Superconductor Applications: SQUIDs and Machines

NATO ADVANCED STUDY INSTITUTES SERIES

A series of edited volumes comprising multifaceted studies of contemporary scientific issues by some of the best scientific minds in the world, assembled in cooperation with NATO Scientific Affairs Division.

Series B: Physics

SOME VOLUMES IN THIS SERIES

Volume 1 - Superconducting Machines and Devices: Large Systems Applications edited by Simon Foner and Brian B. Schwartz Volume 2 – Elementary Excitations in Solids, Molecules, and Atoms (Parts A and B) edited by J. Devreese, A. B. Kunz, and T. C. Collins Volume 9 – Electronic Structure of Polymers and Molecular Crystals edited by Jean-Marie André and János Ladik Volume 11 - Fluctuations, Instabilities, and Phase Transitions edited by Tormod Riste Volume 13 – Weak and Electromagnetic Interactions at High Energies – Cargèse 1975 (Parts A and B) edited by Maurice Lévy, Jean-Louis Basdevant, David Speiser, and Raymond Gastmans Volume 16 - Electronic Structure and Reactivity of Metal Surfaces edited by E. G. Derouane and A. A. Lucas Volume 17 - Linear and Nonlinear Electron Transport in Solids edited by J. T. Devreese and V. van Doren Volume 19 - Defects and Their Structure in Nonmetallic Solids edited by B. Henderson and A. E. Hughes Volume 20 - Physics of Structurally Disordered Solids edited by Shashanka S. Mitra Volume 21 - Superconductor Applications: SQUIDs and Machines

The series is published by an international board of publishers in conjunction with NATO Scientific Affairs Division

edited by Brian B. Schwartz and Simon Foner

A	Life Sciences	Plenum Publishing Corporation
B	Physics	New York and London
С	Mathematical and	D. Reidel Publishing Company
	Physical Sciences	Dordrecht and Boston
D	Behavioral and	Sijthoff International Publishing Company
	Social Sciences	Leiden
E	Applied Sciences	Noordhoff International Publishing
	••	Leiden

Superconductor Applications: SQUIDs and Machines

Edited by

Brian B. Schwartz and Simon Foner

Francis Bitter National Magnet Laboratory M. I. T. Cambridge, Massachusetts

PLENUM PRESS • NEW YORK AND LONDON Published in cooperation with NATO Scientific Affairs Division Library of Congress Cataloging in Publication Data

Nato Advanced Study Institute	e on Small-Scale Applications o	f Superconduc-
tivity, Gardone Riviera, Italy, 1	1976.	
Superconductor applications: S	SQUIDs and machines.	
(Nato Advanced Study Institut	te series; Series B, Physics; v. 21)	
Includes index.		
1. Superconductors-Congresse	es. I. Schwartz, Brian B., 1938-	II. Foner,
Simon. III. Title. IV. Series.		
TK7872.S8N2 1976	621.39	76-51750

The Francis Bitter National Magnet Laboratory is sponsored by the National Science Foundation

Proceedings of a NATO Advanced Study Institute on Small-Scale Applications of Superconductivity held in Gardone Riviera (Lago di Garda), Italy, September 1-10, 1976

ISBN-13: 978-1-4684-2807-0 DOI: 10.1007/978-1-4684-2805-6 e-ISBN-13: 978-1-4684-2805-6

© 1977 Plenum Press, New York Softcover reprint of the hardcover 1st edition 1977 A Division of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

PREFACE

This book includes small and large scale applications of superconductivity. Part I, SOUIDs, comprises about 75% of this volume, and is devoted to small scale applications, mainly Superconducting QUantum Interference Devices (SQUIDs), and the remainder, Part II, Machines, presents an updated review of large scale applications of superconductivity. The present book combined with the previous book Superconducting Machines and Devices: Large Systems Applications edited by S. Foner and B.B. Schwartz, Plenum Press, New York (1974) represents a detailed and most up-to-date review of the applications of superconducting technology. The text of the current book is suitable for advanced undergraduates or graduate students in applied physics and engineering courses. The book should be valuable to scientists, engineers and technologists interested in the current status and future applications of superconductivity technology. The last 7 chapters in Part I review the major national efforts on small scale technology and should prove useful for industrial and government planners as well as scientists and engineers.

This book is based on a NATO Advanced Study Institute entitled "Small Scale Applications of Superconductivity" which was held from 1 September to 10 September 1976 in Gardone Riviera on Lake Garda in Northern Italy. This Study Institute complements a previous NATO Advanced Study Institute held in 1973 on Large Scale Superconducting Devices. As with the previous Institute, the focus of the lecturers and the present book involves both applications as well as the scientific principles. Part I, the major part of the present book, treats smallscale applications of superconductivity; and Part II contains an updated review of large scale applications. Part II, together with the previous NATO Institute book (Superconducting Machines and Devices: Large Systems Applications) gives a thorough coverage of large scale applications of superconductivity up to 1977. Part I provides reviews of all the major principles and devices of small scale superconductivity. The opening chapter by Sir Brian Pippard gives a personal review of some of the historical highlights of superconductivity from the 1930's through the 1960's. Professor Pippard was Brian Josephson's thesis advisor at Cambridge and places Josephson's discovery within the context of the rapid theoretical and experimental developments in superconductivity in the late 1950's and early 1960's.

Chapters 2-6 discuss the basic principles of macroscopic quantum interference phenomena and weak links, superconducting quantum interference devices (SQUIDs), equivalent circuits and analogs, superconducting devices for metrology and standards, and high frequency applications of Josephson Junctions. Chapters 7-12 involve special topics including reviews of junction fabrication techniques, biomagnetism applications, status of commercial instruments in the United States. resistive superconducting devices, nonequilibrium properties of superconductors, and application of SQUIDs to computers. The last 7 chapters of Part I (13 - 17) in this book continue an innovation we introduced in the 1973 NATO Institute proceedings; reviews of national efforts. These reviews for Canada, France, Germany, Italy, The Netherlands, United Kingdom and the United States give an up-to-date summary of the current programs in the area of small scale devices. Part II. Chapter 20 presents a thorough review of Large Scale Applications of Superconductivity. (For convenience we have subdivided the subject index into two parts, Index Part I - SQUIDs, Index Part II - Machines.)

The 1976 NATO Institute which resulted in the present volume involved planning which dates back to the 1973 NATO Institute. We were fortunate in having a very effective advisory committee which helped us with the planning. Dr. Edelsack of the Naval Research Laboratory helped us throughout the planning of the Institute. We also profitted from many useful suggestions by S. Shapiro, University of Rochester, A. Baratoff, IBM Zurich, and A. D. Appleton, IRD, England, throughout the planning of the Institute. Members of our International Advisory Committee included R. Adde, G. Bogner, I. Giaever, B. Josephson, R.A. Kamper, C. Rizzuto, and K. Saermark.

We wish to thank Dr. T. Kester and Dr. M. Di Lullo, from the NATO Scientific Affairs Division for their continued interest and encouragement, and the NATO Science Council for their support of the Advanced Study Institute. We also wish to thank the National Science Foundation for Travel Grants to three students.

PREFACE

In addition to the lecturers, the NATO Institute had approximately 95 participants from 23 countries. Professor Carlo Rizzuto was the Local Chairman. He and his associates at the University of Genoa gave continuous help in all aspects of the planning and operation of the Institute. Professor Cerdonio of the University of Rome with Professor Rizzuto helped us to choose the site of the Institute. We would like to thank the Gardone Riviera region, the town of Salo, and the Lake region tourist agency for their hospitality.

We received excellent cooperation from all the lecturers, and we wish to thank them for their excellent talks and prompt completion of the manuscripts. Their cooperation in meeting our deadline dates has allowed us to adhere to a very tight publication schedule. We apologize to all the lecturers for the many demands we made, and wish to thank each of the lecturers for their dedication to the Institute. The success of the Institute required the continued cooperation of each lecturer before, during, and after the Institute. In addition to our personal thanks, we hope that the response of the students at the Institute and the present volume justifies their efforts. In return, we have attempted to set a record in rapidly publishing these contributions.

We would especially like to thank Dr. G. Bogner, Siemens for his review lectures on Large Scale Applications which comprise Part II of these Proceedings. His lectures and notes gave the participants a broad perspective of many additional areas of superconductor applications which are not normally encountered in Small Scale Applications.

We would like to thank R.B. Frankel for his help with the Institute. We would also like to thank Mary Filoso, Michael McDowell, Delphine Radcliffe and Nancy Brandon for helping with the typing and correcting of these manuscripts. We particularly wish to thank Mary Filoso who, as in 1973, was closely involved with the planning and execution of the Institute and Proceedings. Her experience and continued attention to the Institute arrangements and the present book were invaluable.

Cambridge, Massachusetts October 1976

Brian B. Schwartz Simon Foner

PART I - SQUIDS

CHAPTER 1:	THE HISTORICAL CONTEXT OF
	JOSEPHSON'S DISCOVERY
	A. B. Pippard

HISTORY

1

21

CHAPTER 2: MACROSCOPIC QUANTUM PHENOMENA IN SUPER-CONDUCTORS R. de Bruyn Ouboter I. INTRODUCTION

	А. В. С.	Meissner Effect and Flux Quantization The dc Josephson Effect The Critical Current Through a Double Point Contact as a Function of the Applied Magnetic Field	21 26 32
II.	AC QU	ANTUM EFFECTS	42
	۸	Detension of the True Eluid Interpretation	
	Α.	Extension of the I wo-Fluid Interpretation	49
		of the London Theory	42
	В.	The ac Josephson Effect	46
III.	RESIS	TIVE STATES IN WEAR LINK JUNCTIONS	49
	Α.	The Current-Voltage Characteristics and	
		the Resistive-Superconductive Region	
		of a Single Superconducting Weak I ink	40
	П	The Dauble Doint Contact in the Registive	10
	D.	The Double Point Contact in the Resistive	F 0
		Superconducting Region, the dc SQUID	56

CHA	APTER	3:	SUPERCONDU INTERFERENC LOW FREQUE MENTS J. Clarke	CTING QUANTUM CE DEVICES FOR NCY MEASURE-	
I.	INTRO	DUCTIC	DN		67
II.	SUPEF EFFE	CONDU	CTIVITY AND	THE JOSEPHSON	68
	А. В. С.	Flux Qu The Jos Types o	antization sephson Equatio of Josephson Ju	ns nctions, and their	68 69
		Cur	rent-Voltage Ch	naracteristics	69
III.	DC SQ	UID			71
	Α.	Theory	of the dc SQUI	D	71
	В. С. D.	Operati Theory Practic	ion of the dc SQ of Noise in the al dc SQUIDs:	UID dc SQUID Fabrication and	76 79
	E.	Per Future	formance Improvements	in the dc SQUID	82 89
IV.	RF SQ	UID			90
	Α.	Theory	of the rf SQUII)	90
	В.	Operati	ion of the rf SQ	UID	97
	С. D.	Noise i Practic	al rf SQUIDs:	Fabrication and	97
	E.	Per Future	formance Improvements	in the rf SQUID	103 106
V.	SQUID SUSCE	S AS MA PTOME	AGNETOMETER CTERS, AND VO	RS, GRADIOMETER DLTMETERS	2S, 108
	A. B. C. D. E.	Flux Tr Measur Measur Measur Measur	ransformer rement of Magne rement of Magne rement of Magne rement of Voltag	etic Field etic Field Gradient etic Susceptibility ge	108 110 112 113 116
VI.	PRAC' DEVIC	FICAL A SES	APPLICATIONS	OF SQUID-BASED	118

х

CHAPTER 4:	EQUIVALENT CIRCUITS AND ANALOGS OF THE JOSEPHSON
	\mathbf{EFFECT}
	T. A. Fulton

I. INTRODUCTION

II_{\bullet}	SMAL	L JUNCTIONS	126
	А. В. С.	Model of the Supercurrent Flow Voltage Biased Model Stewart-McCumber Model	126 127 127
		 Circuit equations Mechanical analogues 	$127\\130$
		3. I- $\langle V \rangle$ curves	132
		4. Plasma oscillations	136
		5. Punchthrough	136
	_	6. Interaction with rf currents	138
	D.	Inductively-Connected External Elements	143
		1. Circuit and mechanical analogues	143
		2. Resistive shunts	144
		3. Capacitive shunts	146
	17	4. ac SQUID	153
	E.		100
III_{\bullet}	LARG	E JUNCTIONS	160
	Α.	Two-Dimensional Systems	160
		1. Circuit models	160
		2. Two-dimensional mechanical analog	164
	В.	One-Dimensional Junctions	165
		1. Circuit equations	165
		2. Mechanical analogue	165
		3. Small oscillations and displacements	166
		4. Magnetic diffraction and Fiske modes	1.00
		IOF $\lambda > \lambda_{\rm J}$	167
		5. Junctions having $L \sim \lambda_{\rm J}$ -vortices and	1 6 0
		$\begin{array}{c} \text{Critical currents} \\ \text{6} \text{Magnetic field behavior for } l \geq 1 \\ \end{array}$	100
		7 Vortex motion	174
		8 Resonant vortex propagation	177
		9. Finite $\langle V \rangle$ behavior for $\ell \gg \lambda$	179
		10. Vortex oscillations	179
			110
IV.	CONC	LUSIONS	182

Ι.	INTRC	DUCTION	189
II.	VOLT	AGE STANDARDS	190
	A. B. C. D. E. F. G. H.	The SI Volt Standard Cells and the Defined Volt The Josephson Effect and e/h Practical Josephson Voltage Standards The Microwave Signal Source The Josephson Junction Shielding, Filtering, and Tempering Theoretical Uncertainty Present Activities	190 191 193 193 193 193 196 196
III.	CURRI MEAS	ENT COMPARATORS AND RATIO UREMENTS	198
	A. B. C. D.	Resistive Networks Inductive Devices Cold Resistive Dividers Superconducting Inductive Current	198 200 203
		Comparators	205
IV.	MEAS ATTE	UREMENTS OF RF POWER AND NUATION	208
	A. B. C. D. E. F.	Some General Remarks on RF and Microwave Measurements The SQUID as an RF Measuring Device Practical SQUIDs for RF Metrology The Measurement of Attenuation The Measurement of Power Systematic Errors	208 210 213 217 219 220
v.	THER	MOMETRY	227
	A. B. C. D.	The Kelvin Scale Below 1 K Noise Thermometry with SQUID Sensors Magnetic Thermometry with SQUIDs Superconducting Fixed Points	227 228 237 238
VI.	MEAS	UREMENTS OF FREQUENCY	238
	A. B.	The Stability of Oscillators Oscillators with Superconducting	238
	C. D.	Far Infrared Frequency Synthesis Recent Work	$\begin{array}{c} 241\\ 243\\ 244\end{array}$

CHAPTER	6: HIGH FREQUENCY PROPERTIES AND APPLICATIONS OF JOSEPHSON JUNCTIONS FROM MICROWAVES TO FAR-INFRARED R. Adde and G. Vernet	
I. GENEI JUNCT	RAL PROPERTIES OF JOSEPHSON TIONS FOR HIGH FREQUENCY	
APPL	ICATIONS	249
Α.	High Frequency Fundamental Properties	
	of the Ideal Josephson Junction	249
B_{\bullet}	The Parallel Impedance of Real	
a	Josephson Junctions	249
С.	Limiting Factors of Josephson Junctions	0.54
	at High Frequencies	251
	1. Frequency limitation related to the	951
	2 Comparison structure and counting	201
	3 Thormal officers	207
	4 Noise	250
D.	The Main Detection Mechanism	259
2.	1. Wide band detection	259
	2. Narrow band detection (linear)	260
\mathbf{E}_{\bullet}	The Josephson Junction and Parametric	
	Amplification	261
\mathbf{F}_{\bullet}	The Real JJ Analyzed with the RSJ Model	263
	1. Voltage source model	263
	2. The current source model	264
	3. An important example: the Josephson	
	heterodyne mixer with an external	
~	oscillator	266
G_{\bullet}	Noise	268
	1. Physical origin of fluctuations in	
	Josephson junctions	268
	2. Josephson junction response in the	0 = 0
тт	Neice Terror Minimum Detectable	272
п.	Temperature, Minimum Detectable	975
	1 Noigo tomponaturog	275
	2 System consistivity	213
т	Coupling and Impedance Matching	411 970
τo	1 General remarks	219 970
	2. Impedance matching	219 970
	3. Signal input coupling	281
	• •	201

II.	ANAL FREQ	YSIS AND PERFORMANCES OF HIGH- UENCY JOSEPHSON DEVICES	284
	A.	Generation of Radiation	285
	B.	Bolometer	286
		1. Bolometer characteristics	286
		2. SNS and superconducting transition	
		edge bolometers	287
	~	3. Comparison of devices	290
	С.	Video Detection	290
		 Junction quadratic response 	290
		2. Voltage response in the general case	291
		3。Noise equivalent power	293
		4. Discussion of experimental results and	
		comparison with other video	
		detectors	293
	D_{\bullet}	Heterodyne Detection	295
		1. External local oscillator	296
		2. Internal local oscillator	302
		3. Discussion of the results and compara-	
		tive performances of other mixers	306
	Е.	Parametric Amplification	311
	•	1. Parametric amplification with self-	011
		numped .I.I	312
		2. Externally numped II parametric	012
		amplifier	314
		3 Discussion	215
	F	Conclusions	215
	т, •	Conclusions	212

CHAPTER 7: FABRICATION OF JOSEPHSON JUNCTIONS B. T. Ulrich and T. Van Duzer

Ι.	INTRO	DUCTION	321
II.	FABR	ICATION TECHNOLOGY	323
	A. B. C. D.	Evaporation Masks Photolithography Electron Lithography Thin-Film Deposition and Ion Etching	323 324 327 329
III.	SAND	WICH-TYPE JUNCTIONS	332
	А. В. С.	Oxide-Barrier Junctions Evaporated Semiconductor Barrier Junctions Single-Crystal Silicon-Membrane Junctions	333 337 337

IV_{\bullet}	JUNCTIONS WITH COPLANAR ELECTRODES		341
	А. В. С.	Variable-Composition Junctions Semiconductor Bridge Microbridges	342 346 347
v.	POINT	CONTACTS	350

CHAPTER 8: BIOMAGNETISM S. J. Williamson, L. Kaufman and D. Brenner

Ι.	INTRODUCTION	355
II.	FORWARD AND INVERSE PROBLEMS	357
III.	SQUID MEASUREMENT TECHNIQUES	360
IV.	MAGNETOCARDIOGRAM	371
v.	FETAL MAGNETOCARDIOGRAM	383
VI.	MAGNETOMYOGRAM	384
VII.	MAGNETO-OCULOGRAM	386
VIII.	MAGNETOENCEPHELOGRAM	387
IX.	VISUALLY EVOKED FIELD	392
X。	EXPECTATIONS	39 6

CHAPTER 9: A PROGRESS REPORT ON COMMERCIAL SUPERCONDUCTING INSTRUMENTS IN THE UNITED STATES M. B. Simmonds

I.	INTRODUCTION	403
II.	SQUID SENSORS	404
III.	LABORATORY PROBES	405
IV.	GEOPHYSICAL MAGNETOMETERS	406
v.	MAGNETIC ANOMALY DETECTORS	407

VI.	BIOMEDICAL MAGNETOMETERS	40 9
VII.	SAMPLE MEASURING INSTRUMENTS	411
VIII.	SHIELDED ENVIRONMENTS	412
IX.	CONCLUSIONS	413

CHAPTER 10: RESISTIVE DEVICES J. G. Park

I.	INTRODUCTION	415
II.	THE 'CORRESPONDING' SQUID	417
III.	THE RSQUID AND ITS 'CORRESPONDING' SQUID	422
IV.	BEHAVIOR WHEN MODULATION CURRENTS I and i _m ARE ABSENT	426
	A. Stable and Unstable Equilibrium B. Deviations from the Standard Behavior C. The Form of I_k (Θ_j) D. Fluctuations about Equilibrium E. Behavior when I is small	426 427 427 430 430
V.	EXPERIMENTS WITH EXTERNAL CURRENT I (AC OR DC)	431
VI.	APPLICATIONS OF RSQUIDs	437
	 A. Types of RSQUIDs B. Picovoltmeters C. The RSQUID Noise Thermometer D. Heat Current Measurement 	$\begin{array}{r} 437 \\ 439 \\ 441 \\ 443 \end{array}$

CHAF	PTER 11:	"HOT SUPERCONDUCTORS": THE PHYSICS AND APPLICATIONS OF NONEQUILIBRIUM SUPERCON- DUCTIVITY JJ. Chang and D. J. Scalapino	
Ι.	INTRODUC	TION	447
II.	RELAXATI KINETIC E	ON PROCESSES AND THE QUATIONS	454

xvi

III.	MAGNITUE	ES AND THE ROTHWARF-	
	TAYLOR E	QUATIONS	468
IV.	SOLUTIONS	5 OF THE BOLTZMANN EQUATIONS	473
CHAF	PTER 12:	COMPUTER APPLICATIONS OF JOSEPHSON JUNCTIONS P. Wolf	
I.	HISTORICA	L NOTES	487
II.	THE JOSEE SWITCHING	PHSON JUNCTION AS A G DEVICE	487
III.	DEVICE FA	ABRICATION	489
IV.	CIRCUITS		489
	A. Logi	ic Circuits	489
	B. Men	lory Circuits	490
CHAI	PTER 13:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN CANADA J. A. Blackburn	
PROC	RAMS		495
CHAF	PTER 14:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN FRANCE R. Adde	
PROC	RAMS		501
CHAF	PTER 15:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN GERMANY S. Erné	
PROC	PROGRAMS 505		

xvii

xviii			CONTENTS
CHAI	PTER 16:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN ITALY M. Cerdonio	
PROC	GRAMS		509
CHAI	PTER 17:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN THE NETHERLANDS R. de Bruyn Ouboter	
PROC	GRAMS		513
CHAI	PTER 18:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN THE UNITED KINGDOM J. G. Park	
PROC	GRAMS		515
CHAI	PTER 19:	PROGRAMS ON SMALL-SCALE SUPERCONDUCTING DEVICES IN THE UNITED STATES R. Brandt and E.A. Edelsack	
I.	SUMMARY	Ζ	521
II.	INTRODU	CTION	521
III.	BIOMEDICAL		525
IV.	METROLOGY		527
V.	GEOPHYSICAL		529
VI.	DETECTI	ON AND RADIATION	531
VII.	DIGITAL	PROCESSING	535
VIII.	DEVICE F	PROPERTIES	537
IX.	TRENDS		540

IX. TRENDS

PART II - MACHINES

CHA	PTER 2	20: LARGE-SCALE APPLICATIONS OF SUPERCONDUCTIVITY G. Bogner		
I.	INTRO	DUCTION	547	
II.	SUPERCONDUCTING MATERIALS AND			
	MAGN	IETS	549	
	Α.	Introduction	549	
	в.	High-Field Superconductors	550	
	~	1. Superconducting materials	550	
	С.	Stabilized High Field Superconductors	553	
		1. Cryostatic stabilization	554	
		2. Adiabatic stabilization	554	
	П	Conductors for do and ac Magnets	555	
	E.	Irradiation Effects in Composite	000	
	110	Superconductors	565	
	F.	General Design Aspects of Super-		
		conducting Magnets	567	
		1. Intrinsically stable coils	567	
		2. Fully or cryostatically stabilized coils	572	
		3. Current leads and coil protection	574	
	G.	Superconducting Magnets for Laboratory		
	тт	Application	575	
	H. T	Magnets for High Energy Physics	579	
	1.	Beactors and MHD Generators	586	
		1. Fusion reactors	586	
		2. MHD generators	594	
	J.	Superconducting Magnets for Inductive		
		Energy Storage	59 6	
	К.	Superconducting Magnets for Magnetic		
		Separation	604	
III.	LEVI	PATED VEHICLES WITH SUPERCON-		
	DUCT	ING MAGNETS	608	
			600	
	A. D	Introduction Design Fronting of the Flootne dynamic	608	
	D,	Flight	600	
	С	Principle of the Electrodynamic	009	
	U •	Levitation System	609	
	D.	Various Lift and Guidance Systems	610	
	Е.	Damping	613	
	\mathbf{F}_{ullet}	Propulsion Systems	615	
	G.	On-Board Cooling Systems	617	

xix

	H_{\bullet}	Magnetic Shielding of the Passengers	619
	Ι.	Electrodynamic Levitation Projects	619
		1. FRG - the Erlangen test carrier	
		and track	619
		2. The Japanese National Railway	
		magnetic levitation project	627
		3. The Canadian Magley-project	632
		4. Work on magnetic levitation in	
		Great Britain	633
		5. The US program on magnetic	
		levitation	633
			000
IV_{\bullet}	ELEC	TRIC MACHINES	636
	Δ	Introduction	626
	B R	Limits of Conventional Machines	626
	D. C	Superconducting Machines, Conoral	030
	0.	Bomonica	C 2 0
	П	DC Machines	638 C40
	D_{\bullet}	1 Hotopopolon machined	640 640
		2 Homonolon machines	640
	T	2. Homopolar machines	645
	Ľ.	Synchronous Machines	654
		1. Technical limits of conventional	
		Detertial advantages for	656
		2. Potential advantages of supercon-	
		ducting generators	656
		3. Basic construction of supercon-	
		ducting generators	657
		4. Cooling system	662
		5. Armature winding (stator)	666
		6. Machine screening	667
		7. Electrical operating behavior and	
		characteristic data	667
		8. Economic considerations	66 9
		9. Superconducting turbine-generator	
		projects	670
V.	SUPEI	CONDUCTING CABLES	679
••	×01 ±		072
	A.	Introduction	672
	B.	Superconducting Cable Concepts	673
		1. Mechanical construction	673
		2. Conductor configurations	673
		3. Comparison between superconducting	
		airect current and alternating	
	~	current cables	675
	C.	Cryogenic Envelope	677
	D_{\bullet}	Superconducting Material	678
		1. Direct current superconductors	678
		2. Alternating current superconductors	679

хх

Ε.	Cable Core	684
\mathbf{F}_{\bullet}	Electrical Insulation	687
G.	Cable Cooling	694
Η.	Cable Terminations	699
Ι.	Superconducting Cable Projects	701
J.	The Economics of Superconducting Cables	705
Κ.	Future Development of Superconducting	
	Cables	709

SUBJECT INDEX

PART I -	SQUIDs	719
PART II -	MACHINES	731