Skip to main content

Retrograde Axonal Transport and Nerve Regeneration

  • Chapter
Axonal Transport in Neuronal Growth and Regeneration

Part of the book series: Advances in Neurochemistry ((ANCH,volume 22))

Abstract

The ability of neurons to take up exogenous protein molecules and to transport them in a retrograde direction (i.e., from axon to cell body) enables neuroanatomists to trace neuronal pathways (La Vail, 1978). Toxins (Mellanby and Green, 1981) and certain viruses (K. Kristensson, Chapter 3, this volume) use this route to enter the CNS. The retrograde transport of lectins (e.g., Borges and Sidman, 1982) and neurotransmitters (Streit, 1980) shows that specific components of the neuronal membrane, that is, the receptors for these ligands, are returned to the cell body where they were synthesized originally (Laduron, 1980; Laduron and Janssen, 1982). With the exception of nerve growth factor (NGF) (Schwab et al., 1981), the physiological significance of the retrograde transport of these exogenous molecules remains to be determined, but it is widely believed that the sampling of the axonal environment provided to the cell body by this process has informational significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., Haga, T., and Kurokawa, M., 1973, Rapid transport of phosphatidyl-choline occurring simultaneously with protein transport in the frog sciatic nerve, Biochem. J. 136: 731–740.

    PubMed  CAS  Google Scholar 

  • Abe, T., Haga, T., and Kurokawa, M., 1974, Retrograde axoplasmic transport: Its continuation as anterograde transport FEBS Lett. 47: 272–275.

    CAS  Google Scholar 

  • Aletta, J. M., and Goldberg, D. J., 1982, Rapid and precise down regulation of fast axonal transport of serotonin in an identified neuron, Science 218: 913–916.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R. D., Travis, J. L., Hayden, J. H., Allen, N. S., Breuer, A. C., and Lewis, I. J., 1981, Cytoplasmic transport: Moving ultrastructural elements common to any cell types revealed by video-enhanced microscopy, Cold Spring Harbor Symp. Quant. Biol. 46: 85–87.

    Article  Google Scholar 

  • Anden, N. E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, O., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67: 313–326.

    Article  CAS  Google Scholar 

  • Arvidsson, J., and Aldskogius, H., 1982, Effect of repeated hypoglossal nerve lesions on the number of neurons in the hypoglossal nucleus of adult rats, Exp. Neurol. 75: 520–524.

    Article  PubMed  CAS  Google Scholar 

  • Banks, B. E. C., and Walter, S. J., 1977, The effects of postganglionic axotomy and nerve growth factor on the superior cervical ganglia of developing mice, J. Neurocytol. 6: 287–297.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., 1978, Fast axonal transport of labelled proteins in sensory axons during regeneration, Exp. Neurol. 61: 281–300.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., 1979, Differences in incorporation of axonally transported protein in regenerating motor and sensory axons, Exp. Neurol. 65: 680–684.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., 1980, Changes in the composition of labelled protein transported in motor axons during their regeneration, J. Neurobiol. 11: 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., 1981, Reversal of axonal transport: Similarity of proteins transported in anterograde and retrograde directions, J. Neurochem. 36: 741–745.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., 1982, Prolonged alterations in composition of fast-transported protein in axons prevented from regenerating after injury, J. Neurobiol. 13: 377–381.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., and Buchan, D. H., 1981, Velocity of labelled protein undergoing anterograde and retrograde transport, Exp. Neurol. 74: 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., and Bulger, V. T., 1977, Reversal of axonal transport at a nerve crush, J. Neurochem. 29: 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M. A., and Pollock, B., 1983, Increased regeneration rate in peripheral nerve axons following double lesions: Enhancement of the conditioning lesion effect, J. Neurobiol. 14: 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Black, M. M., Lasek, R. J., 1979, Slowing of the rate of axonal regeneration during growth and maturation, Exp. Neurol. 63: 108–119.

    Article  PubMed  CAS  Google Scholar 

  • Borges, L. F., and Sidman, R. L., 1982, Axonal transport of lectins in the peripheral nervous system, J. Neurosci. 2: 647–653.

    PubMed  CAS  Google Scholar 

  • Bray, J. J., Kon, C. M., and Breckenridge, B. McL. 1971, Reversed polarity of rapid axonal transport in chicken motoneurons, Brain Res. 33: 560–564.

    Article  PubMed  CAS  Google Scholar 

  • Breuer, A. C., Christian, C. N., Henkart, M., and Nelson, P. G., 1975, Computer analysis of organelle translocation in primary neuronal cultures and continuous cell lines, J. Cell Bio. 65: 562–576.

    Article  CAS  Google Scholar 

  • Brown, M. C., and Hopkins, W. G., 1981, Role of degenerating axon pathways in regeneration of mouse soleus motor axons, J. Physiol. (Lond.) 318: 365–373.

    CAS  Google Scholar 

  • Bulger, V. T., and Bisby, M. A., 1978, Reversal of axonal transport in regenerating nerves, J. Neurochem. 31: 1411–1418.

    Article  PubMed  CAS  Google Scholar 

  • Burke, B. E., and De Lorenzo, R. J., 1982, Ca2+ and calmodulin-dependent phosphorylation of endogenous synaptic vesicle tubulin by a vesicle-bound calmodulin kinase system J. Neurochem. 38: 1205–1218.

    Article  PubMed  CAS  Google Scholar 

  • Burton, P. R., and Paige, J. L., 1981, Polarity of axoplasmic microtubules in the olfactory nerve of the frog, Proc. Natl. Acad. Sci. U.S.A. 78: 3269–3273.

    Article  PubMed  CAS  Google Scholar 

  • Campenot, R. B., 1977, Local control of neurite development by nerve growth factor, Proc. Natl. Acad. Sci. U.S.A. 74: 4516–4519.

    Article  PubMed  CAS  Google Scholar 

  • Campenot, R. B., 1981, Regeneration of neuntes in long-term cultures of sympathetic neurons deprived of nerve growth factor, Science 214: 579–581.

    Article  PubMed  CAS  Google Scholar 

  • Carlsen, R. C., 1982, Comparison of adenylate cyclase activity in segments of rat sciatic nerve with a condition/test or test lesion, Exp. Neurol. 77: 254–265.

    Article  PubMed  CAS  Google Scholar 

  • Chretien, M., Patey, G., Souyri, F., and Droz, B., 1981, Acrylamide-induced neuropathy and impairment of axonal transport of protein. II. Abnormal accumulations of smooth endoplasmic reticulum at sites of focal retention of fast transported proteins. Electron microscopic radioautographic study, Brain Res. 205: 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Claude, P., Hauroi, E., Dunis, D. A., and Campenot, R. B., 1982, Binding, internalization, and retrograde transport of 125I-nerve growth factor in cultured rat sympathetic neurons, J. Neu-rosci. 2: 431–442.

    CAS  Google Scholar 

  • Collins, F., and Dawson, A., 1982, Conditioned medium increases the rate of neurite elongation: Separation of this activity from the substratum-bound inducer of neurite outgrowth, J. Neu-rosci. 2: 1005–1010.

    CAS  Google Scholar 

  • Couraud, J.-Y., and DiGiamberardino, L., 1982, Axonal transport of the molecular forms of acetylcholinesterase. Its reversal at a nerve transection, in: Axoplasmic Transport (D. G. Weiss, ed.), pp. 144–152, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Cragg, B. G., 1970, What is the signal for chromatolysis? Brain Res. 23: 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Czeh, G., Galego, R., Kudo, N., and Kuno, M., 1978, Evidence for the maintenance of motoneuron properties by muscle activity, J. Physiol. (Lond.) 281: 239–252.

    CAS  Google Scholar 

  • DiGiamberardino, L., Couraud, J.-Y., Hassig, R., and Gorio, A., 1982, Recovery of axonal transport of acetylcholinesterase in regenerating sciatic nerve precedes muscle reinnervation, in: Axoplasmic Transport in Physiology and Pathology (D. G. Weiss and A. Gorio, eds.), pp. 77–80, Springer-Verlag, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  • Dribin, L. B., and Barrett, J. N., 1982, Characterization of neuritic outgrowth-promoting activity of conditioned medium on spinal cord explants, Devel. Brain Res. 4: 435–441.

    Article  Google Scholar 

  • Droz, B., 1975, Synthetic machinery and axoplasmic transport: Maintenance of neuronal connectivity, in: The Nervous System, Vol. I (D. B. Tower, ed.), pp. 111–117, Raven Press, New York.

    Google Scholar 

  • Droz, B., DeGiamberardino, L., Koenig, H. L., Boyenval, J., and Hassig, R., 1978, Axon-myelin transfer of phospholipid components in the course of their axonal transport as visualized by radioautography, Brain Res. 155: 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Ducker, T. B., Kempe, C. G., and Hayes, G. J., 1969, The metabolic background for peripheral nerve injury, J. Neurosurg. 30: 270–280.

    Article  PubMed  CAS  Google Scholar 

  • Ellisman, M. H., and Lindsey, J. D., 1983, The axoplasmic reticulum within myelinated axons is not transported rapidly. J. Neurocytol. 12: 393–411.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, E. L., Axelrod, D., Schwartz, M. Heacock, A. M., and Agranoff, B. W., 1981, Studies on the localization of newly added membrane in growing neuntes, J. Neurobiol. 12: 591–598.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F., Frizell, M., and Sjostrand, J., 1973, Transport, turnover and distribution of choline acetyltransferase and acetylcholinesterase in the vagus and hypoglossal nerves of the rabbit, J. Neurochem. 21: 1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Forman, D., and Berenberg, R. A., 1979, Regeneration of motor axons in the rat sciatic nerve studied by labelling with axonally transported radioactive proteins, Brain Res. 156: 213–225.

    Article  Google Scholar 

  • Forman, D. S., McQuarrie, I. G., Grafstein, B., and Edwards, D. L., 1981, Effect of a conditioning lesion on axonal regeneration and recovery of function, in: Lesion-Induced Neuronal Plasticity in Sensorimotor Systems (H. Flohr and W. Precht, eds.), pp. 103–113, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Frizell, M., and Sjostrand, J., 1974, Transport of protein, glycoproteins and cholinergic enzymes in regenerating hypoglossal nerves, J. Neurochem. 22: 845–880.

    Article  PubMed  CAS  Google Scholar 

  • Gallego, R., Kuno, M., Nunez, R., and Snider, W. D., 1979, Dependence of motoneuron properties on the length of immobilized muscle, J. Physiol. (Lond.) 219: 179–189.

    Google Scholar 

  • Goodrum J. F. and Morell, P., 1982, Axonal transport, deposition and metabolic turnover of glycoproteins in the rat optic pathway, J. Neurochem. 38: 696–704.

    Article  PubMed  CAS  Google Scholar 

  • Grafstein, B., and McQuarrie, I. G., 1978, Role of the nerve cell body in axonal regeneration, in: Neuronal Plasticity (C. W. Cotman, ed.), pp. 155–195, Raven Press, New York.

    Google Scholar 

  • Grafstein, B., Miller, J. A., Ledeen, R. W., Haley, J., and Specht, S. C., 1976, Axonal transport of phospholipid in goldfish optic system, Exp. Neurol. 46: 261–281.

    Article  Google Scholar 

  • Griffin, J. W., Price, D. L., Drachman, D. B., and Morris, J., 1981, Incorporation of axonally transported glycoproteins into axolemma during nerve regeneration, J. Cell Biol. 88: 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Gross, G. W., and Beidler, L. M., 1975, A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibres of the garfish olfactory nerve, J. Neurobiol. 6: 213–232.

    Article  PubMed  CAS  Google Scholar 

  • Hall, M. E., and Wilson, D. L., 1982, Nerve growth factor effects on protein synthesis after nerve damage, Exp. Neurol. 77: 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V., Brunsobechtqld, J. K., and Yip, J. W., 1981, Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor, J. Neurosci. 1: 60–71.

    PubMed  CAS  Google Scholar 

  • Heiwall, P. O., Dahlstrom, A., Larson, P. A., and Booj, S., 1979, The intra-axonal transport of acetylcholine and cholingeric enzymes in rat sciatic nerve after various types of axonal trauma, J. Neurobiol. 10: 119–136.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, I. A., 1975, The response of adrenergic neurons to axotomy and nerve growth factor, Brain Res. 94: 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, P. N., and Lasek, R. J., 1980, Axonal transport of the cytoskeleton in regenerating neurons: Constancy and change, Brain Res. 202: 317–333.

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen, J., and Sidenius, P., 1983, Early and dose-dependent decrease of retrograde axonal transport in acrylamide-intoxicated rats, J. Neurochem. 40: 447–454.

    Article  PubMed  CAS  Google Scholar 

  • Koles, Z. J., McLeod, K. D., and Smith, R. S., 1982, A study of the motion of organelles which undergo retrograde and anterograde rapid axonal transport in Xenopus, J. Physiol. (Lond.) 328: 469–484.

    CAS  Google Scholar 

  • Kuno, M., Miyata, Y., and Munoz-Martinez, E. J., 1974, Properties of slow and fast α-motoneurons following re-innervation, J. Physiol. (Lond.) 242: 273–288.

    CAS  Google Scholar 

  • Laduron, P., 1980, Axoplasmic transport of muscarnic receptors, Nature 286: 287–288.

    Article  PubMed  CAS  Google Scholar 

  • Laduron, P. M., and Janssen, P. F. M., 1982, Axoplasmic transport and possible recycling of opiate receptors labelled with 3H-lofentanil, Life Sci. 31: 457–462.

    Article  PubMed  CAS  Google Scholar 

  • Landreth, G. E., and Agranoff, B. W., 1979, Expiant culture of goldfish retina: A model for the study of CNS regeneration, Brain Res. 151: 39–53.

    Article  Google Scholar 

  • Vail, J. H., 1978, A review of the retrograde transport technique, in: Neuroanatomical Research Techniques (R. T. Robertson, ed.), pp. 356–384, Academic Press, New York.

    Google Scholar 

  • LaVail, J. H., Rapisardi, S., and Sugino, I. K., 1980, Evidence against the smooth endoplasmic reticulum as a continuous channel for the retrograde axonal transport of horseradish peroxidase, Brain Res. 191: 3–20.

    Article  Google Scholar 

  • Lavoie, P. A., 1982, Ionic requirements for in vitro retrograde axonal transport of acetylcholinesterase, Neurosci Lett. 33: 213–216.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, A. R., 1974, Some factors affecting retrograde neuronal responses to axonal lesions, in: Essays on the Nervous System (R. Bellairs and E. G. Gray, eds.), pp. 71–105, Clarendon Press, Oxford.

    Google Scholar 

  • Longo, F. M., and Hammerschlag, R., 1980, Relation of somal lipid synthesis to the fast axonal transport of protein and lipid, Brain Res. 193: 471–485.

    Article  PubMed  CAS  Google Scholar 

  • Longo, F. M., Manthorpe, M., Skaper, S. D., Lundborg, G., and Varon, S., 1983, Neurono-trophic activities accumulate in vivo within silicone nerve regeneration chambers, Brain Res. 261: 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Lubinska, L., 1952, The influence of the state of the peripheral stump on the early stages of nerve regeneration, Acta Biol. Exp. (Warsaw) 16: 55–63.

    Google Scholar 

  • Lundborg, G., Dahlin, L. B., Danielson, N., Gelberman, R. H., Longo, F. M., Powell, H. C., and

    Google Scholar 

  • Varon, S., 1982, Nerve regeneration in silicone chambers: Influence of gap length and of distal stump components, Exp. Neurol. 76: 361–375.

    Article  PubMed  Google Scholar 

  • Matthews, M. R., and Raisman, G., 1972, A light and electron microscopic study of the cellular response to axonal injury in the superior cervical ganglion of the rat, Proc. Roy. Soc. Lond. [Biol. ] 181: 43–79.

    Article  CAS  Google Scholar 

  • McQuarrie, I. G., and Grafstein, B., 1982, Protein synthesis and axonal transport in goldfish retinal ganglion cells during regeneration accelerated by a conditioning lesion, Brain Res. 251: 25–37.

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., Grafstein, B., and Gershon, M. D., 1977, Axonal regeneration in the rat sciatic nerve: Effect of a conditioning lesion and of dbCAMP, Brain Res. 132: 443–453.

    Article  PubMed  CAS  Google Scholar 

  • Meiri, H., Spira, M. E., and Parnas, I., 1981, Membrane conductance and action potential of a regenerating axonal tip, Science 211: 709–712.

    Article  PubMed  CAS  Google Scholar 

  • Mellanby, J., and Green, J., 1981, How does tetanus toxin act? Neuroscience 6: 281–300.

    Article  PubMed  CAS  Google Scholar 

  • Muhlach, W. L., and Pollack, E. D., 1982, Target tissue control of nerve fibre growth rate and periodicity in vitro, Dev. Brain Res. 4: 361–364.

    Article  Google Scholar 

  • Munoz-Martinez, E. J., Nunez, R., and Sanderson, A., 1981, Axonal transport: A quantitative study of retained and transported protein fraction in the cat, J. Neurobiol. 12: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu, I., Kondo, Y., and Nagatsu, T., 1976, Retrograde axoplasmic transport of inactive dopamine-ß-hydroxylase in sciatic nerves, Brain Res. 116: 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Nixon, R. A., Brown, B. A. and Marotta, C. A., 1983, Limited proteolytic modification of a neurofilament protein involves a proteinase activated by endogenous levels of calcium, Brain Res. 275: 384–388.

    Article  PubMed  CAS  Google Scholar 

  • Nja, A., and Purves, D., 1978, Effects of nerve growth factor and its antiserum on synapses in the superior cervical ganglion of the guinea pig, J. Physiol. 277: 53–75.

    PubMed  CAS  Google Scholar 

  • O’Brien, D. W., and Snyder, R. E., 1982, Position-sensitive detector studies of the axonal transport of a pulse of radioisotope, J. Neurobiol. 13: 435–445.

    Article  PubMed  Google Scholar 

  • O’Brien, R. A. D., 1978, Axonal transport of acetylcholine, choline acetyltransferase and Cholinesterase in regenerating peripheral nerve, J. Physiol. (Lond.) 282: 91–103.

    Google Scholar 

  • Ochs, S., 1975, Retention and redistribution of proteins in mammalian nerve fibres by axoplasmic transport, J. Physiol. (Lond.) 253: 459–475.

    CAS  Google Scholar 

  • Oppenheim, R. W., 1981, Neuronal cell death and some related regressive phenomena during neurogenesis: A selective historical review and progress report, in: Studies in Developmental Neurobiology: Essays in Honor of Viktor Hamburger (W. M. Cowan,, ed.), pp. 74–133, Oxford University Press, London.

    Google Scholar 

  • Pant, H. C., and Gainer, H., 1980, Properties of a calcium-activated protease in squid axoplasm which selectively degrades neurofilament proteins, J. Neurobiol. 11: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Pestronk, A., Drachman, D. B., and Griffin, J. W., 1980, Effects of aging on nerve sprouting and regeneration, Exp. Neurol. 70: 108–119.

    Google Scholar 

  • Pfenniger, K. H., and Maylie-Pfenniger, M. F., 1981, Lectin labeling of sprouting neurons. 2. Relative movement and appearance of glycoconjugates during plasmalemmal expansion, J. Cell Biol. 89: 547–559.

    Article  Google Scholar 

  • Pilar, G., and Landmesser, L., 1972, Axotomy mimicked by localized colchicine application, Science 177: 1116–1118.

    Article  PubMed  CAS  Google Scholar 

  • Politis, M. J., Ederle, K., and Spencer, P. S., 1982, Tropism in nerve regeneration in vivo. Attraction of regenerating axons by diffusible factors derived from cells in distal nerve stumps of transected peripheral nerves, Brain Res. 253: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D., 1975, Functional and structural changes in mammalian sympathetic neurones following interruption of their axons, J. Physiol. (Lond.) 252: 429–463.

    CAS  Google Scholar 

  • Rambourg, A., and Droz, B., 1980, Smooth endoplasmic reticulum and axonal transport J. Neu-rochem. 35: 16–25.

    CAS  Google Scholar 

  • Reis, D. J., and Ross, R. A., 1973, Dynamic changes in brain dopamine-ß-hydroxylase activity during anterograde and retrograde reactions to injury of central noradrenergic neurons, Brain Res. 57: 307–326.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R. A., Joh, T. H., and Reis, D. J., 1975, Reversible changes in the accumulation and activities of tyrosine hydroxylase and dopamine-ß-hydroxylase in neurons of locus coeruleus during the retrograde reaction, Brain Res. 92: 57–72.

    Article  PubMed  CAS  Google Scholar 

  • Sahenk, Z., and Mendell, J. R., 1981, Acrylamide and 2, 5-hexanedione neuropathies: Abnormal bidirectional transport rate in distal axons, Brain Res. 219: 397–405.

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer, W. W., and Hasler, M. B., 1979, Characterization of the calcium-induced disruption of neurofilaments in rat peripheral nerve, Brain Res. 168: 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. E., and McDougal, D. B., Jr., 1978, Axonal transport of selected particle-specific enzymes in rat sciatic nerve in vivo and its response to injury, J. Neurochem. 30: 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R. E., Yu, M. J. C., and McDougal, D. B., 1980, Turnaround of axoplasmic transport of selected particle-specific enzymes at an injury in control and diisopropylphosphorofluor-idate-treated rats, J. Neurochem. 35: 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M. E., Heumann, R., and Thoenen, H., 1981, Communication between target organs and nerve cells: Retrograde axonal transport and site of action of nerve growth factor, Cold Spring Harbor Symp. Quant. Biol. 46: 125–134.

    Article  Google Scholar 

  • Schwartz, M., Mizrachi, Y., and Eshhar, N., 1982, Factors for goldfish brain induce neuritic outgrowth from explanted regenerating retinas, Dev. Brain Res. 3: 29–35.

    Article  Google Scholar 

  • Scott, T. M., and Foote, J., 1982, Factors involved in the control of RNA synthesis during regeneration of the optic nerve in the frog. Neurosci. Lett. 29: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Shecket, G., and Lasek, R. J., 1982, Mg2+-or Ca2+-activated ATPase in squid giant fiber axo-plasm, J. Neurochem. 38: 827–832.

    Article  PubMed  CAS  Google Scholar 

  • Singer, P. A., Mehler, S., and Fernandez, H. L., 1982, Blockade of retrograde axonal transport delays the onset of metabolic and morphologic changes induced by axotomy, J. Neurosci. 2: 1299–1306.

    PubMed  CAS  Google Scholar 

  • Sinicropi, D. V., and Mcllwain, D. L., 1983, Changes in amount of cytoskeletal proteins within the perikarya and axons of regenerating frog motoneurons, J. Cell Biol. 96: 240–248.

    Article  PubMed  CAS  Google Scholar 

  • Sinicropi, D. V., Michels, K., and Mcllwain, D. L., 1982, Acetylcholinesterase distribution in axotomized frog motoneurons, J. Neurochem. 38: 1099–1105.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. G., and Appel, S. H., 1983, Extracts of skeletal muscle increase neurite outgrowth and cholinergic activity of fetal rat spinal motor neurons, Science 219: 1079–1081.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. S., 1980, The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons, J. Neurocytol. 9: 39–65.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. S., 1982, Axonal transport of optically detectable particulate organelles, in: Axoplasmic Transport (D. G. Weiss, ed.), pp. 181–192, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Souyri, F., Chretien, M., and Droz, B., 1981, Acrylamide-induced neuropathy and impairment of axonal transport of proteins. I. Multifocal retention of fat-transported proteins at the periphery of axons as revealed by light microscope autoradiography, Brain Res. 205: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, M. E., 1982, High voltage electron microscopy studies of axoplasmic transport in neurons—a possible regulatory role for divalent cations, J. Cell Biol. 92: 765–776.

    Article  PubMed  CAS  Google Scholar 

  • Strand, F. G., and Kung, T. T., 1980, ACTH accelerates recovery of neuromuscular function following crush of peripheral nerve, Peptides 1: 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Streit, P., 1980, Selective retrograde labeling indicating the transmitter of neuronal pathways, J. Comp. Neurol. 191: 429–463.

    Article  PubMed  CAS  Google Scholar 

  • Sunderland, S, 1978, Nerves and Nerve Injuries, 2nd ed., Churchill Livingstone, London.

    Google Scholar 

  • Sumner, B. E. H., 1976, Quantitative ultrastructural observations on the inhibited recovery of the hypoglossal nucleus from axotomy response when regeneration of the hypoglossal nerve is prevented, Exp. Brain Res. 26: 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, B. E. H., 1977, Responses in hypoglossal nucleus to delayed regeneration of transected hypoglossal nerve, a quantitative ultrastructural study, Exp. Brain Res., 29: 219–231.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, B. E. H., 1979, Ultrastructural data, with special reference to bouton/glial relationships, from the hypoglossal nucleus after a second axotomy of the hypoglossal nerve, Exp. Brain Res. 36: 107–118.

    PubMed  CAS  Google Scholar 

  • Tedeschi, B. and Wilson, D. L., 1983, Modification of a rapidly transported protein in regenerating nerve, J. Neurosci. 3: 1728–1734.

    PubMed  CAS  Google Scholar 

  • Tessler, A., Autiliogambetti, L., Gambetti, P., 1980, Axonal growth during regeneration—a quantitative autoradiographic study, J. Cell Biol. 87: 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., and Ishikawa, H., 1980, The movement of membraneous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles, J. Cell Biol. 84: 513–530.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J. E., Schwab, M. E., and Thoenen, H., 1982, Nerve growth factor stimulates neurite outgrowth from goldfish retinal expiants: The influence of a prior lesion, Dev. Brain Res. 4: 59–66.

    Article  CAS  Google Scholar 

  • Verghese, J. P., Bradley, W. G., Mitsumoto, H., and Chad, O., 1982, A blind controlled trial of adrenocorticotropin and cerebral gangliosides in nerve regeneration in the rat, Exp. Neurol. 77: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Watson, W. E., 1970, Some metabolic responses of axotomized neurons to contact between their axons and denervated muscle, J. Physiol. (Lond.) 210: 321–344.

    CAS  Google Scholar 

  • Watson, W. E., 1973, Some responses of neurones of dorsal root ganglia to axotomy, J. Physiol. (Lond.) 231: 41–42P.

    Google Scholar 

  • Wujek, J. R. and Lasek, R. J., 1983, Correlation of axonal regeneration and slow component B in two branches of a single axon, J. Neurosci. 3: 243–251.

    PubMed  CAS  Google Scholar 

  • Zarbin, M. A., Wamsley, J. K. and Kuhar, M. J., 1982, Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: High and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity, J. Neurosci. 23: 934–941.

    Google Scholar 

  • Zarbin, M. A., Palacios, J. M., Wamsley, J. K. and Kuhar, M. J., 1983, Axonal transport of beta-adrenergic receptors: Antero-and retrogradely transported receptors differ in agonist affinity and nucleotide sensitivity, Molec. Pharmacol. 24: 341–348.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Bisby, M.A. (1984). Retrograde Axonal Transport and Nerve Regeneration. In: Elam, J.S., Cancalon, P. (eds) Axonal Transport in Neuronal Growth and Regeneration. Advances in Neurochemistry, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1197-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1197-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1199-7

  • Online ISBN: 978-1-4684-1197-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics