Skip to main content

Axoplasmic Transport in Relation to Nerve Fiber Regeneration

  • Chapter
Book cover Axonal Transport in Neuronal Growth and Regeneration

Part of the book series: Advances in Neurochemistry ((ANCH,volume 22))

Abstract

This chapter represents a general review of the relationship of transport to regeneration. Views of how nerves regenerate have for some time been connected with the concept that transport supplies the materials required by the growing fibers. At first, when only slow transport was known, the similarity of the rates of transport and of regeneration at approximately several millimeters per day appeared to indicate their direct association. The more recent recognition of a faster rate of axoplasmic transport raised the question of how rapid transport might be related to regeneration. Currently, two general views are held: (1) that there is more than one transport system present in nerve fibers, one for slow transport, which is mainly responsible for the outgrowth of the major structural elements of the fiber, and another system mainly responsible for the rapid transport of membranous constituents of the axon and nerve terminal processes, and (2) that both rapid and slow transport are accomplished by one transport mechanism, a concept termed the “unitary hypothesis.” In this chapter, I present an analysis of how the components needed for regeneration can be supplied on the basis of the unitary hypothesis. Another aspect of regeneration that is related to the transport mechanism is how a supply of materials can be provided to one subset of neuntes growing or regenerating from a single neuron rather than to all the neurite branches supplied by the cell body. As is discussed below, this is entailed in the phenomenon of “routing,” which can be accounted for by the same transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo, A., Nair, C. P., and Midgley, R., 1971, Experimental progressive compression neuropathy in the rabbit: Histologic and electrophysiologic studies, Arch. Neurol. 24: 358–364.

    Article  PubMed  CAS  Google Scholar 

  • Allen, C. C., and Borisy, G. G., 1974, Structural polarity and directional growth of Chlamydo-monas flagella, J. Mol. Biol. 90: 381–402.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, L. E., and McClure, W. O., 1973, Differential transport of protein in axons: Comparison between the sciatic nerve and dorsal columns of cats, Proc. Natl. Acad. Sci. U.S.A. 70: 1521–1525.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Prog. Biophys. Mol. Biol. 24: 177–223.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. F., 1976, The regulation of intracellular calcium, Symp. Soc, Exp. Biol. 30: 67–88.

    CAS  Google Scholar 

  • Biondi, R. J., Levy, M. J., and Weiss, P. A., 1972, An engineering study of the peristaltic drive of axonal flow, Proc. Natl. Acad. Sci. U.S.A. 69: 1732–1736.

    Article  PubMed  CAS  Google Scholar 

  • Bisby, M.A., 1980, Retrograde axonal transport, Adv. Cell. Neurobiol. 1: 69–117.

    CAS  Google Scholar 

  • Bray, D., and Bunge, M. B., 1981, Serial analysis of microtubules in cultured rat sensory axons, J. Neurocytol. 10: 589–605.

    Article  PubMed  CAS  Google Scholar 

  • Bray, J. J., Kon, C. M., and Breckenridge, B. M., 1971, Reversed polarity of rapid axonal transport in chicken motoneurons, Brain Res. 33: 560–564.

    Article  PubMed  CAS  Google Scholar 

  • Brimijoin, S., and Wiermaa, M. J., 1977, Rapid axonal transport of tyrosine hydroxylase in rabbit sciatic nerves, Brain Res. 121: 77–96.

    Article  PubMed  CAS  Google Scholar 

  • Bulger, V. T., and Bisby, M. A., 1978, Reversal of axonal transport in regenerating nerves, J. Neurochem. 31: 1411–1418.

    Article  PubMed  CAS  Google Scholar 

  • Bunge, M. G., 1973, Fine structure of nerver fibers and growth cones of isolated sympathetic neurons in culture, J. Cell Biol. 56: 713–735.

    Article  PubMed  CAS  Google Scholar 

  • Cancalon, P., 1979, Influence of temperature on the velocity and on the isotope profile of slowly transported labeled proteins, J. Neurochem. 32: 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Chalfie, M, and Thomson, J. N., 1979, Organization of neuronal microtubules in the nematode, Caenorhabditis elegans, J. Cell Biol. 82: 278–289.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. Y., Ochs, S., and Worth, R. M., 1980, The requirement for calcium ions and the effect of other ions on axoplasmic transport in mammalian nerve, J. Physiol. (Lond.) 301: 477–504.

    CAS  Google Scholar 

  • Cox, J. A., Malnoe, A., and Stein, E. Z., 1981, Regulation of brain cyclic nucleotide phosphodiesterase by calmodulin. A quantitative analysis, J. Biol. Chem. 256: 3218–3222.

    PubMed  CAS  Google Scholar 

  • Edström, A., and Hanson, M, 1973, Retrograde axonal transport of proteins in vitro in frog sciatic nerves, Brain Res. 61: 311–320.

    Article  PubMed  Google Scholar 

  • Ekström, P., Kanje, M., and Edström, A., 1982, Effects of phenothiazines and dibensasepines on axonal transport and microtubule assembly in vitro, Acta Physiol. Scand. 116: 121–125.

    Article  PubMed  Google Scholar 

  • Fink, D. J., and Gainer, H., 1980, Retrograde axonal transport of endogenous proteins in sciatic nerve demonstrated by covalent labeling in vivo, Science 208: 303–305.

    Article  PubMed  CAS  Google Scholar 

  • Friede, L., and Bischausen, R., 1980, The fine structure of stumps of transected nerve fibers in subserial sections, J. Neurol. Sci. 44: 181–203.

    Article  PubMed  CAS  Google Scholar 

  • Gainer, H., and Fink, D. J., 1982, Evidence for slow retrograde transport of serum albumin in rat sciatic nerve, Brain Res. 233: 404–408.

    Article  PubMed  CAS  Google Scholar 

  • Gasser, H. S., and Erlanger, J., 1929, The role of fiber size in the establishment of a nerve block by pressure or cocaine, Am. J. Physiol. 88: 581–591.

    Google Scholar 

  • Griffin, J. W., Price, D. L., and Drachman, D. B., 1976, Impaired regeneration in acrylamide neuropathy: Role of axonal transport, Neurology (Minneap.) 26:350.

    Google Scholar 

  • Griffin, J. W., Price, D. L., Drachman, D. B., and Morris, J., 1981, Incorporation of axonally transported glycoprotein into axolemma during nerve regeneration, J. Cell Biol. 88: 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Gross, G. W., and Beidler, L. M., 1975, A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve, J. Neurobiol. 6: 213–232.

    Article  PubMed  CAS  Google Scholar 

  • Gutman, E., Gutman, L., Medawar, P. B., and Young, J. Z., 1942, The rate of regeneration of nerve, J. Exp. Biol. 19: 14–44.

    Google Scholar 

  • Harrison, R. G., 1910, The outgrowth of the nerve fiber as a mode of protoplasmic movement, J. Exp. Zool. 9: 787–846.

    Article  Google Scholar 

  • Hoffman, P. N., and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66: 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal, Z., and Ochs, S., 1983, The role of calcium binding protein in axoplasmic transport, J. Neurochem 41(Suppl.):S69.

    Google Scholar 

  • Komiya, Y., and Kurokawa, M., 1978, Asymmetry of protein transport in two branches of bifurcating axons, Brain Res. 139: 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R. J., 1968, Axoplasmic transport of labeled proteins in rat ventral motoneurons, Exp. Neurol. 21: 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R. J., and Hoffman, P. M., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, in: Cell Motility, Book C. Microtubules and Related Proteins (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 1021–1049, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Lavoie, P.-A., Bolen, F., and Hammerschlag, R., 1979, Divalent cation specificity of the calcium requirement for fast transport of proteins in axons of desheathed nerves, J. Neurochem. 32: 1745–1751.

    Article  PubMed  CAS  Google Scholar 

  • McLean, W. G., and Sjostrand, J., 1983, Slow axonal transport of structural proteins and regeneration rate in rabbit vagus nerve, J. Neurochem. 41(Suppl.):S97.

    Google Scholar 

  • McLean, W. G., McKay, A. L., and Sjostrand, J., 1983, Electrophoretic analysis of axonally transported proteins in rabbit vagus nerve, J.Neurobiol. 14: 227–236.

    Article  PubMed  CAS  Google Scholar 

  • Mori, H., Komiya, Y., and Kurokawa, M., 1979, Slowly migrating axonal polypeptides: Inequalities in their rate and amount of transport between two branches of bifurcating axons, J. Cell Biol. 82: 174–184.

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Martinez, E. J., Nunez, R., and Sanderson, A., 1981, Axonal transport: A quantitative study of retained and transformed protein fractions in the cat, J. Neurobiol. 12: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Ochs, S., 1972, Rate of fast axoplasmic transport in mammalian nerve fibres, J. Physiol. (Lond.) 211: 621–645.

    Google Scholar 

  • Ochs, S., 1974, Energy metabolism and supply of ~P to the fast axoplasmic transport mechanism in nerve, Fed. Proc. 33: 1049–1058.

    CAS  Google Scholar 

  • Ochs, S., 1915a, A unitary concept of axoplasmic transport based on the transport filament hypothesis, in: Third International Congress on Muscle Diseases (W. G. Bradley, D. Gard-ner-Medwin, and J. N. Walton, eds.), pp. 128–133, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Ochs, S., 1975b, Retention and redistribution of proteins in mammalian nerve fibers by axoplasmic transport, J. Physiol. (Lond.) 253: 459–475.

    CAS  Google Scholar 

  • Ochs, S., 1982a, Axoplasmic Transport and Its Relation to Other Nerve Functions, Wiley-Interscience, New York.

    Google Scholar 

  • Ochs, S., 1982b, Block of axoplasmic transport by agents interfering with calcium flux: Cobalt, nickel, lanthanum, verapamil; and the maintenance of transport in calcium-free media by strontium, Soc. Neurosci. Abstr.8:826.

    Google Scholar 

  • Ochs, S., and Iqbal, Z., 1980, Calmodulin and calcium activation of tubulin associated Ca-ATPase, Soc. Neurosci. Abstr.6:501.

    Google Scholar 

  • Ochs, S., and Iqbal, Z., 1982, The role of calcium in axoplasmic transport in nerve, in: Calcium and Cell Function, Volume 3 (W. Y. Cheung, ed.), pp. 325–354, Academic Press, New York.

    Google Scholar 

  • Ochs, S., Sabri, M. I., and Ranish, N., 1970, Somal site of synthesis of fast transported materials in mammalian nerve fibers, J. Neurobiol. 1: 329–344.

    Article  CAS  Google Scholar 

  • Ochs, S., Worth, R. M., and Chan, S. Y., 1977, Calcium requirement for axoplasmic transport in mammalian nerve, Nature 270: 748–750.

    Article  PubMed  CAS  Google Scholar 

  • Ochs, S., Erdman, J., Jersild, R. A., Jr., and McAdoo, V., 1978, Routing of transported materials in the dorsal root and nerve fiber branches of the dorsal root ganglion, J. Neurobiol. 9: 465–481.

    Article  PubMed  CAS  Google Scholar 

  • Ochs, S., Jersild, R. A., Jr., Breen, T., and Peterson, R., 1983, Comparison of calcium and strontium sequestration in nerve axons in relation to axoplasmic transport, Soc. Neurosci. Abstr.9:149.

    Google Scholar 

  • Perroncito, A., 1905, La rigenerazione delle fibre nervöse, Boll. Soc. Med. Chir. Pavia 4: 434–444.

    Google Scholar 

  • Ramon Y Cajal, S., 1928, Studies on Degeneration and Regeneration of the Nervous System (R. M. May, trans.), Oxford University Press, Oxford. Reprinted 1968, Hafner, New York.

    Google Scholar 

  • Schmid, G., Wagner, L., and Weiss, D. G., 1983, Rapid axoplasmic transport of free leucine, J. Neurobiol. 14: 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Shawe, G. D. H., 1955, On the number of branches formed by regenerating nerve fibers, Br. J. Surg. 42: 474–488.

    Article  PubMed  CAS  Google Scholar 

  • Speidel, C. C., 1964, In vivo studies of myelinated nerve fibers, Int. Rev. Cytol. 16: 173–231.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, P. S., 1972, Reappraisal of the model for “bulk axoplasmic flow,” Nature (New Biol.) 240: 283–285.

    CAS  Google Scholar 

  • Stromska, D., and Ochs, S., 1981, Patterns of slow transport in sensory nerves, J. Neurobiol. 12: 441–453.

    Article  PubMed  CAS  Google Scholar 

  • Stromska, D. P., Iqbal, Z., and Ochs, S., 1983a, Evidence for the fast transport of tubulin and actin in mammalian sciatic nerve, Soc. Neurosci.9: 1191. Abstr. (in press).

    Google Scholar 

  • Tsukita, S., and Ishikawa, H., 1980, The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles, J. Cell Biol. 84: 513–530.

    Article  PubMed  CAS  Google Scholar 

  • Watson, D. F., Donoso, J. A., Illanes, J. P., and Samson, F. E., 1975, Comparison of transported proteins in the central and peripheral processes of unipolar neurons, Trans. Am. Soc. Neu-rochem.6:109.

    Google Scholar 

  • Weiss, P., 1961, The concept of perpetual neuronal growth and proximodistal substance convection, in: Regional Biochemistry (S. S. Kehy and J. Elkes, eds.), pp. 220–242, Pergamon Press, Oxford.

    Google Scholar 

  • Weiss, P., 1972, Neuronal dynamics and axonal flow: Axonal peristalsis, Proc. Natl. Acad. Sci. U.S.A. 69: 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, P., and Hiscoe, H. B., 1948, Experiments on the mechanism of nerve growth, J. Exp. Zool. 107: 315–395.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, P., and Mayr, R., 1971, Organelles in neuroplasmic (‘axonal’) flow: Neurofilaments, Proc. Natl. Acad. Sci. U.S.A. 68: 846–850.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, L., and Margolis, R. L., 1982, Microtubule treadmills and their possible cellular functions, Cold Spring Harbor Symp. Quant. Biol. 46(Part l): 199–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Ochs, S. (1984). Axoplasmic Transport in Relation to Nerve Fiber Regeneration. In: Elam, J.S., Cancalon, P. (eds) Axonal Transport in Neuronal Growth and Regeneration. Advances in Neurochemistry, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1197-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1197-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1199-7

  • Online ISBN: 978-1-4684-1197-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics