Skip to main content

Effect of a Conditioning Lesion on Axonal Transport During Regeneration

The Role of Slow Transport

  • Chapter
Axonal Transport in Neuronal Growth and Regeneration

Part of the book series: Advances in Neurochemistry ((ANCH,volume 22))

Abstract

The term “conditioning lesion effect” refers to the earlier formation and/or accelerated outgrowth of axonal sprouts in response to a second growth stimulus as compared to a single growth stimulus. Although the first (conditioning) stimulus can be a direct axotomy or partial denervation of an end organ (to produce collateral sprouting), it is important that the second (testing) stimulus be a direct axotomy. It is preferrable to locate the testing axotomy far enough proximal to the conditioning axotomy that the intervening segment of nerve is sufficiently long to permit measuring the outgrowth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R., and Varon, S., 1981, Neuritic guidance by nonneuronal cells of ganglionic origin, Dev. Biol. 86: 69–80.

    PubMed  CAS  Google Scholar 

  • Agranoff, B. W., Field, P., and Gaze, R. M, 1976, Neurite outgrowth from explanted Xenopus retina: An effect of prior optic nerve section, Brain Res. 113: 225–234.

    PubMed  CAS  Google Scholar 

  • Aguayo, A. J., Dickson, R., Trecarten, J., Attiwell, M., Bray, G. M., and Richardson, P., 1978, Ensheathment and myelination of regenerating PNS fibres by transplanted optic nerve glia, Neurosci. Lett. 9: 97–104.

    PubMed  CAS  Google Scholar 

  • Arvidsson, J., and Aldskogius, H., 1982, Effect of repeated hypoglossal nerve lesions on the number of neurons in the hypoglossal nucleus of adult rats, Exp. Neurol. 75: 520–524.

    PubMed  CAS  Google Scholar 

  • Banker, G. A., 1980, Trophic interactions between astroglial cells and hippocampal neurons in culture, Science 209: 809–810.

    PubMed  CAS  Google Scholar 

  • Benowitz, L. I., Shashoua, V. E., and Yoon, M. G., 1981, Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve, J. Neurosci. 1: 300–307.

    PubMed  CAS  Google Scholar 

  • Bisby, M. A., 1978, Fast axonal transport of labeled protein in sensory axons during regeneration, Exp. Neurol. 61: 281–300.

    PubMed  CAS  Google Scholar 

  • Bisby, M. A., 1980, Retrograde axonal transport, Adv. Cell Neurobiol. 1: 69–117.

    CAS  Google Scholar 

  • Bisby, M. A., and Pollock, B., 1983, Increased regeneration rate in peripheral nerve axons following double lesions: Enhancement of the conditioning lesion phenomenon, J. Neurobiol. 14: 467–472.

    PubMed  CAS  Google Scholar 

  • Black, M. M., and Lasek, R. J., 1977, The presence of transfer RNA in the axoplasm of the squid giant axon, J. Neurobiol. 8: 229–237.

    PubMed  CAS  Google Scholar 

  • Black, P. J., 1980, Shedding from the cell surface of normal and cancer cells, Adv. Cancer Res. 32: 75–199.

    PubMed  CAS  Google Scholar 

  • Bradley, W. G., and Asbury, A. K., 1970, Duration of synthesis phase in neurilemma cells in mouse sciatic nerve during regeneration, Exp. Neurol. 26: 275–282.

    PubMed  CAS  Google Scholar 

  • Brady, S. T., and Lasek, R. J., 1982, Axonal transport: A cell-biological method for studying proteins that associate with the cytoskeleton, Methods Cell Biol. 25: 365–398.

    PubMed  CAS  Google Scholar 

  • Brock, T. O., and Turner, J. E., 1978, The effect of repeated nerve injury on the retinal ganglion cell and axonal regeneration response in the optic nerve of the newt (Triturus viridescens), Soc. Neurosci. Abstr.4: 529.

    Google Scholar 

  • Brock, T. O., and Turner, I. E., 1982, Retinal ganglion cell body response to repeated axotomy in the regenerating visual system of newt (Notophthalmus viridescens), Exp. Neurol. 78: 316–330.

    PubMed  Google Scholar 

  • Brown, M. C., and Hopkins, W. G., 1981, Role of degenerating axon pathways in regeneration of mouse soleus motor axons, J. Physiol. (Lond. j 318: 365–373.

    CAS  Google Scholar 

  • Bunge, M. B., 1977, Initial endocytosis of peroxidase or ferritin by growth cones of cultured nerve cells, J. Neurocytol. 6: 407–439.

    PubMed  CAS  Google Scholar 

  • Burnham, P. A., Raiborn, C., and Varon, S., 1972, Replacement of nerve growth factor by ganglionic non-neuronal cells for the survival in vitro of dissociated ganglionic neurons, Proc. Natl. Acad. Sci. U.S.A. 69: 3556–3560.

    PubMed  CAS  Google Scholar 

  • Burrell, H. R., Dokas, L. A., and Agranoff, B. W., 1978, RNA metabolism in the goldfish retina during optic nerve regeneration, J. Neurochem. 31: 289–298.

    PubMed  CAS  Google Scholar 

  • Carlsen, R. C., 1982, Comparison of adenylate-cyclase activity in segments of rat sciatic nerve with a condition-test or test lesion, Exp. Neurol. 77: 254–265.

    PubMed  CAS  Google Scholar 

  • Carlsen, R. C., 1983, Delayed induction of the cell body response and enhancement of regeneration following a condition/test lesion of frog peripheral nerve at 15°C., Brain Res. 279: 9–18.

    PubMed  CAS  Google Scholar 

  • Chamley, J. H., Goller, I., and Burnstock, G., 1973, Selective growth of sympathetic nerve fibers to expiants of normally densely innervated autonomic effector organs in tissue culture, Dev. Biol. 31: 363–379.

    Google Scholar 

  • Cheah, T. B., and Geffen, L. B., 1973, Effects of axonal injury on norepinephrine, tyrosine hydroxylase and monoamine oxidase levels in sympathetic ganglia, J. Neurobiol. 4: 443–452.

    PubMed  CAS  Google Scholar 

  • Collins, F., and Lee, M. R., 1982, A reversible developmental change in the ability of ciliary ganglion neurons to extend neuntes in culture, J. Neurosci. 2: 424–430.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., Nieto-Sampedro, M., and Harris, E. W., 1981, Synapse replacement in the nervous system of adult vertebrates, Physiol. Rev. 61: 684–784.

    PubMed  CAS  Google Scholar 

  • Coughlin, M. D., 1975, Target organ stimulation of parasympathetic nerve growth in the developing mouse submandibular gland, Dev. Biol. 61: 131–139.

    Google Scholar 

  • Currie, J. R., Grafstein, B., Whitnall, M. H., and Alpert, R., 1978, Axonal transport of lipid in goldfish optic axons, Neurochem. Res. 3: 479–492.

    PubMed  CAS  Google Scholar 

  • David, S., and Aguayo, A. J., 1981, Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats, Science 214: 931–933.

    PubMed  CAS  Google Scholar 

  • Ducker, T. B., Kempe, L. G., and Hayes, G. J., 1969, The metabolic background for peripheral nerve surgery, J. Neurosurg. 30: 270–280.

    PubMed  CAS  Google Scholar 

  • Ebendal, T., and Jacobson, C. O., 1977, Tissue expiants affecting extension and orientation of axons in cultures of chick ganglia, Exp. Cell Res. 105: 379–387.

    PubMed  CAS  Google Scholar 

  • Edstrom, A., Edstrom, J.-E., and Hokfelt, T., 1973, Sedimentation analysis of ribonucleic acid extracted from isolated Mauthner nerve fibre components, J. Neurochem. 16: 53–66.

    Google Scholar 

  • Edwards, D. L., Alpert, R. M., and Grafstein, B., 1981, Recovery of vision in regeneration of goldfish optic axons: Enhancement of axonal outgrowth by a conditioning lesion, Exp. Neurol 72: 672–686.

    PubMed  CAS  Google Scholar 

  • Elam, J. S., and Agranoff, B. W., 1971, Rapid transport of protein in the optic system of the goldfish, J. Neurochem. 18: 375–387.

    PubMed  CAS  Google Scholar 

  • Forman, D. S., 1982, Axonal transport and nerve regeneration: A review, in: Spinal Cord Reconstruction (C. C. Kao, R. P. Bunge, and P. Reier, eds.), pp. 75–86, Raven Press, New York.

    Google Scholar 

  • Forman, D. S., and Berenberg, R. A., 1978, Regeneration of motor axons in the rat sciatic nerve studied by labeling with axonally transported radioactive protein, Brain Res. 156: 213–225.

    PubMed  CAS  Google Scholar 

  • Forman, D. S., Grafstein, B., and McEwen, B. S., 1972, Rapid axonal transport of (3H)fucosyl glycoproteins in the goldfish optic system, Brain Res. 48: 327–342.

    PubMed  CAS  Google Scholar 

  • Forman, D. S., Wood, D. K., and DeSilva, S., 1979, Rate of regeneration of sensory axons in transected rat sciatic nerve repaired with epineurial sutures, J. Neurol. Sci. 44: 55–59.

    PubMed  CAS  Google Scholar 

  • Forman, D. S. McQuarrie, I. G., Labore, F. W., Wood, D. K., Stone, L. S., Braddock, C. H., and Fuchs, D. A., 1980, Time course of the conditioning lesion effect on axonal regeneration, Brain Res. 182: 180–185.

    PubMed  CAS  Google Scholar 

  • Forman, D. S., McQuarrie, I. G., Grafstein, B., and Edwards, D. L., 1981, Effect of a conditioning lesion on axonal regeneration and recovery of function, in: Lesion-Induced Neuronal Plasticity in Sensorimotor Systems (H. Flohr and W. Precht, eds.), pp. 103–113, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Frizell, M., and Sjostrand, J., 1974, The axonal transport of slowly migrating (3H)leucine-labeled proteins and the regeneration rate in regenerating hypoglossal and vagus nerves of the rabbit, Brain Res. 81: 267–283.

    PubMed  CAS  Google Scholar 

  • Giulian, D., DesRuisseaux, H., and Cowburn, D., 1980, Biosynthesis and intra-axonal transport of proteins during neuronal regeneration, J. Biol. Chem. 255: 6494–6501.

    PubMed  CAS  Google Scholar 

  • Grafstein, B., 1971, Role of slow axonal transport in nerve regeneration, Acta Neuropathol. (Berl.) [Suppl.] 5: 144–152.

    Google Scholar 

  • Grafstein, B., and Forman, D. S., 1980, Intracellular transport in neurons, Physiol. Rev. 60: 1167–1283.

    PubMed  CAS  Google Scholar 

  • Grafstein, B., and McQuarrie, I. G., 1978, Role of the nerve cell body in axonal regeneration, in: Neuronal Plasticity (C. W. Cotman, ed.), pp. 155–195, Raven Press, New York.

    Google Scholar 

  • Grafstein, B., and Murray, M., 1969, Transport of protein in goldfish optic nerve during regeneration, Exp. Neurol. 25: 494–508.

    PubMed  CAS  Google Scholar 

  • Grafstein, B., McEwen, B. S., and Shelanski, M., 1970, Axonal transport of neurotubule protein, Nature 227: 289–290.

    PubMed  CAS  Google Scholar 

  • Greene, L. A., and Shooter, E. M., 1980, The nerve growth factor: Biochemistry, synthesis, and mechanism of action, Annu. Rev. Neurosci. 3: 353–402.

    PubMed  CAS  Google Scholar 

  • Griffin, J. W., Drachman, D. B., and Price, D. L., 1976, Fast axonal transport in motor nerve regeneration, J. Neurobiol. 7: 355–370.

    PubMed  CAS  Google Scholar 

  • Gundersen, R. W., and Barrett, J. N., 1980, Characterization of the turning response of dorsal root neuntes toward nerve growth factor, J. Cell Biol. 87: 546–554.

    PubMed  CAS  Google Scholar 

  • Gutmann, E., 1942, Factors affecting recovery of motor function after nerve lesions, J. Neurol. Neurosurg. 5: 81–95.

    CAS  Google Scholar 

  • Gutmann, E., Guttmann, L., Medawar, P. B., and Young, J. Z., 1942, The rate of regeneration of nerve, J. Exp. Biol. 19: 14–44.

    Google Scholar 

  • Heacock, A. M., and Agranoff, B. W., 1982, Protein synthesis and transport in the regenerating goldfish visual system, Neurochem. Res. 7: 771–788.

    PubMed  CAS  Google Scholar 

  • Hoffman, P. N., and Lasek, R. J., 1980, Axonal transport of the cytoskeleton in regenerating motor neurons: Constancy and change, Brain Res. 202: 317–333.

    PubMed  CAS  Google Scholar 

  • Howe, H. A., and Bodian, D., 1941, Refractoriness of nerve cells to poliomyelitis virus after interruption of their axons, Johns Hopkins Hosp. Bull. 69: 92–103.

    Google Scholar 

  • Iacovitti, L., Reis, D. J., and Joh, T. H., 1981, Reactive proliferation of brain stem noradrenergic nerves following neonatal cerebellectomy in rats: Role of target maturation on neuronal response to injury during development, Dev. Brain Res. 1: 3–24.

    CAS  Google Scholar 

  • Kalil, K., and Reh, T., 1982, A light and electron microscopic study of regrowing pyramidal tract fibers, J. Comp. Neurol. 211: 265–275.

    PubMed  CAS  Google Scholar 

  • Konorski, J., and Lubinska, L., 1946, Mechanical excitability of regenerating nerve fibers, Lancet 1: 609–610.

    PubMed  CAS  Google Scholar 

  • Kristensson, K., and Olsson, Y., 1975, Retrograde transport of horseradish peroxidase in transected axons. II. Relations betwen rate of transfer from the site of injury to the perikaryon and onset of chromatolysis, J. Neurocytol. 4: 653–661.

    PubMed  CAS  Google Scholar 

  • Landreth, G. E., and Agranoff, B. W., 1976, Expiant culture of adult goldfish retina: Effect of prior optic nerve crush, Brain Res. 118: 299–303.

    PubMed  CAS  Google Scholar 

  • Lanners, H. N., and Grafstein, B., 1980a, Effect of a conditioning lesion on regeneration of goldfish optic axons: Ultrastructural evidence of enhanced outgrowth and pinocytosis, Brain Res. 196: 547–553.

    PubMed  CAS  Google Scholar 

  • Lanners, H. N., and Grafstein, B., 1980, Early stages of axonal regeneration in the goldfish optic tract; An electron microscopic study, J. Neurocytol. 9: 733–751.

    PubMed  CAS  Google Scholar 

  • LeFebvre, P. A., Nordstrom, S. A., Moulder, J. E., and Rosenbaum, J. L., 1978, Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis, J. Cell Biol. 78: 8–27.

    Google Scholar 

  • Letourneau, P. C., 1982, Nerve fiber growth and its regulation by extrinsic factors, in: Neuronal Development (N. C. Spitzer, ed.) pp. 213–254, Plenum Press, New York.

    Google Scholar 

  • Lubinska, L., 1952, The influence of the state of the peripheral stump on the early stages of nerve regeneration, Acta Biol. Exp. (Warsaw) 16: 55–63.

    Google Scholar 

  • Luiten, P. G. M., 1981, Afferent and efferent connections of the optic tectum in the carp, Brain Res. 220: 51–66.

    PubMed  CAS  Google Scholar 

  • Lundborg, G., Longo, F. M., and Varon, S., 1982, Nerve regeneration model and trophic factors in vivo, Brain Res. 232: 157–161.

    PubMed  CAS  Google Scholar 

  • Manthorpe, M., Luyten, W., Longo, F. M., and Varon, S., 1983, Endogenous and exogenous factors support neuronal survival and choline acetyltransferase activity in embryonic spinal cord cultures, Brain Res. 267: 57–66.

    PubMed  CAS  Google Scholar 

  • McEwen, B. S., and Grafstein, B., 1968, Fast and slow components in axonal transport of protein, J. Cell Biol. 38: 494–508.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., 1978, The effect of a conditioning lesion on motor axons, Brain Res. 152: 597–602.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., 1979, Accelerated axonal sprouting after nerve transection, Brain Res. 167: 185–188.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., 1983a, Effect of a conditioning axotomy on axonal sprout formation at nodes of Ranvier following a testing axotomy, Anat. Rec. 205: 119–120.

    Google Scholar 

  • McQuarrie, I. G., 1983b, Role of the axonal cytoskeleton in the regenerating nervous system, in: Nerve, Organ and Tissue Regeneration: Research Perspectives (F. J. Seil, ed.) pp. 51–88, Academic Press, New York.

    Google Scholar 

  • McQuarrie, I. G., 1983c, Transport of cytoskeletal proteins in regenerating axons accelerated by a conditioning axotomy, J. Cell Biol. 99: 241a.

    Google Scholar 

  • McQuarrie, I. G., and Grafstein, B., 1973, Axon outgrowth enhanced by a previous nerve injury, Arch. Neurol. 29: 53–55.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., and Grafstein, B., 1981, Effect of a conditioning lesion on optic nerve regeneration in goldfish, Brain Res. 216: 253–264.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., and Grafstein, B., 1982a, Protein synthesis and fast axonal transport in regenerating goldfish retinal ganglion cells, Brain Res. 235: 213–223.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., and Grafstein, B., 1982/?, Protein synthesis and axonal transport in goldfish retinal ganglion cells during regeneration accelerated by a conditioning lesion, Brain Res. 251: 25–31.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., and Grafstein, B., 1983, Effect of acetoxycycloheximide and dibutyryl adenosine cyclic 3′:5′-monophosphate on axonal regeneration in the goldfish optic nerve, Brain Res. 279: 377–381.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., and Lasek, R. J., 1981, Axonal transport of labeled neurofilament proteins in goldfish optic axons, J. Cell Biol. 91: 234a.

    Google Scholar 

  • McQuarrie, I. G., Phillips, L. L., and Autilio-Gambetti, L., 1984, Axonal transport of neurofilament proteins in goldfish optic nerves, Trans. Am. Soc. Neurochem. 15:136.

    Google Scholar 

  • McQuarrie, I. G., Grafstein, B., and Gershon, M. D., 1977, Axonal regeneration in the rat sciatic nerve: Effect of a conditioning lesion and of dbcAMP, Brain Res. 132: 443–453.

    PubMed  CAS  Google Scholar 

  • McQuarrie, I. G., Grafstein, B., Dreyfus, C. F., and Gershon, M. D., 1978, Regeneration of adrenergic axons in rat sciatic nerve: Effect of a conditioning lesion, Brain Res. 141: 21–34.

    PubMed  CAS  Google Scholar 

  • Merlino, G. T., Chamberlain, J. P., and Kleinsmith, L. J., 1978, Effects of deciliation on tubulin messenger RNA activity in sea urchin embryos, J. Biol. Chem. 253: 7078–7085.

    PubMed  CAS  Google Scholar 

  • Murray, M., 1973, 3H-uridine incorporation by regenerating retinal ganglion cells of goldfish, Exp. Neurol. 39: 489–497.

    PubMed  CAS  Google Scholar 

  • Murray, M., and Grafstein, B., 1969, Changes in the morphology and amino acid incorporation of regenerating goldfish optic neurons, Exp. Neurol. 23: 544–560.

    PubMed  CAS  Google Scholar 

  • Nieto-Sampedro, M., Lewis, E. R., Cotman, C. W., Manthrope, M., Skaper, S. D., Barbin, G., Longo, F. M., and Caron, S., 1982, Brain injury causes a time-dependent increase in neu-ronotrophic activity at the lesion site, Science 217: 860–861.

    PubMed  CAS  Google Scholar 

  • Northcutt, R. G., 1981, Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci. 4: 301–350.

    PubMed  CAS  Google Scholar 

  • Oblinger, M. M., and Lasek, R. J., 1983a, Effect of a conditioning lesion on the rate of regeneration of two branches of the dorsal root ganglion (DRG) cell, Anat. Rec. 205: 145–146.

    Google Scholar 

  • Oblinger, M. M., and Lasek, R. J., 1983b, Central and peripheral axotomy of dorsal root ganglion (DRG) cells differentially affects slow axonal transport, Soc. Neurosci. Abstr.9:148.

    Google Scholar 

  • Politis, M. J., Ederle, K., and Spencer, P. S., 1982, Tropism in nerve regeneration in vivo. Attraction of regenerating axons by diffusible factors derived from cells in distal nerve stumps of transected peripheral nerves, Brain Res. 253: 1–12.

    PubMed  CAS  Google Scholar 

  • Ramony Cajal, S., 1928, Degeneration and Regeneration of the Nervous System, Vol. 1, pp. 329–375, Hafner, London.

    Google Scholar 

  • Randall, J., Cavalier-Smith, T., McVittie, A., Warr, M., and Hopkins, J., 1967, Developmental and control processes in the basal bodies and flagella of Chlamydomonas reinhardii, Dev. Biol. [Suppl.] 1: 43–83.

    Google Scholar 

  • Reh, T., and Kalil, K., 1982, Functional role of regrowing pyramidal tract fibers, J. Comp. Neurol. 211: 276–283.

    PubMed  CAS  Google Scholar 

  • Richardson, P. M., and Ebendal, T., 1982, Nerve growth activities in rat peripheral nerve, Brain Res. 246: 57–64.

    PubMed  CAS  Google Scholar 

  • Richardson, P. M., McGuinness, U. M., and Aguayo, A. J., 1980, Axons from CBS neurones regenerate into PNS grafts, Nature 284: 264–265.

    PubMed  CAS  Google Scholar 

  • Richardson, P. M., McGuinness, U. M., and Aguayo, A. J., 1982, Peripheral nerve autografts to the rat spinal cord: Studies with axonal tracer methods, Brain Res. 237: 147–162.

    PubMed  CAS  Google Scholar 

  • Romanes, G. J., 1951, The motor cell columns of the lumbosacral spinal cord of the cat, J. Comp. Neurol. 94: 313–364.

    PubMed  CAS  Google Scholar 

  • Rosenbaum, J. L., Moulder, J. E., and Ringo, D. L., 1969, Flagellar elongation and shortening in Chlamydomonas. I. The use of cycloheximide and colchicine to study the synthesis and assemby of flagellar proteins, J. Cell Biol. 41: 600–619.

    PubMed  CAS  Google Scholar 

  • Schmidt, J. T., 1979, The laminar organization of optic nerve fibres in the tectum of goldfish, Proc. Soc. Lond. [Biol.] 205: 287–306.

    CAS  Google Scholar 

  • Schneider, G. E., 1981, Early lesions and abnormal neuronal connections, Trends Neurosci. 4: 187–192.

    Google Scholar 

  • Schwartz, M, Mizrachi, Y., and Eshhar, N., 1982, Factor(s) from goldfish brain induce neuritic outgrowth from enplanted regenerating retinas, Dev. Brain Res. 3: 29–35.

    Google Scholar 

  • Sebille, A., and Bondoux-Jahan, M., 1980, Effects of electric stimulation and previous nerve injury on motor function recovery in rats, Brain Res. 192: 562–565.

    Google Scholar 

  • Silflow, C. D., LeFebvre, P. A., McKeithan, T. W., Schloss, J. A., Keller, L. R., and Rosenbaum, J. L., 1982, Expression of flagellar protein genes during flagellar regeneration in Chlamydomonas, Cold Spring Harbor Symp. Quant. Biol. 46(1): 157–169.

    Google Scholar 

  • Singer, P.A., Mehler, S., and Fernandez, H. L., 1982, Blockade of retrograde axonal transport delays the onset of metabolic and morphologic changes induced by axotomy, J. Neurosci. 2: 1299–1306.

    PubMed  CAS  Google Scholar 

  • Sparrow, J. R., and Grafstein, B., 1983, Prior collateral sprouting enhances axonal regeneration, Brain Res. 269: 133–136.

    PubMed  CAS  Google Scholar 

  • Springer, A. D., and Gaffney, J. S., 1981, Retinal projections in the goldfish: A study using cobaltous-lysine, J. Comp. Neurol. 203: 401–424.

    PubMed  CAS  Google Scholar 

  • Tessler, A., Autilio-Gambetti, L., and Gambetti, P., 1980, Axonal growth during regeneration: A quantitative autoradiographic study, J. Cell biol. 87: 197–203.

    PubMed  CAS  Google Scholar 

  • Thomas, P. K., 1970, The cellular response to nerve injury. 3. The effect of repeated crush, J. Anat. (Lond.) 106: 463–470.

    CAS  Google Scholar 

  • Torvik, A., and Skjorten, F., 1971, Electron microscope observations on nerve cell regeneration and degeneration after axon lesions. I. Changes in the nerve cell cytoplasm, Acta Neuro-pathol. (Berl.) 17: 248–264.

    CAS  Google Scholar 

  • Vanegas, H., and Ebbesson, S. O. E., 1976, Telencephalic projections in two teleost species, J. Comp. Neurol. 165: 181–196.

    PubMed  CAS  Google Scholar 

  • Varon, S., Skaper, S. D., and Manthorpe, M., 1981, Trophic activities for dorsal root and sympathetic ganglionic neurons in media conditioned by Schwann and other peripheral cells, Dev. Brain Res. 1: 73–87.

    Google Scholar 

  • Watson, W. E., 1970, Some metabolic responses of axotomized neurones to contact between their axons and denervated muscle, J. Physiol. (Lond.) 210: 321–344.

    CAS  Google Scholar 

  • Watson, W. E., 1973, Some responses of dorsal root ganglia to axotomy, J. Physiol. (Lond.) 231: 41–42.

    Google Scholar 

  • Weeks, D. P., Collis, P. S., and Gealt, M. A., 1977, Control of induction of tubulin synthesis in Chlamydomonas reinhardi, Nature 268: 667–668.

    PubMed  CAS  Google Scholar 

  • Wells, M. R., and Bernstein, J. J., 1978, Amino acid incorporation into rat spinal cord and brain after simultaneous and interval sciatic nerve lesions, Brain Res. 139: 249–262.

    PubMed  CAS  Google Scholar 

  • Weinberg, E. L., and Spencer, P. S., 1979, Studies on the contol of myelinogenesis. 3. Signalling of oligodendrocyte myelination by regenerating peripheral axons, Brain Res. 162: 273–277.

    PubMed  CAS  Google Scholar 

  • Weiss, P., and Taylor, A. C., 1944, Further evidence against ‘neurotropism’ in nerve regeneration, J. Exp. Zool. 99: 233–257.

    Google Scholar 

  • Whitnall, M. H. and Grafstein, B., 1982, Perikaryal routing of newly synthesized proteins in regenerating neurons: Quantitative electron microscopic autoradiography, Brain Res. 239: 41–56.

    PubMed  CAS  Google Scholar 

  • Whitnall, M. H., Currie, J. R., and Grafstein, B., 1982, Bidirectional transport of glycoproteins in goldfish optic nerve, Exp. Neurol. 75: 191–207.

    PubMed  CAS  Google Scholar 

  • Williams, L. R., and Agranoff, B. W., 1983, Retrograde transport of goldfish optic nerve proteins labeled by iV-succinimidyl (3H)propionate, Brain Res. 259: 207–216.

    PubMed  CAS  Google Scholar 

  • Young, J. Z., and Medawar, P. B., 1940, Fibrin suture of peripheral nerves, Measurement of the rate of regeneration, Lancet 2: 126–128.

    Google Scholar 

  • Zelena, J., 1972, Ribosomes in myelinated axons of dorsal root ganglia, Z. Zeilforsch. 124: 217–229.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

McQuarrie, I.G. (1984). Effect of a Conditioning Lesion on Axonal Transport During Regeneration. In: Elam, J.S., Cancalon, P. (eds) Axonal Transport in Neuronal Growth and Regeneration. Advances in Neurochemistry, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1197-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1197-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1199-7

  • Online ISBN: 978-1-4684-1197-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics