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We know from Bloch’s theorem that the wave function ψ of an electron in a semiconducting or insulating
crystal can be written

ψ = eikxu(x), (1)

where k is the wave vector of the state and u(x) is a periodic function with the lattice period of the crystal.
Over reasonable distances the u(x) part of the function averages out, and we can view the propagating
part eikx as a quasi-particle behaving in much the same way as a particle in free space. The dynamics
of this particle are given by the dispersion relation between the wave vector k and the energy E. For a
semiconductor or insulator with a forbidden gap, the dispersion relation is something like the one shown
in Fig. 1.

Figure 1: Energy-momentum relationship in a semiconductor or insulator.

Note that we have plotted E versus k2 rather than the more conventional E versus k. The reason is
as follows: It can be shown rather generally that near one of the band edges (Ec or Ev) the energy is
quadratic in k, and is usually written E = ~2k2/2m∗ by analogy with the free electron. Here, m∗ is the
effective mass of the quasi-particle. This form is shown by the straight line in Fig. 1. For E > Ec and
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E < Ev, k
2 is positive; therefore k is real, and propagating solutions result. For energies in the forbidden

gap Ec < E < Ev, k
2 is negative, k is imaginary, and exponentially damped solutions result. It is these

damped solutions with which we are concerned in tunneling problems. A typical experiment is to measure
the tunneling current in a structure consisting of two metal layers separated by a thin insulating layer.
The energy diagram for such a structure is shown in Fig. 2.

Figure 2: Energy diagram of metal-insulator-metal tunneling structure.

The tunneling current through such a structure at any particular applied voltage V is proportional to the
tunneling probability P , which in turn is given by a WKB-type integral

P = exp−2

∫ t

0

k(x) dx, (2)

where t is the insulator thickness and k is the imaginary part of the propagation vector. The dependence
of k upon x arises from the dependence of k on E and the electric field in the insulator, which causes E
to depend on x. For a uniform field E is proportional to x plus a constant, and the probability can be
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rewritten

log P =
−2t

ϕ1 − ϕ2 + qV

∫ E2

E1

k(E) dE, (3)

where E1 and E2 are, respectively, the initial and final state energies of the particular electron under
consideration relative to the insulator conduction band.

Since normally we are considering energies in the upper half of the forbidden gap, k generally increases as
E decreases. Since k appears in the exponent of the tunneling probability, electrons with higher energies
contribute much more to the tunnel current than those with lower energies. However, above the Fermi
level Ef1, we rapidly run out of electrons. Hence, for most experimental conditions the tunneling current
is a very sharply peaked function at Ef1. Referring to Fig. 2 and defining our energy zero at the insulator
conduction band edge Ec, we can write the tunneling probability

log P =
2t

qV + ϕ1 − ϕ2

∫ −ϕ2+qV

−ϕ1

k(E) dE. (4)

At this point, we can go no further without a knowledge of the dependence of k on E. It is clear from Fig. 1
that any analysis based upon the effective-mass approximation is doomed to dismal failure if the energies
involved are an appreciable fraction of the forbidden gap, and even great quantities of mathematical
manipulation do not serve to alleviate the problem. This point is the basis of a large portion of the
disagreement between theory and experiment in the tunneling literature.

Two questions must be asked at this point:

1. Is there enough information in the experimental tunneling data to unambiguously determine the E
versus k relation for the insulator being used?

2. Are enough self-consistency checks available to be sure that the E versus k curve so determined is
real and not merely an agglomerated uncertainty factor?

The answer to both of these questions is, within broad limits, affirmative, and we will proceed on that
basis.

From Eq. 4, we note that the logarithm of the tunneling probability is linear in the thickness t with a
slope dependent upon the applied voltage through the limit on the integral. This dependence is shown
schematically in Fig. 3.
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Figure 3: Dependence of tunneling probability on insulator thickness for different applied bias V .

From here the E versus k relationship can be determined directly. From Eq. 4, the slopes of the curves in
Fig. 3 are given by

slope =
∂ logP

∂t
=

2

ϕ1 − ϕ2 + qV

∫ ϕ2+qV

−ϕ1

k(E) dE; (5)

k(E) itself may now be evaluated, as it is just the derivative of the integral with respect to its upper
limit:

∆(1
2

(ϕ1 − ϕ2 + qV )× slope)

∆(qV )
= k(−ϕ2 + qV ). (6)

Thus, the k versus E relationship is given directly by the differences in slope for curves of different voltages.
The tunneling probability is subject to direct experimental measurement. At zero voltage, the small-signal
tunnel resistance R of the sample and its capacitance C can be measured. It can be shown that [1]

P ∝ 1/RC. (7)

At applied biases larger than typically a few tenths of a volt, the tunneling probability is, to a good
approximation, proportional to the current times the square of the insulator thickness [2]. Thus, curves
similar to Fig. 3 are accessible by direct electrical measurement.

The relationship given by Eq. 5 and Eq. 7 is particularly direct and is demonstrated experimentally in
Fig. 4. The data are from Al-AIN-Mg structures reported by Lewicki [3] and Lewicki and Mead [4]. The
k versus E curve for these samples resulting from an analysis similar to that described above is shown in
Fig 5. The k versus E curve is very much similar to what we sketched in Fig. 1, and its slope changes by
more than a factor of two over the energy range involved in the tunneling. Thus, it is not surprising that
calculations based upon an effective-mass approximation give thoroughly erroneous results.

We have now come to the point where we have (within the limits of the technique) a complete description
of the system, and can check the self-consistency of the results.

1. The E versus k relation should be a property of the insulating material, and therefore not dependent
on the electrode barrier energy ϕ. In Fig. 5, the results of the analysis are shown for two bias
polarities where the ϕ’s were different, and the same E versus k relation holds for both. Similar
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Figure 4: Product of low-frequency capacitance and zero bias tunneling resistance as a function of insulator
thickness. This product is a direct measure of the tunneling probability.

Figure 5: The E − k relationship as derived by Lewicki on Al-AIN-Mg structures using the method
outlined in the text. Note strong deviation from effective-mass approximation.

results obtained for other electrode materials where the barrier energies differ by even a larger
amount. In the latter case, the volt-ampere curves are very different, and would not be expected to
yield the same results unless the technique were self-consistent. This is an important point, and

5



should always be checked in each experimental situation.

2. The technique yields values for the barrier energies ϕ1 and ϕ2. These may be checked independently
by two methods: (a) the cusps in the (small) temperature dependence of the tunnel current [5] and
(b) threshold for internal photoemission. Both experiments have been done on the AIN samples,
and the results agree with the E − k method within experimental uncertainty.

3. Using the E−k relation shown, it is possible to compute not only the form of the I−V characteristics,
but the absolute magnitude as well. When this is done, the I − V curves of both polarities agree
with those observed, and the magnitude is within a factor of two of that computed from the usual
theoretical models.

Thus, we may conclude that within the limitation of the somewhat rough and ready method tunneling
in thin films can be characterized in a simple and demonstrably self-consistent manner. Undoubtedly,
details will accumulate and refinements of experiment and theory will ensue, but it is important to have
the first-order ideas correct before such additions are attempted.

Exponentially attenuated wave functions are also important in other experimental situations. In particular,
these states, like any other states, are either occupied or empty, and the charge stored in them can be
appreciable. As an example, on the free surface of a semiconductor there can be one such state for every
surface atom, or approximately 1014 per cm2. If every one were occupied with one electronic charge, a
field of 108 V/cm would result. Turning the argument around, a field of 106 V/cm terminating on the
semiconductor surface would induce charge in only one percent of the available states. This serves to
illustrate the powerful effect these states can have on the electronic nature of surfaces. A review of the
interaction of these states at metal-semiconductor interfaces has been given previously, and will not be
repeated here [6]. In addition, an excellent description of this effect on the semiconductor-vacuum surface
is given by van Laar and Scheer [7].
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