spectra of various deuterium-labelled forms of bis-O-trimethylsilyl-N-acetyl sphinganine, Chem. Phys. Lipids 13: 415.

    PubMed  CAS  Google Scholar 

  • Kuksis, A., 1972, Newer developments in determination of structure of glycerides and phosphoglycerides, Prog. Chem. Fats Other Lipids 12 :1–163.

    Google Scholar 

  • Kuksis, A., 1973a, Progress in the analysis of lipids. XI. Gas chromatography, part 3, Fette Seifen Anstrichm. 75: 317.

    CAS  Google Scholar 

  • Kuksis, A., 1973b, Progress in the analysis of lipids. XII. Gas chromatography, part 4, Fette Seifen Anstrichm. 75: 420.

    CAS  Google Scholar 

  • Kuksis, A., and Marai, L., 1967, Determination of the complete structure of natural lecithins, Lipids 2: 217.

    PubMed  CAS  Google Scholar 

  • Kuksis, A., Marai, L., and Gomall, D. A., 1967, Direct gas chromatographic examination of total lipid extracts, J. Lipid Res. 8: 352.

    PubMed  CAS  Google Scholar 

  • Kunz, F., 1973, Separation of “neutral” lipids, particularly of all classes of partial glycerides by one-dimensional thin-layer chromatography, Biochim. Biophys. Acta 296: 331.

    PubMed  CAS  Google Scholar 

  • Kusamran, K., and Polgar, N., 1971, Determination of the position of ethylenic linkages in lipids, Lipids 6 :961.

    Google Scholar 

  • Laine, R. A., Griffin, P. F. S., Sweeley, C. C., and Brennan, P. J., 1972, Monoglucosyloxyoctadecenoic acid—A glycolipid from Aspergillus niger, Biochemistry 11: 2267.

    CAS  Google Scholar 

  • Lambein, F., and Wolk, C. 0., 1973, Structural studies of the glycolipids from the envelope of the heterocyst of Anabaena cylindrica, Biochemistry 12: 791.

    Google Scholar 

  • Laser, H., Klein, R. A., Kemp, P., Lander, D., and Miller, N. G. A., 1975, Changes in the neutral lipid content of erythrocytes parasitized by Plasmodium knowlesi, Parasitology 71: V.

    Google Scholar 

  • Lauer, W. M., Aasen, A. J., Graff, G., and Holman, R. T., 1970, Mass spectrometry of triglycerides. I. Structural effects, Lipids 5: 861.

    PubMed  CAS  Google Scholar 

  • Lauterbur, P. C., 1957, 13C Nuclear magnetic resonance spectra, J. Chem. Phys. 26: 217.

    Google Scholar 

  • Lauwers, W., Serum, J. W., and Vandewalle, M., 1973, Studies in organic mass spectrometry. XIII. Investigation of electron impact-induced isomerisation of aß and ßy unsaturated esters, Org. Mass Spectrom. 7: 1027.

    Google Scholar 

  • Lawrence, J. G., 1973, High-speed liquid chromatography of nonpolar lipids, J. Chroma-tog. 84: 299.

    CAS  Google Scholar 

  • Lawrence, W. H., Turner, J. E., and Autian, J., 1969, Reevaluation of plastic tubings currently used in medical and paramedical applications, J. Biomed. Mater. Res. 3: 291.

    PubMed  CAS  Google Scholar 

  • Ledeen, R. W., Kundu, S. K., Price, H. C., and Fong, J. W., 1974, Mass spectra of permethyl derivatives of glycosphingolipids, Chem. Phys. Lipids 13: 429.

    PubMed  CAS  Google Scholar 

  • Lee, A. G., Birdsall, N. J. M., Levine, Y. K., and Metcalfe, J. C., 1972, High-resolution proton relaxation studies of lecithins, Biochim. Biophys. Acta 255: 43.

    PubMed  CAS  Google Scholar 

  • Lee, A. G., Birdsall, N. J. M., and Metcalfe, J. C., 1974, Nuclear magnetic relaxation and the biological membrane, Meth. in Membr. Bio. 2:1.

    Google Scholar 

  • Lee, K. Y., 1971, Loss of lipid to plastic tubing, J. Lipid Res. 12: 635.

    PubMed  CAS  Google Scholar 

  • Letters, R., 1966, Phos moli-ids of yeast. II. Extraction, isolation and characterisation of yeast phospholipids, Biochim. Biophys. Acta 116: 489.

    PubMed  CAS  Google Scholar 

  • Levine, Y. K., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1972, 13C nuclear magnetic resonance relaxation measurements of synthetic lecithins and the effect of spin-labeled lipids, Biochemistry 11: 1416.

    Google Scholar 

  • Levsen, K., and Beckey, H. D., 1971, The study of rearrangement reactions by field ionization mass spectrometry and theoretical aspects, Int. J. Mass Spectrom. Ion Phys. 7: 341.

    CAS  Google Scholar 

  • Levsen, K., and Beckey, H. D., 1972a, The study of rearrangement reactions by field ionization mass spectrometry. II. Temperature dependence, Int. J. Mass Spectrom. Ion Phys. 9: 51.

    CAS  Google Scholar 

  • Levsen, K., and Beckey, H. D., 19726, The study of rearrangement reactions by field ionization mass spectrometry. III. Experimental results for different types of reactions, Int. J. Mass Spectrom. Ion Phys. 9: 63.

    Google Scholar 

  • Levsen, K., and Beckey, H. D., 1974, Kinetics of competing rearrangement reactions and direct bond cleavages. A field ionization study, Int. J. Mass Spectrom. Ion Phys. 15: 333.

    CAS  Google Scholar 

  • Levy, G. C., and Nelson, G. L., 1972, Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley-Interscience, New York.

    Google Scholar 

  • Liedtke, R. J., Sheikh, Y. M., Duffield, A. M., and Djerassi, C., 1972, Mass spectrometry in structural and stereochemical problems. CCXIX. Identification of an unidirectional quadruple hydrogen transfer process in 7-phenyl-hept-3-en-2-one 0-methyl oxime ether, Org. Mass Spectrom. 6: 1271.

    CAS  Google Scholar 

  • Lindeman, L. P., and Adams, J. Q., 1971, Carbon-13 Nuclear magnetic resonance spectrometry. Chemical shifts for the paraffins through C9, Anal. Chem. 43: 1245.

    CAS  Google Scholar 

  • Lindqvist, B., Sjögren, I., and Nordin, R., 1974, Preparative fractionation of triglyceride mixtures according to acyl carbon number, using hydroxyalkoxypropyl sephadex, J. Lipid Res. 15: 65.

    PubMed  CAS  Google Scholar 

  • Linstead, R. P., and Whalley, M., 1950, The formation of crystalline complexes between urea and esters, and their application to the separation of mixtures of esters, J. Chem. Soc. 1950: 2987.

    Google Scholar 

  • Litchfield, C., 1968, Triglyceride analysis by consecutive liquid—liquid partition and gasliquid chromatography, Ephedra nevadensis seed fat, Lipids 3: 170.

    PubMed  CAS  Google Scholar 

  • Litchfield, C., 1972, Analysis of Triglycerides, Academic Press, New York.

    Google Scholar 

  • Lossing, F. P., Tickner, A. W., and Bryce, W. A., 1951, The ionization potentials of the deuterated methanes, J. Chem. Phys. 19: 1254.

    CAS  Google Scholar 

  • Lough, A. K., 1964, The production of methoxy-substituted fatty acids as artifacts during the esterification of unsaturated fatty acids with methanol containing boron trifluoride, Biochem. J. 90: 4c.

    PubMed  CAS  Google Scholar 

  • Lovins, R. E., Ellis, S. R., Tolbert, G. D., and McKinney, C. R., 1973, Liquid chromatography—mass spectrometry coupling of a liquid chromatograph to a mass spectrometer, Anal. Chem. 45: 1553.

    CAS  Google Scholar 

  • Lowry, R. R., 1968, Ferric chloride spray detector for cholesterol and cholesteryl esters on thin-layer chromatograms, J. Lipid Res. 9: 397.

    PubMed  CAS  Google Scholar 

  • Lucas, C. C., Patterson, J. M., and Ridout, J. H., 1958, Solubility of tissue phosphatides in acetone, Arch. Biochem. Biophys. 78: 546.

    PubMed  CAS  Google Scholar 

  • Lukacs, G., Piriou, F., Gero, S. D., Van Dorp, D. A., Hagaman, E. W., and Wenkert, E., 1973, Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. Prostaglandins, Tetrahedron Lett. 1973: 515.

    Google Scholar 

  • Lundberg, W. 0., 1962, Mechanism and products of lipid oxidation, in: Lipids and their Oxidation ( H. W. Schultz, E. A. Day, and R. O. Sinnhuber, eds.) Avi. Pub. Co., Conn., U.S.A.

    Google Scholar 

  • Lustig, E., and Moniz, W. B., 1966, Nuclear magnetic resonance spectrometry, Anal. Chem. 38: 331R.

    CAS  Google Scholar 

  • Luthra, M. G., and Sheltawy, A., 1972a, The chromatographic separation of phospho- lipids on alumina with solvents containing ammonium salts, Biochem. J. 126: 251.

    PubMed  CAS  Google Scholar 

  • Luthra, M. G., and Sheltawy, A., 1972b, The fractionation of phosphatidylinositol into molecular species by thin-layer chromatography on silver nitrate—impregnated silica gel, Biochem. J. 126: 1231.

    PubMed  CAS  Google Scholar 

  • Lynden-Bell, R. M., and Harris, R. K., 1969, Nuclear Magnetic Resonance Spectroscopy, Nelson, London.

    Google Scholar 

  • MacFarlane, M. G., 1964, Phosphatidylglycerols and lipo-amino acids, in: Advances in Lipid Research, Vol. 2 ( R. Paoletti and D. Kritchevsky, eds.), p. 91, Academic Press, London.

    Google Scholar 

  • McCloskey, J. A., 1969, Mass spectrometry of lipids and steroids, in: Methods in Enzymology, Vol 14 ( J. M. Lowenstein, ed.), p. 382, Academic Press, New York.

    Google Scholar 

  • McCloskey, J. A., 1975, Gas chromatography—mass spectrometry of esters of perdeuterated fatty acids, in: Methods in Enzymology, Vol 35, Part B ( J. M. Lowenstein, ed.), p. 340, Academic Press, New York.

    Google Scholar 

  • McCloskey, J. A., and Law, J. H., 1967, Ring location in cyclopropane fatty acid esters, Lipids 2: 225.

    PubMed  CAS  Google Scholar 

  • McCloskey, J. A., and McClelland, M. J., 1965, Mass spectra of O-isopropylidene derivatives of unsaturated fatty esters, J. Am. Chem. Soc. 87: 5090.

    CAS  Google Scholar 

  • McDaniel, E. W., Cermak, V., Dalgarno, A., Ferguson, E. E., and Friedman, L., 1970, Ion—Molecule Reactions, p. 5, Wiley, New York.

    Google Scholar 

  • McKinney, J. D., 1974, Lecithin reversed micelle formation and interactions with pp’DDA and kelthane NMR observations, Chem. Phys. Lipids 13: 249.

    CAS  Google Scholar 

  • McLafferty, F. W., 1959, Molecular rearrangements, Anal. Chem. 31: 82.

    CAS  Google Scholar 

  • McLafferty, F. W., 1967, Interpretation of Mass Spectra, W. A. Benjamin, Inc., New York and Amsterdam.

    Google Scholar 

  • McLafferty, F. W., and Fairweather, R. B., 1968, Metastable ion characteristics. VIII. Characterization of ion decomposition mechanisms by metastable ion abundances, J. Am. Chem. Soc. 90: 5915.

    CAS  Google Scholar 

  • McLafferty, F. W., and Gohlke, R. S., 1959, Mass spectrometric analysis aromatic acids and esters, Anal. Chem. 31: 2076.

    CAS  Google Scholar 

  • McLafferty, F. W., and Pinzelik, J., 1966, Mass spectrometry, J. Am. Oil Chem. Soc. 38: 350R.

    CAS  Google Scholar 

  • McMaster, B. N., 1975, Theory and energetics of mass spectra, in: Mass Spectrometry, Vol. 3 ( R. A. W. Johnstone, ed.), p. 1, The Chemical Society, London.

    Google Scholar 

  • Mahadevan, U., 1967, Thin-layer chromatography of neutral glycerides and fatty acids, in: Lipid Chromatographic Analysis, Vol. 1 ( G. V. Marinetti, ed.), p. 191, Marcel Dekker, New York.

    Google Scholar 

  • Mangold, H. K., 1969, Aliphatic lipids, in: Thin Layer Chromatography ( E. Stahl, ed.), p. 363, Springer-Verlag, New York.

    Google Scholar 

  • Markey, S. P., and Wenger, D. A., 1974, Mass spectra of complex molecules. I. Chemical ionization of sphingolipids, Chem. Phys. Lipids 12: 182.

    PubMed  CAS  Google Scholar 

  • Markovetz, A. J., Stumpf, P. K., and Hammarström, S., 1972, Fat metabolism in higher plants. LIII. Characterization of the product of the peanut a-oxidation system, Lipids 7: 159.

    CAS  Google Scholar 

  • Matsubara, T., and Hayashi, A., 1973, Identification of molecular species of ceramide aminoethylphosphonate from oyster adductor by gas-liquid chromatography-mass spectrometry, Biochim. Biophys. Acta 296: 171.

    PubMed  CAS  Google Scholar 

  • Matsuura, F., Matsubara, T., and Hayashi, A., 1973, Identification of molecular species of ceramide 2-N-methylaminoethylphosphonates containing normal fatty acids and dihydroxy long-chain bases from Turbo cornutus, J. Biochem. 74: 49.

    CAS  Google Scholar 

  • Mazur, R. H., Ellis, B. W., and Cammarata, S., 1962, A new reagent for detection of peptides, nucleotides, and other NH-containing compounds on paper chromatograms, J. Biol. Chem. 237: 1619.

    PubMed  CAS  Google Scholar 

  • Mead, T. J., Morris, H. R., Bowie, J. H., and Howe, I., 1973, Natural products, in: Mass Spectrometry, Vol. 2 ( D. H. Williams, ed.), p. 143, The Chemical Society, London.

    Google Scholar 

  • Mecham, D. K., and Mohammad, A., 1955, Extraction of lipids from wheat products, Cereal Chem. 32: 405.

    CAS  Google Scholar 

  • Meier, K., and Seibl, J., 1947, Measurement of ion residence times in a commercial electron impact ion source, Int. J. Mass Spectrom. Ion Phys. 14: 99.

    Google Scholar 

  • Meisels, G. G., and Geissner, B. G., 1971, Threshold behavior and the determination of appearance potentials from second differential ionization efficiencies, Int. J. Mass Spectrom. Ion. Phys. 7: 489.

    CAS  Google Scholar 

  • Mellon, F. A., 1975, Computerized data acquisition and interpretation, in: Mass Spec- trometry, Vol. 3 ( R. A. W. Johnstone, ed.), p. 117, The Chemical Society, London.

    Google Scholar 

  • Metcalfe, J. C., Birdsall, N. J. M., Feeney, J., Lee, A. G., Levine, Y. K., and Partington, P., 1971, 13C NMR spectra of lecithin vesicles and erythrocyte membranes, Nature 233: 199.

    Google Scholar 

  • Metcalfe, J. C., Birdsall, N. J. M., and Lee, A. G., 1972,13C NMR spectra of Acholeplasma membranes containing 13C labeled phospholipids, FEBS Letters 21: 335.

    Google Scholar 

  • Meuzelaar, H. L. C., Posthumus, M. A., Kistemaker, P. G., and Kistemaker, J., 1973, Curie point pyrolysis in direct combination with low voltage electron impact ionization mass spectrometry, Anal. Chem. 45: 1546.

    CAS  Google Scholar 

  • Meuzelaar, H. L. C., Kistemaker, P. G., and Posthumus, M. A., 1974, Recent advances in pyrolysis mass spectrometry of complex biological materials, Blamed. Mass Spectrom. 1: 312.

    CAS  Google Scholar 

  • Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles, Biochemistry 12: 2637.

    PubMed  CAS  Google Scholar 

  • Michell, R. H., Hawthorne, J. N., Coleman, R., and Karnovsky, M. L., 1970, Extraction of polyphosphoinositides with neutral and acidified solvents, a comparison of guinea-pig brain and liver, and measurements of rat liver inositol compounds which are resistant to extraction, Biochim. Biophys. Acta 210: 86.

    PubMed  CAS  Google Scholar 

  • Middleditch, B. S., and Desiderio, D. M., 1973a, Mass spectra of prostaglandins. II. Trimethylsilyl and alkyloxime-trimethylsilyl derivatives of prostaglandins Bl and B2, Lipids, 8: 267.

    CAS  Google Scholar 

  • Middleditch, B. S., and Desiderio, D. M., 1973b, Mass spectra of prostaglandins. III. Trimethylsilyl and alkyl oxime-trimethylsilyl derivatives of prostaglandins of the E series, J. Org . Chem. 38: 2204.

    CAS  Google Scholar 

  • Middleditch, B. S., and Desiderio, D. M., 1973c, Mass spectra of prostaglandins. IV. Trimethylsilyl derivatives of prostaglandins of the F series. Anal. Biochem. 55: 509.

    PubMed  CAS  Google Scholar 

  • Miettinen, T., and Takki-Luukkainen, I. T., 1959, Use of butyl acetate in determination of sialic acid, Acta Chem. Scand. 13: 856.

    CAS  Google Scholar 

  • Migahed, M. D., and Beckey, H. D., 1971, Production and properties of organic micro-needles on field ion emitters, Int. J. Mass Spectrom. Ion. Phys. 7: 1.

    CAS  Google Scholar 

  • Miller, C. E., 1965, Hydrogenation with di-imide, J. Chem. Educ. 42: 354.

    Google Scholar 

  • Millett, F., Hargrave, P. A., and Raftery, M. A., 1973, Natural abundance 73C nuclear magnetic resonance spectra of the lipid in intact bovine retinal rod outer segment membranes, Biochemistry 12: 3591.

    PubMed  CAS  Google Scholar 

  • Milne, G. W. A., 197la, Mass Spectrometry: Techniques and Applications Wiley, Inter-science, New York.

    Google Scholar 

  • Milne, G. W. A., 1971b, The application of mass spectrometry to problems in medicine and biochemistry, in: Mass Spectrometry: Techniques and Applications ( G. W. A. Milne, ed.), p. 327, Wiley Interscience, New York.

    Google Scholar 

  • Minnikin, D. E., 1975, Location of double bonds in long-chain esters by mass spectroscopy of methoxyhalogeno derivatives prepared from methoxymercuriacetate adducts, Lipids 10: 55.

    CAS  Google Scholar 

  • Minnikin, D. E., Abley, P., McQuillin, F. J., Kusamcan, K., Maskens, K., and Polgar, N., 1974, Location of double bonds in long-chain esters by methoxymercurationdemercuration followed by mass spectroscopy, Lipids 9: 135.

    PubMed  CAS  Google Scholar 

  • Miwa, T. K., Mikolajczak, K. L., Earle, F. R., and Wolff, I. A., 1960, Gas chromatographic characterization of fatty acids. Identification constants for mono-and dicarboxylic methyl esters, Anal. Chem. 32: 1739.

    CAS  Google Scholar 

  • Morris, L. J., 1963, Separation of isomeric long-chain polyhydroxy acids by thin-layer Chromatography, J. Chromatog. 12: 321.

    CAS  Google Scholar 

  • Morris, L. J., 1966, Separations of lipids by silver ion chromatography, J. Lipid Res. 7:7. Morris, L. J., Holman, R. T., and Fontell, K., 1960, Alteration of some long-chain esters during gas—liquid chromatography, J. Lipid Res. 1: 412.

    Google Scholar 

  • Morrison, J. D., 1972, Ionization and appearance potentials, in: MTP International Review of Science, Vol. 5 ( A. Maccoll, ed.), p. 25, Butterworths, London.

    Google Scholar 

  • Morrison, W. R., 1969, Polar lipids in bovine milk. I. Long-chain bases in sphingomyelin, Biochim. Biophys. Acta 176: 537.

    PubMed  CAS  Google Scholar 

  • Morrison, W. R., and Smith, L. M., 1964, Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol, J. Lipid Res. 5: 600.

    PubMed  CAS  Google Scholar 

  • Morrison, A., Barratt, M. D., and Aneja, R., 1970, Mass spectrometry of some deuterated 1,3-distearins, Chem. Phys. Lipids 4: 47.

    Google Scholar 

  • Munson, M. S. B., and Field, F. H., 1966, Chemical ionization mass spectrometry. I. General introduction, J. Am. Chem. Soc. 88: 2621.

    CAS  Google Scholar 

  • Myher, J. J., Marai, L., L., and Kuksis, A., 1974, Identification of monoacyl and monoalkyl glycerols by gas—liquid chromatography—mass spectrometry using polar siloxane liquid phases, J. Lipid Res. 15: 586.

    CAS  Google Scholar 

  • Nadenicek, J. D., and Privett, O. S., 1968, Preparation of pure polyunsaturated fatty acids, 1. Linolenic acid, Chem. Phys. Lipids 2: 409.

    CAS  Google Scholar 

  • Nelson, D. R., and Sukkestad, D. R., 1975, Normal and branched alkanes from cast skins of the grasshopper Schistocerca vaga (Scudder), J. Lipid Res. 16: 12.

    PubMed  CAS  Google Scholar 

  • Nichols, B. W., 1964, Separation of plant phospholipids and glycolipids, in: New Biochemical Separations (A. T. James and L. J. Morris, eds.),p. 321, Van Nostrand Company Ltd, London.

    Google Scholar 

  • Nichols, B. W., and Moorhouse, R., 1969, The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris, Lipids 4: 311.

    CAS  Google Scholar 

  • Nicolaides, N., and Fu, H. C., 1969, A rapid micro technique for differentiating between iso, anteiso, and other mono-methyl branched fatty chains, Lipids, 4: 83.

    PubMed  CAS  Google Scholar 

  • Nicolau, C., Dreeskamp, H., and Schulte-Frohline, D., 1974, 13C nuclear magnetic resonance relaxation measurements of a-lecithin-peptide interaction in model membranes, FEBS Lett. 43: 148.

    Google Scholar 

  • Niehaus, W. G., Jr., and Ryhage, R., 1967, Determination of double bond positions in polyunsaturated fatty acids using combination gas chromatography—mass spectrometry, Tetrahedron. Lett. 1967: 5021.

    Google Scholar 

  • Nielsen, H., 1971, Metal ion bound to phospholipids after isolation by silicic acid column chromatography, Chem. Phys. Lipids 7: 231.

    PubMed  CAS  Google Scholar 

  • Noble, A. C. and Nawar, W. W., 1975, Identification of decomposition products from autoxidation of methyl 4,7,10,13,16,19-Docosahexaenoate, J. Am. Oil Chem. Soc. 52: 92.

    CAS  Google Scholar 

  • Noda, M., and Fujiwara, N., 1967, Positional distribution of fatty acids in galactolipids of Artemisia princeps leaves, Biochem. Biophys. Acta 137: 199.

    PubMed  CAS  Google Scholar 

  • Nutter, L. J., and Privett, O. S., 1966, Phospholipase A. Properties of several snake venom preparations, Lipids 1: 258.

    PubMed  CAS  Google Scholar 

  • Nyström, E., and Sjövall, J., 1975, Chromatography on lipophilic Sephadex, in: Methods in Enzymology, Vol. 35 Part B ( J. M. Lowenstein, ed.), p. 378, Academic Press, N. Y.

    Google Scholar 

  • Occolowitz, J. L., Cerimele, B. J., and Brown, P., 1974, Using model ionization efficiency curves to evaluate the methods for determining appearance potentials, Org. Mass Spectrom. 8: 61.

    CAS  Google Scholar 

  • Odham, G., and Stenhagen, E., 1972a, Fatty acids, in: Biochemical Applications of Mass Spectrometry ( G. R. Waller, ed.), p. 211, Wiley Interscience, New York.

    Google Scholar 

  • Odham, G., and Stenhagen, E., 1972b, Complex lipids, in: Biochemical Applications of Mass Spectrometry, ( G. R. Waller, ed.), Wiley Interscience, New York.

    Google Scholar 

  • Okuyama, H., and Nojima, S., 1965, Studies on hydrolysis of cardiolipin by snake venom phospholipase A, J. Biochem. (Tokyo) 57: 529.

    CAS  Google Scholar 

  • Oldfield, E., 1972, Gas chromatography—mass spectrometry of biosynthetic H1–H2 hybrid fatty methyl esters, J. Chem. Soc. Chem. Commun. 1972: 719.

    Google Scholar 

  • Oldfield, E, and Chapman, D., 1971, Carbon-13 pulse fourier transform NMR of lecithins, Biochem. Biophys. Res. Commun. 43: 949.

    PubMed  CAS  Google Scholar 

  • Oldfield, E., Marsden, J., and Chapman, D., 1971, Proton NMR relaxation study of mobility in lipid water systems, Chem. Phys. Lipids 7: 1.

    CAS  Google Scholar 

  • Oldfield, E., Chapman, D., and Derbyshire, W., 1972, Lipid mobility in Acholeplasma membranes using deuteron magnetic resonance, Chem. Phys. Lipids, 9: 69.

    PubMed  CAS  Google Scholar 

  • O11ey, J., and Lovern, J. A., 1960, Phospholipid hydrolysis in cod flesh stored at various temperatures, J. Sci. Food Agric. 11: 644.

    CAS  Google Scholar 

  • Olsen, R. W., and Ballou, C. E., 1971, Acyl phosphatidylglycerol. A new phospholipid from Salmonella typhimurium, J. Bio. Chem. 246: 3305.

    CAS  Google Scholar 

  • Opliger, C. E., Heinrich, P. C., and Olson, R. E., 1974, A lipid-soluble antioxidant from polyallomer centrifuge tubes, J. Lipid Res. 15: 281.

    PubMed  CAS  Google Scholar 

  • Oswald, E. O., Parks, D., Eling, T., and Corbett, B. J., 1974, Characterization of prostaglandins by combined gas—liquid chromatography and chemical ionization mass spectrometry, J. Chromatog. 93: 47.

    CAS  Google Scholar 

  • Palmer, F. B. St. C., 1971, The extraction of acidic phospholipids in organic solvent mixtures containing water, Biochim. Biophys. Acta 231: 134.

    PubMed  CAS  Google Scholar 

  • Parker, F., and Peterson, N. F., 1965, Quantitative analysis of phospholipids and phospholipid fatty acids from silica gel thin-layer chromatograms, J. Lipid Res. 6: 455.

    CAS  Google Scholar 

  • Pawlowski, N. E., Nixon, J. E., and Sinnhuber, R. O., 1972, Assay of cyclopropenoid lipids by nuclear magnetic resonance, J. Am. Oil Chem. Soc. 49: 387.

    PubMed  CAS  Google Scholar 

  • Pawlowski, N. E., Eisele, T. A., Lee, D. J., Nixon, J. E. and Sinnhuber, R. 0., 1974, Mass spectra of methyl sterculate and malvalate and 1,2-dialkylcyclopropenes, Chem. Phys. Lipids 13: 164.

    PubMed  CAS  Google Scholar 

  • Perkins, E. G., and Iwaoka, W. T., 1973, Purification of cyclic fatty acid esters: A GC-MS study, J. Am. Oil Chem. Soc. 50: 44.

    CAS  Google Scholar 

  • Perkins, E. G., and Johnson, P. V., 1969, Pyrolysis—gas chromatography of phosphoglycerides. A mass spectral study of the products, Lipids 4: 301.

    PubMed  CAS  Google Scholar 

  • Persson, N. O., Lindblom, G., and Lindman, B., 1974, Deuteron and sodium-23 NMR studies of lecithin mesophases, Chem. Phys. Lipids 12: 261.

    PubMed  CAS  Google Scholar 

  • Petersson, G., 1972a, Mass spectrometry of hydroxy dicarboxylic acids as trimethylsilyl derivatives. Rearrangement fragmentations, Org. Mass Spectrom. 6: 565.

    CAS  Google Scholar 

  • Petersson, G., 1972b, A McLafferty-type rearrangement of a trimethylsilyl group in silylated hydroxy carbonyl compounds, Org. Mass Spectrom 6: 577.

    CAS  Google Scholar 

  • Petrovich, G., Mumford, R., and Kanfer, J. N., 1973, Radiochemical decomposition of N-[’4C]H3-Labeled sphingomyelin (II), Chem. Phys. Lipids 10: 149.

    Google Scholar 

  • Pfeffer, P. E., and Rothbart, H. L., 1972, PMR spectra of triglycerides. Discrimination of isomers with the aid of a chemical shift reagent, Tetrahedron Lett. 1972: 2533.

    Google Scholar 

  • Pirkle, W. H., and Beare, S. D., 1969, Optically active solvents in nuclear magnetic resonance spectroscopy. IX. Direct determination of optical purities and correlations of absolute configurations of a-amino acids, J. Am. Chem. Soc. 91: 5150.

    CAS  Google Scholar 

  • Podo, F., Ray, A., and Nemethy, G., 1973, Structure and hydration of nonionic detergent micelles. A high resolution nuclear magnetic resonance study, J. Am. Chem. Soc. 95: 6164.

    CAS  Google Scholar 

  • Pohle, W. D., and Gregory, R. L., 1968, Application of wide-line NMR to analysis of cereal products and fats and oils, J. Am. Oil Chem. Soc. 45: 775.

    PubMed  CAS  Google Scholar 

  • Polgar, N., 1971, Natural Alkyl-branched long-chain acids, in: Topics in Lipid Chemistry

    Google Scholar 

  • Vol. 2 (F. D. Gunstone, ed.), p. 207, Logos Press and Elek Science, London.

    Google Scholar 

  • Powell, R. G., and Smith, C. R., 1966, New acetylenic fatty acids from Acanthosyris spinescens seed oil, Biochemistry 5: 625.

    PubMed  CAS  Google Scholar 

  • Privett, O. S., 1966a, Determination of the structure of unsaturated fatty acids via degradative methods, in: Progress in the Chemistry of Fats and Other Lipids, Vol. 9 ( R. T. Holman, ed.), p. 91, Pergamon Press, Oxford.

    Google Scholar 

  • Privett, O. S., 1966b, Preparation of polyunsaturated fatty acids from natural sources, in: Progress in Chemistry of Fats and Other Lipids, Vol 9. ( R. T. Holman, ed.), p. 407, Pergamon Press, Oxford.

    Google Scholar 

  • Privett, O. S., and Nickell, E. C., 1966, Determination of specific positions of cis and trans double bonds in polyenes, Lipids 1: 98.

    PubMed  CAS  Google Scholar 

  • Privett, O. S., and Nutter, L. J., 1967, Determination of the structure of lecithins via the formation of acetylated 1,2-diglycerides, Lipids 2: 149.

    PubMed  CAS  Google Scholar 

  • Privett, O. S., Nadenicek, J. D., Weber, R. P., and Pusch, F., 1963, Petroselinic acid and

    Google Scholar 

  • nonsaponifiable constituents of parsley seed oil, J. Am. Oil Chem. Soc. 40:28.

    Google Scholar 

  • Purcell, J. E., and Ettre, L. S., 1966, Support coated open tubular columns. II. Application in trace analysis, J. Gas Chrom. 4: 23.

    Google Scholar 

  • Radford, T., and Dejongh, D. C., 1972, Carbohydrates, in: Biochemical Applications of Mass Spectrometry (G. R. Waller, ed.), p. 313, Wiley, Interscience, Nev, York. Radin, N. S., 1969, Florisil chromatography, in: Methods in Enzymology, Vol. 14 ( J. M. Lowenstein, ed.), p. 268, Academic Press, New York.

    Google Scholar 

  • Ramachandran, S., Venkata Rao, P., and Cornwell, D. G., 1968, New method for the reductive ozonolysis of double bonds in monoenoic fatty acids, J. Lipid Res. 9: 137.

    PubMed  CAS  Google Scholar 

  • Randerath, K., 1968, Thin-Layer Chromatography, p. 261, Academic Press, New York. Rao, C. V. N., 1959, Hydrogenation of linolenic acid by hydrazine hydrate, J. Sci. lndustr. Res. 18B: 131.

    Google Scholar 

  • de Raveglia, I. F., and Ghittoni, N. E., 1971, Purification of ganglioside fractions by column chromatography on Sephadex G-100, J. Chromatog. 58: 288.

    Google Scholar 

  • Reed, R. I., Robertson, D. H., and Silva, M. E. F., 1973, Criterion for the identification of low resolution mass spectra by retrieval from a data bank, Int. J. Mass Spectrom. Ion Phys. 12: 123.

    Google Scholar 

  • Reich, H. J., Jautelat, M., Messe, M. T., Weigert, F. J., and Roberts, J. D., 1969, Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of steroids, J. Chem. Soc. 91: 7445.

    CAS  Google Scholar 

  • Reichert, C., Fraas, R. E., and Kiser, R. W., 1970, Kinetic energy release in metastable transitions determined by electric sector variation, Int. J. Mass Spectrom. Ion. Phys. 5: 457.

    CAS  Google Scholar 

  • Renkonen, O., 1967, The analysis of individual molecular species of polar lipids, in: Advances in Lipid Research, Vol. 5 ( R. Paoletti and D. Kritchevsky, eds.), p. 329, Academic Press, New York.

    Google Scholar 

  • Renkonen, O., and Varo, P., 1967, Thin-layer chromatography of phosphatides and glycolipids, in: Lipid Chromatographic Analysis, Vol. 1 ( G. V. Marinetti, ed.), p. 41, Marcel Dekker, New York.

    Google Scholar 

  • Richards, R. E., and Schaefer, T., 1958, High resolution hydrogen resonance spectra of trisubstituted benzenes, Molec. Phys. 1: 331.

    CAS  Google Scholar 

  • Roberts, R. N., 1967, Gas chromatography of inositol and glycerol, in: Lipid Chromato- graphic Analysis, Vol 1 ( G. V. Marinetti, ed.), p. 447, Marcel Dekker, New York.

    Google Scholar 

  • Roberts, J. D., Weigert, F. J., Kroschwitz, J. I., and Reich, H. J., 1970, Nuclear magnetic resonance spectroscopy. Carbon-13 chemical shifts in acyclic and alicyclic alcohols, J. Am. Chem. Soc. 92: 1338.

    CAS  Google Scholar 

  • Robertson, A. J. B., 1972, Field ionization, in: MTP International Review of Science, Vol. 5 ( A. Maccoll, ed.), p. 103, Butterworths, London.

    Google Scholar 

  • Robinson, J. D., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C., 1972, “C and ’H nuclear magnetic resonance relaxation measurements of the lipids of sarcoplasmic reticulum membranes, Biochemistry 11: 2903.

    Google Scholar 

  • Roehm, J. N., and Privett, O. S., 1969, Improved method for determination of the position of double bonds in polyenoic fatty acid esters, J. Lipid Res. 10: 245.

    PubMed  CAS  Google Scholar 

  • Roehm, J. N., and Privett, O. S., 1970, Changes in the structure of soybean triglycerides during maturation, Lipids 5: 353.

    CAS  Google Scholar 

  • Rohwedder, W. K., 1971, Field ionization mass spectrometry of long-chain fatty methyl esters, Lipids 6: 906.

    CAS  Google Scholar 

  • Rohwedder, W. K., Bitner, E. D., Peters, H. M., and Dutton, H. J., 1964, Deuterium—hydrogen exchange during the catalytic deuteration of methyl oleate, J. Am. Oil Chem. Soc. 41: 33.

    CAS  Google Scholar 

  • Röllgen, F. W., and Beckey, H. D., 1973, Production of ions with extremely low internal energy, Int. J. Mass Spectrom. Ion Phys. 12: 465.

    Google Scholar 

  • Rondeau, R. E., and Sievers, R. E., 1971, New superior paramagnetic shift reagents for nuclear magnetic resonance spectral clarification, J. Am. Chem. Soc. 93: 1522.

    Google Scholar 

  • Roper, R., and Ma, T. S., 1957, Diazomethane as a reagent for microsynthesis, Microchem. J. 1: 245.

    CAS  Google Scholar 

  • Rosenstock, H. M., Wallenstein, M. B., Wahrhaftig, A. L., and Eyring, H., 1952, Absolute rate theory for isolated systems and the mass spectra of polyatomic molecules, Proc. Nat. Acad. Sci. U.S.A. 38: 667.

    CAS  Google Scholar 

  • Roubal, W. T., 1971, Free radicals, malonaldehyde, and protein damage in lipid—protein systems, Lipids, 6: 62.

    PubMed  CAS  Google Scholar 

  • Rouser, G., 1973, Quantitative liquid column and thin-layer chromatography of lipids and other water insoluble substances, elution selectivity principles, and a graphic method for pattern analysis of chromatographic data, J. Chromatog. Sci. 11: 60.

    CAS  Google Scholar 

  • Rouser, G., Kritchevsky, G., Whatley, M., and Baxter, C. F., 1966, Laboratory contaminants in lipid chemistry. Detection by thin-layer chromatography and infrared spectrophotometry and some procedures minimizing their occurrence, Lipids 1: 107.

    PubMed  CAS  Google Scholar 

  • Rouser, G., Kritchevsky, G., and Yamamoto, A., 1967, Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids, in: Lipid Chromatographic Analysis, Vol. 1 ( G. V. Marinetti, ed.), p. 99, Marcel Dekker, New York.

    Google Scholar 

  • Rouser, G., Kritchevsky G., Yamamoto, A., Simon, G., Galli, C., and Bauman, A. J., 1969, in: Methods in Enzymology, Vol 14 (J. M. Lowenstein, ed.), p. 272, Academic Press, New York.

    Google Scholar 

  • Ryhage, R., 1973, Integrated gas chromatography—mass spectrometry, Quart. Rev. Biophys. 6: 311.

    CAS  Google Scholar 

  • Ryhage, R., and Stenhagen, E., 1959a, Mass spectrometric studies. I. Methyl esters of saturated normal chain carboxylic acids, Ark. Kemi 13: 523.

    CAS  Google Scholar 

  • Ryhage, R., and Stenhagen, E., 1959b, Mass spectrometric studies. II. Saturated normal long-chain esters of ethanol and higher alcohols, Ark. Kemi 14: 483.

    CAS  Google Scholar 

  • Ryhage, R., and Stenhagen, E., 1959c, Mass spectrometric studies. III. Esters of saturated dibasic acids, Ark. Kemi 14: 497.

    CAS  Google Scholar 

  • Ryhage, R., and Stenhagen, E., 1960a, Mass spectrometric studies. IV. Esters of monomethyl-substituted long-chain carboxylic acids, Ark. Kemi 15: 291.

    CAS  Google Scholar 

  • Ryhage, R., and Stenhagen, E., 1960b, Mass spectrometric studies. V. Methyl esters of monoalkyl-substituted acids with ethyl or longer side chain and methyl esters of di-and polyalkyl-substituted acids, Ark. Kemi 15: 333.

    Google Scholar 

  • Ryhage, R., and Stenhagen, E., 1960c, Mass spectrometric studies. VI. Methyl esters of normal-chain oxo-, Hydroxy-, methoxy-and epoxy-acids, Ark. Kemi 15: 545.

    CAS  Google Scholar 

  • Ryhage, R., and Stenhagen, E., 1960d, Mass spectrometry in lipid research, J. Lipid Res. 1: 361.

    PubMed  CAS  Google Scholar 

  • Ryhage, R., and Stenhagen, E., 1963, Mass Spectrometry of long-chain esters, in: Mass Spectrometry of Organic Ions ( F. W. McLafferty, ed.), p. 399, Academic Press, N. Y.

    Google Scholar 

  • Ryhage, R., and Wikström, S., 1971, Gas chromatography—mass spectrometry, in: Mass Spectrometry: Techniques and Applications ( G. W. A. Milne, ed.), Wiley, Interscience, New York.

    Google Scholar 

  • Ryhage, R., Ställberg-Stenhagen, S., and Stenhagen, E., 1961, Mass spectrometric studies. VII. Methyl esters of aß-unsaturated long-chain acids. On the structure of C27-phthienoic acid, Ark. Kemi 18: 179.

    CAS  Google Scholar 

  • Sam, D. J., and Simmons, H. E., 1972, Crown polyether chemistry. Potassium permanganate oxidations in benzene, J. d,.n. rhem. 5oc. 94:4024_

    Google Scholar 

  • Samuelsson, B., and Samuelsson, K., 1969a, Gas—liquid chromatography—mass spectrometry of synthetic ceramides, J. Lipid Res. 10: 41.

    PubMed  CAS  Google Scholar 

  • Samuelsson, B., and Samuelsson, K., 19696, Separation and identification of ceramides derived from human plasma sphingomyelins, J. Lipid Res. 10: 47.

    Google Scholar 

  • Samuelsson, K., and Samuelsson, B., 1969c, Gas—liquid chromatography—mass spectrometry of cerebrosides as trimethylsilyl ether derivatives, Biochem. Biophys. Res. Commun. 37: 15.

    PubMed  CAS  Google Scholar 

  • Sanders, J. K. M., and Williams, D. H., 1970, A shift reagent for use in nuclear magnetic resonance spectroscopy. A first-order spectrum of n-hexanol, Chem. Commun. 1970: 422.

    Google Scholar 

  • Sanders, J. K. M., and Williams, D. H., 1971, Tris (dipivalomethanato) europium. A paramagnetic shift reagent for use in nuclear magnetic resonance spectroscopy, J. Am. Chem. Soc. 93: 641.

    Google Scholar 

  • Saunders, R. A., and Williams, A. E., 1963, in: Mass Spectrometry of Organic Ions (F. W. McLafferty, ed.), p. 343, Academic Press, New York.

    Google Scholar 

  • Scheppele, S. E., Mitchum, R. K., Rudolph, C. J., Jr., Kinneberg, K. F., and Odell, G. V., 1972, Mass spectra of tocopherols, Lipids 7: 297.

    CAS  Google Scholar 

  • Schilling, K., 1961, Der Oerlauf der Hydrieiung Melufach ungesättigter Fettsäureester mit Hydrasin, Fette. Seif. Anstrichan. 63: 421.

    CAS  Google Scholar 

  • Schlenk, H., 1954, Urea inclusion compounds of fatty acids, in: Progress in Chemistry of Fats and Other Lipids, Vol. 2 ( R. T. Holman, W. O. Lundberg and T. Malkin, eds.), p. 243, Pergamon Press, London.

    Google Scholar 

  • Schlenk, H., and Gellerman, N. J. L., 1961, Esterification of fatty acids with diazomethane on a small scale, J. Am. Oil Chem. Soc. 38: 555.

    CAS  Google Scholar 

  • Schmid, P., 1973, Extraction and purification of lipids. H. Why is chloroform—methanol such a good lipid solvent?, Physiol. Chem. Phys. 5: 141.

    Google Scholar 

  • Schmid, P. and Hunter, E., 1973, Extraction and purification of lipids. I. Solubility of lipids in biologically important solvents, Physiol. Chem. Phys. 3: 98.

    Google Scholar 

  • Schmid, P., Hunter, E., and Calvert, J., 1973a, Extraction and purification of lipids. III. Serious limitations of chloroform and chloroform—methanol in lipid investigations. Physiol. Chem. Phys. 5: 151.

    Google Scholar 

  • Schmid, P., Calvert, J., and Steiner, R., 19736, Extraction and purification of lipids. IV. Alternative binary solvent systems to replace chloroform—methanol in studies on biological membranes, Physiol. Chem. Phys. 5 :157.

    Google Scholar 

  • Schmitz, F. J., and McDonald, F. J., 1974, Isolation and identification of cerebrosides from the marine sponge Chondrilla micula, J. Lipid Res. 15: 158.

    CAS  Google Scholar 

  • Scholfield, C. R., Jones, E. P., Nowakowska, J., Selke, E., and Dutton, H. J., 1961, Hy- drogenation of linolenate. II. Hydrazine reduction, J. Am. Oil Chem. Soc. 38: 208.

    CAS  Google Scholar 

  • Seelig, J., and Seelig, A., 1974, Deuterium magnetic resonance studies of phospholipid bilayers, Biochem. Biophys. Res. Commun. 57: 406.

    PubMed  CAS  Google Scholar 

  • Seibl, J., 1967, Zur Kenntnis der metastabilen Übergänge in Massenspektren organischer Verbindungen, He Chim. Acta 50: 263.

    CAS  Google Scholar 

  • Seino, H., Watanabe, S., Nihongi, T., and Nagai, T., 1973, Influences of operating conditions on determination of fatty acid methyl esters by gas chromatography, J. Am. Oil Chem. Soc. 50: 335.

    PubMed  CAS  Google Scholar 

  • Shadoff, L. A., 1967, Detection of nonexistent molecular ions, Anal. Chem. 39:1902. Shannon, T. W., and McLafferty, F. W., 1966, Identification of gaseous organic ions by the use of “Metastable Peaks”, J. Am. Chem. Soc. 88: 5021.

    Google Scholar 

  • Shapiro, R. H., 1968, Low voltage behavior of some aromatic fluoro-compounds, Org. Mass Spectrom. 1: 907.

    CAS  Google Scholar 

  • Shapiro, Yu. E., Viktorov, A. K., Volkova, V. I., Barsukov, L. I., Bystrov, V. F., and Bergelson, L. D., 1975, 13C NMR investigation of phospholipid membranes with the aid of shift reagents, Chem. Phys. Lipids 14: 227.

    Google Scholar 

  • Shaw, N., 1968, The detection of lipids on thin-layer chromatograms with the periodate-schiff reagent, Biochim. Biophys. Acta 164: 435.

    PubMed  CAS  Google Scholar 

  • Shaw, N., 1970, Bacterial glycolipids, Bacteriol. Rev. 34: 365.

    PubMed  CAS  Google Scholar 

  • Shoolery, J. N., and Smithson, L. H., 1970, The use of a high resolution NMR spectrometer controlled by a dedicated computer for quantitative analytical chemistry, J. Am. Oil Chem. Soc. 47: 153.

    PubMed  CAS  Google Scholar 

  • Siakotos, A. N., and Rouser, G., 1965, Analytical separation of nonlipid water-soluble substances and gangliosides from other lipids by dextran gel column chromatography, J. Am. Oil Chem. Soc. 42: 913.

    PubMed  CAS  Google Scholar 

  • Siddall, T. H., and Stewart, W. E., 1969, Magnetic nonequivalence related to symmetry considerations and restricted molecular motion, in: Progress in Nuclear Magnetic Resonance Spectroscopy ( J. W. Emsley, J. Feeney, and L. H. Sutcliffe, eds.), p. 33, Pergamon, Oxford.

    Google Scholar 

  • Silbert, L. S., 1962, Fatty peroxides: synthesis, analysis, and reactions, J. Am. Oil Chem. Soc. 39: 480.

    CAS  Google Scholar 

  • Skidmore, W. D., and Entenman, C., 1962, Two-dimensional thin-layer chromatography of rat liver phosphatides, J. Lipid Res. 3: 471.

    CAS  Google Scholar 

  • Skipski, V. P., 1975, Thin-layer chromatography of neutral glycosphingolipids, in: Methods in Enzymology, Vol. 35 ( J. M. Lowenstein, ed.), p. 396, Academic Press, New York.

    Google Scholar 

  • Skipski, V. P., and Barclay, M., 1969, Thin-layer chromatography of lipids, in: Methods in Enzymology, Vol. 14 (J. M. Lowenstein, ed.), p. 530, Academic Press, New York. Slawson, V., and Mead J. F., 1972, Stability of unsaturated methyl esters of fatty acids on surfaces, J. Lipid Res. 13: 143.

    Google Scholar 

  • Slawson, V., and Stein, R. A., 1970, Comparative autoxidative susceptibility of fatty esters with 0–6 methylene-interrupted double bonds, Lipids 5: 713.

    PubMed  CAS  Google Scholar 

  • Slawsom, V., Adamson, A. W., and Mead, J. F., 1973, Autoxidation of polyunsaturated fatty esters on silica, Lipids 8: 129.

    Google Scholar 

  • Slotboom, A. J., de Haas, G. H., Bonsen, P. P. M., Burbach-Westerhuis, G. T., and Van Deenen, L. L. M., 1970a, Hydrolysis of phosphoglycerides by purified lipase preparations. I. Substrate—positional and stereospecificity, Chem. Phys. Lipids 4: 15.

    CAS  Google Scholar 

  • Slotboom, A. J., de Haas, G. H., Burbach-Westerhuis, G. J., and Van Deenen, L. L. M., 1970b, Hydrolysis of phosphoglycerides by purified lipase preparations. II. Preparation of unsaturated a-monoacyl choline phosphoglycerides, Chem. Phys. Lipids 4: 30.

    CAS  Google Scholar 

  • Smentowski, F. J., and Stipanovic, R. D., 1972, Lanthanide shift reagents as an aid in the NMR analysis of the normal alcohols C6 to C11, J. Am. Oil Chem. Soc. 49: 48.

    CAS  Google Scholar 

  • Smith, I. C. P., 1971, A spin-label study of the organization and fluidity of hydrated phospholipid multibilayers—A model membrane system, Chimia 25: 349.

    CAS  Google Scholar 

  • Smith, W. B., and Deavenport, D. L., 1972, The effect of Eu(dpm)3 on the 13C NMR spectrum of cholesterol, J. Magn. Res. 6: 256.

    CAS  Google Scholar 

  • Smith, G. A., and Williams, D. H., 1969, Deuterium-labeling studies of intramolecular hydrogen transfer reactions and the problem of hydrogen–deuterium rearrangement in mass spectra. The case of isopropyl n-butyl ether, J. Am : Chem. Soc. 1: 5254.

    Google Scholar 

  • Smolen, J. E., and Shohet, S. B., 1974, Permeability changes induced by peroxidation in liposomes prepared from human erythrocyte lipids, J. Lipid Res. 15: 273.

    PubMed  CAS  Google Scholar 

  • Snyder, L. R., 1967, Maximum resolution per unit time in liquid-solid adsorption chromatography, separation on columns vs. thin layers, Anal. Chem. 39: 705.

    CAS  Google Scholar 

  • Snyder, W. R., and Law J. H., 1970, A quantitative determination of phosphonate phosphorus in naturally occurring aminophosphonates, Lipids 5: 800.

    PubMed  CAS  Google Scholar 

  • Snyder, P. D., Krivit, W., and Sweeley, C. C., 1972, Generalized accummulation of neutral glycosphingolipids with GM2 gangloside accumulation in the brain, J. Lipid Res. 13: 128.

    PubMed  CAS  Google Scholar 

  • Sonneveld, W., 1967, Mass spectrometry of fatty acid methyl esters, Thesis, university of Utrecht.

    Google Scholar 

  • Sonneveld, W., Bergmann, P., Van Beers, G. J., Kuening, R., and Schogt, J. M., 1962, 3,7,11,15-Tetramethylhexadecanoic acid. A constituent of butterfat, J. Lipid Res. 3: 351.

    Google Scholar 

  • Sprecher, H. W., Maier, R., Barber, M., and Holman, R. T., 1965, Structure of an optically active allene-containing tetraester triglyceride isolated from the seed oil of Sapium sebiferum, Biochemistry, 4: 1856.

    CAS  Google Scholar 

  • Sprouse, J. F., Jackson, K. M. Raju, T. A., and Testerman, M. K., 1971, A cold electron source suitable for mass spectrometry, Rev. Sci. Instr. 42: 114.

    CAS  Google Scholar 

  • Stahl, E., 1969, Thin Layer Chromatography, Springer-Verlag, New York.

    Google Scholar 

  • Stearns, E. M., Jr., White, H. B., Jr., and Quackenbush, F. W., 1962, Use of mercuric

    Google Scholar 

  • acetate addition to prepare unsaturated fatty ester concentrates, J. Am. Oil Chem. Soc. 39:61.

    Google Scholar 

  • Stein, R. A., Slawson, V., and Mead, J. F., 1967, Gas–liquid chromatography of fatty acids and derivatives, in: Lipid Chromatographic Analysis, Vol. I ( G. V. Marinetti, ed.), p. 361, Edward Arnold, London.

    Google Scholar 

  • Stenhagen, E., 1961, Massenspektrometrie Als Hilfsmittel Bei Der Strukturbestimmung Organischer Verbindungen Besondors Bei Lipiden Und Peptiden, Fresenius Z. Anal. Chem. 181: 462.

    CAS  Google Scholar 

  • Stenhagen, E., 1964, Jetziger Stand der Massenspektrometrie in der organischen Analyse, Fresenius Z. Anal. Chem. 205: 109.

    CAS  Google Scholar 

  • Stevenson, D. P., 1951, Ionization and dissociation by electron impact, Disc. Faraday Soc. 10: 35.

    Google Scholar 

  • Stevenson, D. P., 1953, Ionization and dissociation by electron impact of normal alkanes, Cc-Ca, Trans. Faraday Soc. 49: 867.

    CAS  Google Scholar 

  • Stoffel, W., and Ahrens, E. H., 1958, Isolation and structure of the C16 unsaturated fatty acids in menhaden body oil, J. Am. Chem. Soc. 80: 6604.

    CAS  Google Scholar 

  • Stoffel, W., and Hanfland, P., 1973, Analysis of amino sugar-containing glycosphingolipids by combined gas—liquid chromatography and mass spectrometry, Hoppe-Seyler’s Z. Phys. Chem. 354: 21.

    CAS  Google Scholar 

  • Stoffel, W., Zierenberg, O., and Tunggal, B. D., 1972, 13C Nuclear magnetic resonance spectroscopic studies on saturated, mono-, di-, and polyunsaturated fatty acids, phospho-, and sphingolipids. Hoppe-Seyler’s Z. Physiol. Chem. 353: 1962.

    Google Scholar 

  • Stolyhwo, A., and Privett, O. S., 1973, Studies on the analysis of lipid classes by gradient elution adsorption chromatography, J. Chromatog. Sci. 11: 20.

    CAS  Google Scholar 

  • Strecker, A., 1868, Ueber das Lecithin, Ann. Chem. Und. Pharm. 148: 77.

    Google Scholar 

  • Sun, K. K., and Holman, R. T., 1968, Mass spectrometry of lipid molecules, J. Am. Oil Chem. Soc. 45: 810.

    CAS  Google Scholar 

  • Svec, H. J., and Junk, G. A., 1964, The mass spectra of dipeptides, J. Am. Chem. Soc. 86: 2278.

    CAS  Google Scholar 

  • Svec, H. J., and Junk, G. A., 1967, Electron-impact studies of substituted alkanes, J. Am. Chem. Soc. 89: 790.

    CAS  Google Scholar 

  • Svec, W. A., Harkness, A. L., and Strain, H. H., 1972, Mass spectrometric comparison of ordinary and fully deuterated alpha and beta carotene, Org. Mass Spectrom. 6:843. Svennerholm, L., 1956, The quantitative estimation of cerebrosides in nervous tissue, J. Neurochem. 1: 42.

    Google Scholar 

  • Svennerholm, L., 1957, Quantitative estimation of sialic acids. II. Colorimetric resorcinol—hydrochloric acid method, Biochim. Biophys. Acta 24: 604.

    PubMed  CAS  Google Scholar 

  • Svennerholm, L., Mansson, J. E., and Li, Y. T., 1973, Isolation and structural determination of a novel ganglioside, a disialosyl-pentahexosylceramide from human brain, J. Biol. Chem. 248: 740.

    PubMed  CAS  Google Scholar 

  • Sweeley, C. C., 1969, Chromatography on columns of silicic acid, in: Methods in Enzymology, Vol. 14 ( J. M. Lowenstein, ed.), p. 254, Academic Press, New York.

    Google Scholar 

  • Sweeley, C. C., and Dawson, G., 1969, Determination of glycosphingolipid structures by mass spectrometry, Biochem. Biophys. Res. Commun. 37: 6.

    PubMed  CAS  Google Scholar 

  • Sweeley, C. C., and Vance, D. E., 1967, Gas chromatographic estimation of carbohydrates and glycolipids, in: Lipid Chromatographic Analysis, Vol 1 ( G. V. Marinetti, ed.), p. 465, Marcel Dekker, New York.

    Google Scholar 

  • Sweeley, C. C., and Walker, B., 1964, Determination of carbohydrates in glycolipids and gangliosides by gas chromatography, Anal. Chem. 32: 1461.

    Google Scholar 

  • Swern, D., and Wineburg, J. P., 1971, NMR chemical shift reagents. Application to structural determination of lipid derivatives, J. Am. Oil Chem. Soc. 48: 372.

    Google Scholar 

  • Takagi, T., and Craig, B. M., 1964, Hydrogenation of conjugated fatty acids with hydrazine, J. Am. Oil Chem. Soc. 41: 660.

    CAS  Google Scholar 

  • Taketomi, T., and Kawamura, N., 1972, Degradation of Sphingosine bases during acid hydrolysis of sphingomyelin, cerebroside or psychosine, J. Biochem. 72: 189.

    PubMed  CAS  Google Scholar 

  • Tattrie, N. H., 1959, Positional distribution of saturated and unsaturated fatty acids on egg lecithin, J. Lipid Res. 1: 60.

    CAS  Google Scholar 

  • Teeter, H. M., and Bell, E. W., 1952, tert-Butyl hypochlorite, Org. Synth. 32: 20.

    Google Scholar 

  • Thiele, J., 1892, Ueber Azodicarbonsaure (Diimidicarbonsaure) Liebigs Ann. Chem. 271: 127.

    Google Scholar 

  • Tsang, C. W., and Harrison, A. G., 1973, Internal energy effects on metastable characteristics. The structure of C3H7O+ ions, Org. Mass Spectrom. 7: 1377.

    CAS  Google Scholar 

  • Undheim, K., Thorstad, O., and Hvistendahl, G., 1971, Mass spectrometry of onium compounds. IV. Diazonium Salts, Org. Mass. Spectrom. 5: 73.

    CAS  Google Scholar 

  • Uri, N., 1956, Metal ion catalysis and polarity of environment in the aerobic oxidation of unsaturated fatty acids, Nature. Lond. 177: 1177.

    CAS  Google Scholar 

  • Uri, N., 1961, in: Autoxidation and Antioxidants, Vol. 1 (W. O. Lundberg, ed.), p. 94, Wiley, Interscience, New York.

    Google Scholar 

  • Van Deemter, J. J., Zuiderweg, F. J., and Klinkenberg, A., 1956, Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chem. Eng. Sci. 5: 271.

    Google Scholar 

  • van Deenen, L. L. M., and de Haas, G. H., 1964, The synthesis of phosphoglycerides and some biochemical applications, Adv. in Lipid Res. 2:167.

    Google Scholar 

  • van Deenen, L. L. nhosphoglycerides and hospholipasec M., and de Haas, G. H., 1966, Ann. Rev. Biochem. 35: 157

    Google Scholar 

  • van Golde, L. M. G., and van Deenen, L. L. M., 1966, The effect of dietary fat on the molecular species of lecithin from rat liver, Biochem. Biophys. Acta 125: 496.

    PubMed  Google Scholar 

  • van Golde, L. M. G., and van Deenen, L. L. M., 1967, Molecular species of extra-cellular phosphatidylethanolamine from Escherichia 41 Coli, Chem. Phys. Lipids 1: 157.

    Google Scholar 

  • van Gorkom, M., and Hall, G. E., 1968, Equivalence of nuclei in high-resolution nuclear magnetic resonance spectroscopy, Quart. Rev. 22: 14.

    Google Scholar 

  • Vaskovsky, V. E., and Kostetsky, E. Y., 1968, Modified spray for the detection of phospholipide on thin-layer chromatograms, J. Lipid Res. 9: 396.

    PubMed  CAS  Google Scholar 

  • Vaskovsky, V. E., and Suppes, Z. S., 1966, Detection of choline-containing lipids on thin-layer chromatograms, J. Chromatog. 63:455

    Google Scholar 

  • Vaucheron, M. J., Michel, G., and Guilluy, R., 1969, Localisation des doubles liaisons dans les acides ethyleniques par spectrometrie de masse, Bull. Soc. Chim. Biol. 51: 177.

    Google Scholar 

  • Vereshchagin, A. G., 1964, The Partition of polar and nonpolar lipids in a reversed-phase chromatographic system, J. Chromatog. 14: 184.

    CAS  Google Scholar 

  • Vioque, E., and Holman, R. T., 1962, Quantitative estimation of esters by thin-layer chromatography, J. Am. Oil Chem. Soc. 39: 63.

    CAS  Google Scholar 

  • Viswanathan, C. V., and Nagabhushanam, A., 1973, Preparative isolation of phosphonolipids by ascending dry-column chromatography, J. Chromatog. 75: 227.

    CAS  Google Scholar 

  • Von Rudloff, E., 1956, Periodate—permanganate oxidations. V. Oxidations of lipids in media containing organic solvents, Canad. J. Chem. 34: 1413.

    Google Scholar 

  • Vorbeck, M. L., and Marinetti, G. V., 1965, Separation of glycosyl diglycerides from phosphatides using silicic acid column chromatography, J. Lipid Res. 6: 3.

    PubMed  CAS  Google Scholar 

  • Wagner, H., Hörhammer, L., and Wolff, P., 1961, Dünnschicht—Chromatographie von Phospatiden und Glykolipiden, Biochem. Z. 334: 175.

    PubMed  CAS  Google Scholar 

  • Wahrhaftig, A. L., 1972, Theory of mass spectra, in: MTP International Review of Science, Vol. 5 (A. Maccoll, ed.), Butterworths, London.

    Google Scholar 

  • Waku, K., and Nakazawa, Y., 1972, Hydrolyses of 1-O-aldyl-,l-O-alkenyl-, and 1-Acyl-2[1 14C]-linoleoyl-glycero-3-phosphorylcholine by various phospholipases, J. Biochem. (Tokyo) 72: 149.

    CAS  Google Scholar 

  • Waller, G. R., 1972, Biochemical Applications of Mass Spectrometry, Wiley-Interscience, New York.

    Google Scholar 

  • Walton, T. J., and Kolattukudy, P. E., 1972, Determination of the structure of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry, Biochemistry 11 :1885.

    Google Scholar 

  • Wangen, L. E., Woodward, W. S., and Isenhour, T. L., 1971, Small computer, Magnetic tape oriented, rapid search system applied to mass spectrometry, Anal. Chem. 43: 1605.

    CAS  Google Scholar 

  • Ward, S. D., 1971, Computerized data acquisition and handling, in: Mass Spectrometry, Vol. 1 ( D. H. Williams, ed.), p. 253, The Chemical Society, London.

    Google Scholar 

  • Ward, S. D., 1973, Computerized data acquisition and handling, in: Mass Spectrometry, Vol. 2 ( D. H. Williams, ed.), p. 264, The Chemical Society, London.

    Google Scholar 

  • Ward, R. S., Cooks, R. G., and Williams, D. H., 1969, Substituent effects in mass spectrometry. Mass spectra of substituted phenyl benzyl ethers, J. Am. Chem. Soc. 91: 2727.

    CAS  Google Scholar 

  • Warren, J. W., 1950, Measurement of appearance potentials of ions produced by electron impact, using a mass spectrometer, Nature 165: 810.

    PubMed  CAS  Google Scholar 

  • Wasson, J. R., and Johnson, D. K., 1974, Nuclear magnetic resonance spectrometry, Anal. Chem. 46: 314R.

    Google Scholar 

  • Wedmid, Y., and Litchfield, C., 1975, Positional analysis of iso-valeroyl triglycerides using proton magnetic resonance with eu(fod)3 and pr(fod)3 shift reagents. I. Model compounds, Lipids 10: 145.

    PubMed  CAS  Google Scholar 

  • Weiss, A., 1974, Molecular addition compounds and nuclear quadrupole resonance, in: Advances in Nuclear Quadrupole Resonance, Vol. I ( J. A. S. Smith, ed.), p. 1, Heyden, London.

    Google Scholar 

  • Wells, M. A., and Dittmer, J. C., 1963, The use of Sephadex for the removal of nonlipid contaminants from lipid extracts, Biochemistry, 2: 1259.

    PubMed  CAS  Google Scholar 

  • Wells, M. A., and Dittmer, J. C., 1965, The quantitative extraction and analysis of brain polyphosphoinositides, Biochemistry 4: 2459.

    CAS  Google Scholar 

  • Wendt, T. G., and McCloskey, J. A., 1970, Mass spectrometry of perdeuterated molecules of biological origin, fatty acid esters from Scenedesmus obliquus, Biochemistry 9: 4854.

    CAS  Google Scholar 

  • Wenkert, E., Cochran, D. W., Hagaman, E. W., Burton Lewis, R., and Schell, F. M., 1971, Carbon-13 nuclear magnetic resonance spectroscopy with the aid of a paramagnetic shift reagent, J. Am. Chem. Soc. 93: 6271.

    CAS  Google Scholar 

  • Westley, J. W., and Halpern, B., 1968, The use of (—)-menthyl chloroformate in the optical analysis of asymmetric amino and hydroxy compounds by gas chromatography, J. Org. Chem. 33: 3978.

    CAS  Google Scholar 

  • White, R. W., and Black, M. E., 1975, Assay of myo-inositol using the yeast Kloeckera apiculata (K. brevis), in: Some Methods for Microbiological Assay ( R. G. Board and D. W. Lovelock, eds.), Academic Press, New York.

    Google Scholar 

  • Whitesides, G. M., and Lewis, D. W., 1970, Tris-[3- (tert-butylhydroxy-methylene)-dcamphoratoleuropium(III), A reagent for determining enantiomeric purity, J. Am. Chem. Soc. 92: 6979.

    CAS  Google Scholar 

  • Whitesides, G. M., and Lewis, D. W., 1971, The determination of enantiomeric purity using chiral lanthanide shift reagents, J. Am. Chen. Soc. 93: 5914.

    CAS  Google Scholar 

  • Wilkinson, S. G., 1974, Artifacts produced by acidic hydrolysis of lipids containing 3-hydroxyalkanoic acids, J. Lipid Res. 15: 181.

    PubMed  CAS  Google Scholar 

  • Williams, D. H., and Cooks, R. G., 1968, The role of “frequency factors” in determining the difference between low and high voltage mass spectra, Chem. Commun. 12: 663.

    Google Scholar 

  • Willner, D., 1965, Separation of fatty acid esters on acid-treated Florisil impregnated with silver nitrate, Chem. Ind. 1965: 1839.

    Google Scholar 

  • Wilson, J. M., 1971, Alternative methods of ionization and analysis, in: Mass Spectrometry, Vol 1, p. 1, The Chemical Society, London.

    Google Scholar 

  • Wilson, J. M., 1573, Alternative methods of ionization and analysis, in: Mass Spectrometry, Vol. 2, p. 1, The Chemical Society, London.

    Google Scholar 

  • Wilson, J. M., 1975, Alternative methods of ionization and analysis, in: Mass Spectrometry, Vol. 3, p. 86, The Chemical Society, London.

    Google Scholar 

  • Windeler, A. S., and Feldman, G. L., 1969, Silver acetate for stabilizing methyl galactosides after methanolysis of glycolipids, Lipids, 4: 167.

    PubMed  CAS  Google Scholar 

  • Wineburg, J. P., and Swern, D., 1972, NMR chemical shift reagents in structural determination of lipid derivatives. II. Methyl petroselinate and methyl oleate, J. Am. Oil Chem. Soc. 49: 267.

    CAS  Google Scholar 

  • Wineburg, J. P., and Swern, D., 1973, NMR chemical shift reagents in structural determination of lipid derivatives. III. Methyl ricinoleate and methyl 12-hydroxystearate, J. Am. Oil Chem. Soc. 50: 142.

    PubMed  CAS  Google Scholar 

  • Wineburg, J. P., and Swern, D., 1974, NMR chemical shift reagents in structural determination of lipid derivatives. IV. Methyl cis and trans 9,10 epoxystearate and methyl erythro and timeo 9,10, dihydroxystearate, J. Am. Oil Chem. Soc. 51: 528.

    CAS  Google Scholar 

  • Wood, G. W., and Lau, P. Y., 1974, Analysis of intact phospholipids by field desorption mass spectrometry, Biomed. Mass Spectrom. 1: 154.

    PubMed  CAS  Google Scholar 

  • Wood, R., and Snyder, F., 1966, Gas—liquid chromatographic analysis of long-chain isomeric glyceryl monoethers, Lipids, 1: 62.

    PubMed  CAS  Google Scholar 

  • Wood, R., and Snyder, F., 1968, Quantitative determination of alk-1-enyl and alkylglyceryl ethers in neutral lipids and phospholipids, Lipids, 3: 129.

    PubMed  CAS  Google Scholar 

  • Woodford, F. P., and Van Gent, C. M., 1960, Gas—liquid chromatography of fatty acid methyl esters. The “carbon-number” as a parameter for comparison of columns, J. Lipid Res. 1: 188.

    Google Scholar 

  • Wren, J. J., 1960, Chromatography of lipids on silicic acid, J. Chromatog. 4: 173.

    CAS  Google Scholar 

  • Wurster, C. F., Jr., Copenhaver, J. H., Jr., and Schafer, P. R., 1963, Separation of the methyl esters of oleic, linoleic, and linolenic acids by column chromatography using a cation-exchange resin containing silver ions, J. Am. Oil Chem. Soc. 40: 513.

    CAS  Google Scholar 

  • Wurster, C. F., and Copenhaver, J. H., 1966, Thin-layer chromatographic separation of dimethylphosphatidates derived from lecithins, Lipids 1: 422.

    PubMed  CAS  Google Scholar 

  • Wuthier, R. E., 1966, Purification of lipids from nonlipid contaminants on Sephadex bead columns,.1. Lipid Res. 7: 558.

    CAS  Google Scholar 

  • Yabuuchi, H., and O’Brien, J. S., 1968, Positional distribution of fatty acids in glycerophosphatides of bovine gray matter, J. Lipid Res. 9: 65.

    PubMed  CAS  Google Scholar 

  • Yeo, A. N. H., and Williams, D. H., 1971, The variation of metastable ion abundance ratios with internal energy in the mass spectrometer, J. Am. Chem. Soc. 93: 395.

    Google Scholar 

  • Zeman, A., and Scharmann, H., 1972, Massenspektrometrie von Lipiden (Eine Zusammenfassung) I. Fette Seifen Anstrichm. 74: 509.

    CAS  Google Scholar 

  • Zeman, A., and Scharmann, H., 1973a, Massenspektrometrie von Lipiden (Eine Zusammenfassung) II., Fette Seif. Anstrichm. 75: 32.

    CAS  Google Scholar 

  • Zeman, A., and Scharmann, H., 19736, Massenspektrometrie von Lipiden (Eine Zusammenfassung) III., Fette Seif. Anstrichm. 75:170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Klein, R.A., Kemp, P. (1977). Recent Methods for the Elucidation of Lipid Structure. In: Korn, E.D. (eds) Methods in Membrane Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2910-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2910-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2912-1

  • Online ISBN: 978-1-4684-2910-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics