Skip to main content

Transport of Transmitter-Related Enzymes

Changes after Injury

  • Chapter
Axonal Transport in Neuronal Growth and Regeneration

Part of the book series: Advances in Neurochemistry ((ANCH,volume 22))

Abstract

Dramatic changes in the axonal transport of several enzymes involved in transmitter metabolism occur following axotomy (for an extensive review see Grafstein and Forman, 1980). Axonal transport of transmitter-related enzymes has generally been found to be reduced, as is nerve content of these enzymes. Similarly, the amount of enzyme activity present in the perikarya of the cells of origin of the damaged axons is decreased. As we shall see, there are exceptions to each of these statements. These changes are thought to reflect a change in emphasis in the neuronal economy from that of a functioning cell carrying out its essential role in the life of the organism to that of a convalescent invalid. Because the neuron has lost its efferent connections, the enzymes involved in transmitter metabolism are presumed to be, at least temporarily, useless, and the production of some of them in the perikaryon and their export from it are curtailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, J. T., and Thomas, P. K., 1962, Retrograde changes in fibre size following nerve section, J. Anat. (Lond.) 96: 121–129.

    CAS  Google Scholar 

  • Barron, K. D., and Tuncbay, T. O., 1964, Phosphatase histochemistry of feline cervical spinal cord after brachial plexectomy, J. Neuropathol. Exp. Neurol. 23: 368–386.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., and Bulger, V. T., 1977, Reversal of axonal transport at a nerve crush, J. Neu-rochem. 29: 313–320.

    CAS  Google Scholar 

  • Bodian, D., and Mellors, R. C., 1945, The regenerative cycle of motoneurons, with special reference to phosphatase activity, J. Exp. Med. 81: 469–488.

    Article  PubMed  CAS  Google Scholar 

  • Bray, J. J., Kon, C. M., and Breckenridge, B. McL., 1971, Reversed polarity of rapid axonal transport in chicken motoneurons, Brain Res. 33: 560–564.

    Article  PubMed  CAS  Google Scholar 

  • Brimijoin, S., 1975, Stop-flow: A new technique for measuring axonal transport, and its application to the transport of dopamine-ß-hydroxylase, J. Neurobiol. 6: 379–394.

    Article  PubMed  CAS  Google Scholar 

  • Brimijoin, S., 1982, Axonal transport in autonomic nerves: Views on its kinetics, in: Trends in Autonomic Pharmacology, Volume 2 (S. Kalsner, ed.), pp. 17–42, Urban & Schwarzen-berg, Munich, Baltimore.

    Google Scholar 

  • Brimijoin, S., and Molinoff, P. B., 1971, Effects of 6-hydroxydopamine on the activity of tyrosine hydroxylase and dopamine-ß-hydroxlase in sympathetic ganglia of the rat, J. Phamacol. Exp. Ther. 178: 417–424.

    CAS  Google Scholar 

  • Brimijoin, S., and Wiermaa, M. J., 1977, Rapid axonal transport of tyrosine hydroxylase in rabbit sciatic nerves, Brain Res. 120: 77–96.

    Article  Google Scholar 

  • Brimijoin, S., Skau, K., and Wiermaa, M. J., 1978, On the origin and fate of external acetylcholine esterase in peripheral nerve, J. Physiol. (Lond.) 285: 143–158.

    CAS  Google Scholar 

  • Carlsen, R. C., Kiff, J., and Ryugo, K., 1982, Suppression of the cell body response in axotomized frog spinal neurons does not prevent initiation of nerve regeneration, Brain Res. 234: 11–25.

    Article  PubMed  CAS  Google Scholar 

  • Cerf, J. A., and Chacko, L. W., 1958, Retrograde reaction in motoneuron dendrites following ventral root section in the frog, J. Comp. Neurol. 109: 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Cheah, T. B., and Geffen, L. B., 1973, Effects of axonal injury on norepinephrine, tyrosine hydroxylase and monoamine oxidase levels in sympathetic ganglia, J. Neurobiol. 4: 443–452.

    Article  PubMed  CAS  Google Scholar 

  • Coimbra, A., Magalhães, M. M., and Sodré-Borges, B. P., 1970, Ultrastructural localization of acid phosphatase in synapatic terminals of the rat substantia gelatinosa Rolandi, Brain Res. 22: 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Couraud, J. Y., and DiGiamberardino, L., 1980, Axonal transport of molecular forms of acetylcholinesterase in chick sciatic nerve, J. Neurochem. 35: 1055–1066.

    Article  Google Scholar 

  • Fonnum, F., Frizell, M., and Sjöstrand, J., 1973, Transport, turnover and distribution of choline acetyltransferase and acetylcholinesterase in the vagus and hypoglossal nerves of the rabbit, J. Neurochem. 21: 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Frizell, M., and Sjöstrand, J., 1974, Transport of proteins, glycoproteins and cholinergic enzymes in regenerating hypoglossal neurons, J. Neurochem. 22: 845–850.

    Article  PubMed  CAS  Google Scholar 

  • Grafstein, B., and Forman, D. S., 1980, Intracellular transport in neurons, Physiol. Rev. 60: 1167–1283.

    PubMed  CAS  Google Scholar 

  • Heiwall, P.-O., Dahlström, A., Larsson, P.-A., and Bööj, S., 1979, The intra-axonal transport of acetylcholine and cholinergic enzymes in rat sciatic nerve during regeneration after various types of axonal trauma, J. Neurobiol. 10: 119–136.

    Article  PubMed  CAS  Google Scholar 

  • Holtzman, E., Novikoff, A. B., and Villaverde, H., 1967, Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum, J. Cell Biol. 33: 419–435.

    Article  PubMed  CAS  Google Scholar 

  • Jablecki, C., and Brimijoin, S., 1975, Axoplasmic transport of choline acetyltransferase activity in mice: Effect of age and neurotomy, J. Neurochem. 25: 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Jancsó, G., and Knyihár, E., 1975, Functional linkage between nociception and fluoride-resistant acid phosphatase activity in the Rolando substance, Neurobiology 5: 42–43.

    PubMed  Google Scholar 

  • Jancsó, G., Kiraly, E., and Jancsó-Gábor, A., 1977, Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons, Nature 270: 741–743.

    Article  PubMed  Google Scholar 

  • Knyihár, E., and Gerebtzoff, M. A., 1973, Extra-lysosomal localization of acid phosphatase in the spinal cord of the rat, Exp. Brain Res. 18: 383–395.

    Article  PubMed  Google Scholar 

  • Levin, B. E., 1981, Reserpine effect on the axonal transport of dopamine-ß-hydroxylase and tryosine hydroxylase in rat brain, Exp. Neurol. 72: 99–112.

    Article  PubMed  CAS  Google Scholar 

  • McDougal, D. B., Jr., Yuan, M. J. C., Dargar, R. V., and Johnson, E. M., Jr., 1983, Neonatal capsaicin and guanethidine and axonally transported organelle-specific enzymes in sciatic nerves and in sympathetic and dorsal root ganglia, J. Neurosci. 3: 124–132.

    PubMed  CAS  Google Scholar 

  • O’Brien, R. A. D., 1978, Axonal transport of acetylcholine, choline acetyltransferase and Cholinesterase in regenerating peripheral nerve, J. Physiol. (Lond.) 282: 91–103.

    Google Scholar 

  • Partlow, L. M., Ross, C. D., Motwani, R., and McDougal, D. B., Jr., 1972, Transport of axonal enzymes in surviving segments of frog sciatic nerve, J. Gen. Physiol. 60: 388–405.

    Article  PubMed  CAS  Google Scholar 

  • Ranish, N. A., Kiauta, T., and Dettbarn, W.-D., 1979, Axotomy induced changes in cholinergic enzymes in rat nerve and muscles, J. Neurochem. 32: 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R.A., Joh, T. H., and Reis, D. J., 1975, Reversible changes in the accumulation and activities of tyrosine hydroxylase and dopamine-ß-hydroxylase in neurons of nucleus locus coe-ruleus during the retrograde reaction, Brain Res. 92: 57–72.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. E., and McDougal, D. B., Jr., 1978, Axonal transport of selected particle-specific enzymes in rat sciatic nerve in vivo and its response to injury, J. Neurochem. 30: 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. E., Ross, C. D., and McDougal, D. B., Jr., 1978, Effects of sympathectomy on axoplasmic transport of selected enzymes including MAO and other mitochondrial enzymes, J. Neurochem. 30: 537–541.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. E., Yu, M. J. C., and McDougal, D. B., Jr., 1980, Turnaround of axoplasmic transport of selected particle-specific enzymes at an injury in control and diisopropylphosphoro-fluoridate-treated rats, J. Neurochem. 35: 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Sinicropi, D. V., Michels, K., and Mcllwain, D. L., 1982, Acetylcholinesterase distribution in axotomized frog motoneurons, J. Neurochem. 38: 1099–1105.

    Article  PubMed  CAS  Google Scholar 

  • Watson, W. E., 1966, Quantitative observations upon acetylcholine hydrolase activity of nerve cells after axotomy, J. Neurochem. 13: 1549–1550.

    Article  PubMed  CAS  Google Scholar 

  • Wooten, G. F., and Coyle, J. T., 1973, Axonal transport of catecholamine synthesizing and metabolizing enzymes, J. Neurochem. 20: 1361–1371.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

McDougal, D.B. (1984). Transport of Transmitter-Related Enzymes. In: Elam, J.S., Cancalon, P. (eds) Axonal Transport in Neuronal Growth and Regeneration. Advances in Neurochemistry, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1197-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1197-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1199-7

  • Online ISBN: 978-1-4684-1197-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics