Skip to main content

Cell Death in Neuronal Development

Regulation by Trophic Factors

  • Chapter
Neuronal Development

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

Neuronal death has been identified as a widely occurring phenomenon in the development of the vertebrate nervous system. More than half of the cells initially present in such populations as the motoneuron pool of the spinal cord and neurons of autonomic and sensory ganglia disappear during embryonic development. The number of surviving neurons appears to depend on the amount of target tissue available for innervation by the neurons. Removal of the target tissue prior to the period of cell death causes nearly all of the neurons to die subsequently, while transplantation of additional tissue to the embryo to serve as a potential target for the neurons permits more neurons to survive through the normal die-off period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowan W. M., 1973, Neuronal death as a regulative mechanism in the control of cell number in the nervous system, in: Development and Aging in the Nervous System ( M. Rockstein, ed.), pp. 19–41, Academic Press, New York.

    Google Scholar 

  2. Cowan, W. M. 1978, Aspects of neural development, Int. Rev. Physiol. 17: 149.

    Google Scholar 

  3. Jacobson, M., 1978, Developmental Neurobiology, Plenum Press, New York.

    Google Scholar 

  4. Varon, S. S., and Bunge, R. P., 1978, Trophic mechanisms in the peripheral nervous system, Ann. Rev. Neurosci. 1: 327.

    Article  Google Scholar 

  5. Bradshaw, R. A., 1978, Nerve growth factor, Ann. Rev. Biochem. 47: 191.

    Article  Google Scholar 

  6. Hamburger, V., 1980, Trophic interactions in neurogenesis: A personal historical account, Ann. Rev. Neurosci. 3: 269.

    Article  Google Scholar 

  7. Harper, G. P., and Thoenen, H., 1980, Nerve growth factor: Biological significance, measurement, and distribution, J. Neurochem. 34: 5.

    Article  Google Scholar 

  8. Green, L. A., and Shooter, E. M., 1980, The nerve growth factor: Biochemistry, synthesis, and mechanism of action, Ann. Rev. Neurosci. 3: 353.

    Article  Google Scholar 

  9. Oppenheim, R. W., 1981, Neuronal cell death and some related regressive phenomena during neurogenesis: A selective historical review and progress report, in: Studies in Developmental Neurobiology: Essays in Honor of Viktor Hamburger, (W. M. Cowan, ed.), pp. 74–133, Oxford University Press, New York.

    Google Scholar 

  10. Hamburger, V., and Levi-Montalcini, R., 1949, Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions, J. Exp. Zool. 111: 457.

    Article  Google Scholar 

  11. Hughes, A., 1961, Cell degeneration in the larval ventral horn of Xenopus laevis, J. Embryol. Exp. Morphol. 9: 269.

    Google Scholar 

  12. Levi-Montalcini, R., 1950, The origin and development of the visceral system in the spinal cord of the chick embryo. J. Morphol. 86: 253.

    Article  Google Scholar 

  13. Harris, A. E., 1969, Differentiation and degeneration in the motor horn of foetal mouse, J. Morphol. 129: 281.

    Article  Google Scholar 

  14. Bodian, D., 1966, Spontaneous degeneration in the spinal cord of monkey foetuses, Bull. Johns Hopkins Hosp. 119: 217.

    Google Scholar 

  15. Prestige, M. C., 1965, Cell turnover in the spinal ganglia of Xenopus laevis tadpoles, J. Embryol. Exp. Morphol. 13: 63.

    Google Scholar 

  16. Hughes, A., 1973, The development of dorsal root ganglia and ventral horns in the opossum: A quantitative study, J. Embryol. Exp. Morphol. 30: 359.

    Google Scholar 

  17. Cowan, W. M., and Wenger, E., 1967, Cell loss in the trochlear nucleus of the chick during normal development and after radical extirpation of the optic vesicle, J. Exp. Zool. 164: 265.

    Article  Google Scholar 

  18. Cowan, W. M., and Wenger, E., 1968, Degeneration in the nucleus of origin of the preganglionic fibers to the chick ciliary ganglion following early removal of the optic vesicle, J. Exp. Zool. 168: 105.

    Article  Google Scholar 

  19. Rogers, L. A., and Cowan, W. M., 1973, The development of the mesencephalic nucleus of the trigeminal nerve in the chick. J. Comp. Neurol. 147: 291.

    Article  Google Scholar 

  20. Dubey, P. N., Kadasane. D. K., and Gosavi, V. S., 1968, The influence of the peripheral field on the morphogenesis of Hofmann’s nucleus major of chick spinal cord, J. Anat. 102: 407.

    Google Scholar 

  21. Cantino, D., and Sisto-Daneo, L., 1972, Cell death in the developing optic tectum, Brain Res. 38: 13.

    Article  Google Scholar 

  22. Zilles, D., and Wingert, F., 1973, Quantitative studies on the development of the fresh volumes and the number of neurons of the N. oculomotorii of white mice during ontogenesis, Brain Res. 56: 63.

    Article  Google Scholar 

  23. Armstrong, R. C., and Clarke, P. G. H., 1979, Neuronal death and the development of the pontine nuclei and inferior olive in the chick, Neurosci. 4: 1635.

    Article  Google Scholar 

  24. Landmesser, L., and Pilar, G., 1974, Synaptic transmission and cell death during normal ganglionic development, J. Physiol. 241: 737.

    Google Scholar 

  25. Prestige, M. C., 1967, The control of cell number in the lumbar ventral horn during the development of Xenopus laevis tadpoles, J. Embryol. Exp. Morphol. 18: 359.

    Google Scholar 

  26. Hamburger, V., 1975, Cell death in the development of the lateral motor column of the chick embryo, J. Comp. Neurol. 160: 535.

    Article  Google Scholar 

  27. Hollyday, M., and Hamburger, V., 1976, Reduction of the naturally occurring motor neuron loss by enlargement of the periphery, J. Comp. Neurol. 170: 311.

    Article  Google Scholar 

  28. Narayanan, C. H., and Narayanan, Y., 1978, Neuronal adjustments in developing nuclear centers of the chick embryo following transplantation of an additional optic primordium, J. Embryol. Exp. Morphol. 44: 53.

    Google Scholar 

  29. Boydston, W. R., and Sohal G. S., 1979, Grafting of additional periphery reduces embryonic loss of neurons, Brain Res. 178: 403.

    Article  Google Scholar 

  30. Pilar, G., Landmesser, L., and Burstein, L., 1980, Competition for survival among developing ciliary ganglion cells, J. Neurophysiol. 43: 233.

    Google Scholar 

  31. Lamb, A. H., 1980, Motoneurone counts in Xenopus frogs reared with one bilaterally-innervated hindlimb, Nature (London) 284: 347.

    Article  Google Scholar 

  32. Purves, D., 1980, Neuronal competition, Nature (London) 287: 585.

    Article  Google Scholar 

  33. Prestige, M. C., and Wilson, M. A., 1972, Loss of axons from ventral roots during development, Brain Res. 41: 467.

    Article  Google Scholar 

  34. Chu-Wang, I.-W., and Oppenheim, R. W., 1978, Cell death of motoneurons in the chick embryo spinal cord. II. A quantitative and qualitative analysis of degeneration in the ventral root, including evidence for axon outgrowth and limb innervation prior to cell death, J. Comp. Neurol. 177: 59.

    Article  Google Scholar 

  35. Pilar, G., and Landmesser, L., 1976, Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia, J. Cell Biol. 68: 339.

    Article  Google Scholar 

  36. Clarke, P. G. H., and Cowan, W. M., 1976, The development of the isthmo-optic tract in the chick, with special reference to the occurrence and correction of developmental errors in the location and connections of isthmo-optic neurons, J. Comp. Neurol. 167: 143.

    Article  Google Scholar 

  37. Pittman, R., and Oppenheim, R. W., 1978, Neuromuscular blockade increases motoneurone survival during normal cell death in the chick embryo, Nature (London) 271: 364.

    Article  Google Scholar 

  38. Pittman, R., and Oppenheim, R. W., 1979, Cell death of motoneurons in the chick embryo spinal cord. IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally occurring cell death and the stabilization of synapses, J. Comp. Neurol. 187: 425.

    Article  Google Scholar 

  39. Olek, A. J., 1980, Effects of a and (3-bungarotoxin on motor neuron loss in Xenopus larvae, Neurosci. 5: 1557.

    Article  Google Scholar 

  40. Creazzo, T. L., and Sohal, G. S., 1979, Effects of chronic injections of a-bungarotoxin on embryonic cell death, Exp. Neurol 66: 135.

    Article  Google Scholar 

  41. Jansen, J. D. S., Lemo, T., Nicolaysen, K., and Westgaard, R. H., 1973, Hyperinnervation of skeletal muscle fibers: Dependence on muscle activity, Science 181: 559.

    Article  Google Scholar 

  42. Jansen, J. K. S., and Van Essen, D. C., 1975, Re-innervation of rat skeletal muscle in the presence of a-bungarotoxin, J. Physiol. 250: 651.

    Google Scholar 

  43. Cangiano, A., Lemo, T., Lutzemberger, L., and Sveen, O., 1980, Effects of chronic nerve conduction block on formation of neuromuscular junctions and junctional AChE in the rat, Acta Physiol. Scand. 109: 283.

    Article  Google Scholar 

  44. Hughes, A., 1965, A quantitative study of the development of the nerves in the hind-limb of Eleutherodactylus martinicensis, J. Embryo!. Exp. Morphol. 13: 9.

    Google Scholar 

  45. Landmesser, L., and Morris, D. G., 1975, The development of functional innervation in the hind limb of the chick embryo, J. Physiol. 249: 301.

    Google Scholar 

  46. Landmesser, L., 1978a, The distribution of motoneurones supplying chick hind limb muscles, J. Physiol. 284: 371.

    Google Scholar 

  47. Landmesser, L., 1978b, The development of motor projection patterns in the chick hind limb, J. Physiol. 284: 391.

    Google Scholar 

  48. Bueker, E. D., 1948, Implantation of tumors in the hindlimb field of the embryonic chick and developmental response of the lumbosacral nervous system, Anat. Rec. 102: 369.

    Article  Google Scholar 

  49. Levi-Montalcini, R., and Hamburger, V., 1951, Selective growth-stimulating effects of mouse salivary glands on the sympathetic system of mammals, J. Exp. Zool. 116: 321.

    Article  Google Scholar 

  50. Levi-Montalcini, R., and Hamburger, V., 1953, A diffusible agent of mouse sarcoma producing hyperplasia of sympathetic ganglia and hyperneurotization of the chick embryo, J. Exp. Zool. 123: 233.

    Article  Google Scholar 

  51. Cohen, S., 1959, Purification and metabolic effects of a nerve growth-promoting protein from snake venom, J. Biol. Chem. 234: 1129.

    Google Scholar 

  52. Varon, S., Nomura, J., and Shooter, E. M., 1967, The isolation of the mouse nerve growth factor protein in a high molecular weight form, Biochem. 6: 2202.

    Article  Google Scholar 

  53. Varon, S., Nomura, J., and Shooter, E. M., 1968, Reversible dissociation of the mouse nerve growth factor protein into different subunits, Biochem. 7: 1296.

    Article  Google Scholar 

  54. Greene, L. A., Varon, S., Piltch, A., and Shooter, E. M., 1971, Substructure of the subunit of mouse 7S nerve growth factor, Neurobiology 1: 37.

    Google Scholar 

  55. Levi-Montalcini, R., and Cohen, S., 1960, Effects of the extract of the mouse salivary glands on the sympathetic system of mammals, Ann. N.Y. Acad. Sci. 85: 324.

    Google Scholar 

  56. Levi-Montalcini, R., 1964, Growth control of nerve cells by a protein factor and its antiserum, Science 143: 105.

    Article  Google Scholar 

  57. Otten, U., Goedert, M., Mayer, N., and Lembeck, F., 1980, Requirement of nerve growth factor for development of substance P-containing sensory neurones, Nature(London) 287: 158.

    Article  Google Scholar 

  58. Gundersen, R. W., and Barrett, J. N., 1979, Neuronal chemotaxis: Chick dorsal-root axons turn toward high concentrations of nerve growth factor, Science 206: 1079.

    Article  Google Scholar 

  59. Gundersen, R. W., and Barrett, J. N., 1980, Characterization of the turning response of dorsal root neurites toward nerve growth factor, J. Cell Biol. 87: 546.

    Article  Google Scholar 

  60. Levi-Montalcini, R., and Angeletti, P., 1963, Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro, Dev. Biol. 7: 653.

    Article  Google Scholar 

  61. Greene, L. A., 1977, Quantitative in vitro studies on the nerve growth factor (NGF) requirement of neurons, Dev. Biol. 58: 106.

    Article  Google Scholar 

  62. Campenot, R. B., 1977, Local control of neurite development by nerve growth factor, Proc. Natl. Acad. Sci. U.S.A. 74: 4516.

    Article  Google Scholar 

  63. Hendry, I. A., 1976, Control in the development of the vertebrate sympathetic nervous system, Rev. Neuroscience 2: 149.

    Google Scholar 

  64. Thoenen, H., and Schwab, M. E., 1978, Physiological and pathophysiological implications of the retrograde axonal transport of macromolecules, Adv. Pharmacol. Chemother. 5: 37.

    Google Scholar 

  65. Brunso-Bechtold, J. D., and Hamburger, V., 1979, Retrograde transport of nerve growth factor in chicken embryo, Proc. Natl. Acad. Sci. U.S.A. 76: 1494.

    Article  Google Scholar 

  66. Levi-Montalcini, R., and Angeletti, P. U., 1968, Nerve growth factor, Physiol. Rev. 48: 534.

    Google Scholar 

  67. Hamburger, V., Brunso-Bechtold, J. K., and Yip, J. W., 1981, Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor, J. Neurosci. 1: 60.

    Google Scholar 

  68. Hendry, I. A., 1975a, The retrograde trans-synaptic control of the development of cholinergic terminals in sympathetic ganglia, Brain Res. 86: 483.

    Article  Google Scholar 

  69. Hendry, I. A., 1975b, The response of adrenergic neurones to axotomy and nerve growth factor, Brain Res. 94: 87.

    Article  Google Scholar 

  70. Aloe, L., Mugnaini, E., and Levi-Montalcini, R., 1975, Light and electron microscopic studies on the excessive growth of sympathetic ganglia in rats injected daily from birth with 6-OHDA and NGF, Arch. Ital. Biol. 113: 326.

    Google Scholar 

  71. Purves, D., 1975, Functional and structural changes of mammalian sympathetic neurones following interruption of their axons, J. Physiol. 252: 429.

    Google Scholar 

  72. NA, A., and Purves, D., 1978, The effects of nerve growth factor and its antiserum on synapses in the superior cervical ganglion in the guinea-pig, J. Physiol. 277: 53.

    Google Scholar 

  73. Ebendal, T., Olson, L., Seiger, A., and Hedlund, K.-O., 1980, Nerve growth factors in the rat iris, Nature (London) 286: 25.

    Article  Google Scholar 

  74. Helfand, S. L., Smith, G. A., and Wessells, N. K., 1976, Survival and development in culture of dissociated parasympathetic neurons from ciliary ganglia, Dev. Biol. 50: 541.

    Article  Google Scholar 

  75. Helfand, S. L., Riopelle, R. J., and Wessells, N. K., 1978, Non-equivalence of conditioned medium and nerve growth factor for sympathetic, parasympathetic, and sensory neurons, Exp. Cell Res. 113: 39.

    Article  Google Scholar 

  76. Collins, F., 1978a, Induction of neurite outgrowth by a conditioned-medium factor bound to the culture substratum, Proc. Natl. Acad. Sci. U.S.A. 75: 5210.

    Article  Google Scholar 

  77. Collins, F., 1978b, Axon initiation by ciliary neurons in culture, Dev. Biol. 65: 50.

    Article  Google Scholar 

  78. Collins, F., 1980, Neurite outgrowth induced by the substrate associated material from nonneuronal cells, Dev. Biol. 79: 247.

    Article  Google Scholar 

  79. Collins, F., and Garrett, J. E., Jr., 1980, Elongating nerve fibers are guided by a pathway of material released from embryonic nonneuronal cells, Proc. Natl. Acad. Sci. U.S.A. 77: 6226.

    Article  Google Scholar 

  80. Adler, R., and Varon, S., 1980, Cholinergic neuronotrophic factors. V. Segregation of survival-and neurite-promoting activities in heart-conditioned media, Brain Res. 188: 437.

    Article  Google Scholar 

  81. Adler, R.,Manthorpe, M., Skaper, S. D., and Varon, S., 1981, Polyornithine-attached neurite-promoting factors (PNPFs). Culture sources and responsive neurons, Brain Res. 206: 129.

    Article  Google Scholar 

  82. Adler, R., and Varon, S., 1981, Neuritic guidance by polyornithine-attached materials of ganglionic origin, Dev. Biol. 81: 1.

    Article  Google Scholar 

  83. Ebendal, T., 1979, Stage-dependent stimulation of neurite outgrowth exerted by nerve growth factor and chick heart in cultured embryonic ganglia, Dev. Biol. 72: 276.

    Article  Google Scholar 

  84. Ebendal, T., Belew, M., Jacobson, C.-O., and Porath, J., 1979, Neurite outgrowth elicited by embryonic chick heart: Partial purification of the active factor, Neurosci. Lett. 14: 91.

    Article  Google Scholar 

  85. Nishi, R., and Berg, D. K., 1977, Dissociated ciliary ganglion neurons in vitro: Survival and synapse formation, Proc. Natl. Acad. Sci. U.S.A. 74: 5171.

    Article  Google Scholar 

  86. Nishi, R., and Berg, D. K., 1979, Survival and development of ciliary ganglion neurons grown alone in cell culture, Nature (London) 277: 232.

    Article  Google Scholar 

  87. Nishi, R., 1980, Studies on chick ciliary ganglion neurons developing in cell culture, Ph.D. dissertation, University of California, San Diego.

    Google Scholar 

  88. Tuttle, J. B., Suszkiw, J. B., and Ard, M., 1979, Long-term survival and development of dissociated parasympathetic neurons in culture, Brain Res. 183: 161.

    Article  Google Scholar 

  89. Chiappinelli, V., Giacobini, E., Pilar, G., and Uchimura, H., 1976, Induction of cholinergic enzymes in chick ciliary ganglion and iris muscle cells during synapse formation, J. Physiol. 257: 749.

    Google Scholar 

  90. Barald, K. F., and Berg, D. K., 1979a, Ciliary ganglion neurons in cell culture: High affinity choline uptake and autoradiographic choline labeling, Dev. Biol. 72: 15.

    Article  Google Scholar 

  91. Suszkiw, J. B., and Pilar, G., 1976, Selective localization of a high affinity choline uptake system and its role in ACh formation in cholinergic nerve terminals, J. Neurochem. 261: 133.

    Google Scholar 

  92. Margiotta, J. F., and Berg, D. K., 1981, Evidence for synaptic transmission between ciliary ganglion neurons in cell culture, Soc. Neurosci. Abstr. 7: 596.

    Google Scholar 

  93. Margiotta, J. F., and Berg, D. K., 1981, Evidence for synaptic transmission between ciliary ganglion neurons in cell culture, Soc. Neurosci. Abstr. 7: 596.

    Google Scholar 

  94. Adler, R., Landa, K. B., Manthorpe, M., Varon, S., 1979, Cholinergic neuronotrophic factors: Intraocular distribution of trophic activity for ciliary neurons, Science 204: 1434.

    Article  Google Scholar 

  95. Landa, K. B., Adler, R., Manthorpe, M., and Varon, S., 1980, Cholinergic neuronotrophic factors. III. Developmental increase of trophic activity for chick embryo ciliary ganglion neurons in their intraocular target tissues, Dev. Biol. 74: 410.

    Article  Google Scholar 

  96. Manthorpe, M., Skaper, S., Adler, R., Landa, K., and Varon, S., 1980, Cholinergic neuronotrophic factors: Fractionation properties of an extract from selected chick embryonic eye tissues, J. Neurochem. 34: 69.

    Article  Google Scholar 

  97. Bonyhady, R. E., Hendry, I. A., Hill, C. E., and McLennan, I. S., 1980, Characterization of a cardiac muscle factor required for the survival of cultured parasympathetic neurons, Neurosci. Lett. 18: 197.

    Article  Google Scholar 

  98. Bennett, M. R., and Nurcombe, V., 1979, The survival and development of cholinergic neurons in skeletal muscle conditioned media, Brain Res. 173: 543.

    Article  Google Scholar 

  99. Nishi, R., and Berg, D. K., 1981, Two components from eye tissue that differentially stimulate the growth and development of ciliary ganglion neurons in cell culture, J. Neurosci. 1: 505.

    Google Scholar 

  100. Schubert, D., 1977, The substrate attached material synthesized by clonal cell lines of nerve, glia, and muscle, Brain Res. 132: 337.

    Article  Google Scholar 

  101. Hawrot, E., 1980, Cultured sympathetic neurons: Effects of cell-derived and synthetic substrata on survival and development, Dev. Biol. 74: 136.

    Article  Google Scholar 

  102. Scott, B. S., 1977, The effects of elevated potassium on the time course of neuron súrvival in cultures of dissociated dorsal root ganglia, J. Cell. Physiol. 91: 305.

    Article  Google Scholar 

  103. Phillipson, O., and Sandler, M., 1975, The influence of NGF, potassium depolarization and dibutyryl (cyclic) AMP on explant cultures of chick sympathetic ganglia, Brain Res. 90: 273.

    Article  Google Scholar 

  104. Lasher, J., and Zagon, R., 1972, The effect of potassium on neuronal differentiation in cultures of dissociated newborn rat cerebellum, Brain Res. 41: 482.

    Article  Google Scholar 

  105. Bennett, M. R., and White, W., 1979, The survival and development of cholinergic neurons in potassium-enriched media, Brain Res. 173: 549.

    Article  Google Scholar 

  106. Chalazonitis, A., and Fischbach, G. D., 1980, Elevated potassium induces morphological differentiation of dorsal root ganglionic neurons in dissociated cell culture, Dev. Biol. 78: 173.

    Article  Google Scholar 

  107. Patterson, P. H., and Chun, L. L. Y., 1977a, The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. I. Effects of conditioned medium, Dev. Biol. 56: 263.

    Article  Google Scholar 

  108. Patterson, P. H. and Chun, L. L. Y., 1977b, The induction of acetylcholine synthesis in primary cultures of dissociated rat sympathetic neurons. II. Developmental aspects, Dev. Biol. 60: 473.

    Article  Google Scholar 

  109. Patterson, P. H., 1978, Environmental determination of autonomic neurotransmitter functions, Ann. Rev. Neurosci. 1: 1.

    Article  Google Scholar 

  110. Ebendal, T., Jordell-Dylberg, A., and Soderstrom, S., 1978, Stimulation by tissue explants oft nerve fibre outgrowth in culture, Zoon 6: 235.

    Google Scholar 

  111. Barde, Y.-A., Lindsay, R. M., Monard, D., and Thoenen, H., 1978, New factor released by cultured glioma cells supporting survival and growth of sensory neurons, Nature 274: 818.

    Article  Google Scholar 

  112. Barde, Y.-A., Edgar, D., and Thoenen, H., 1980, Sensory neurons in culture: Changing requirements for survival factors during embryonic development, Proc. Natl. Acad. Sci. U.S.A. 77: 1199.

    Article  Google Scholar 

  113. Edgar, D., Barde, Y.-A., and Thoenen, H., 1981, Subpopulations of cultured chick sympathetic neurons differ in their requirements for survival factors, Nature (London) 289: 294.

    Article  Google Scholar 

  114. Lindsay, R. M., 1979, Adult rat brain astrocytes support survival of both NGFdependent and NGF-insensitive neurons, Nature (London) 282: 80.

    Article  Google Scholar 

  115. Lindsay, R. M., and Tarbit, J., 1979, Developmentally regulated induction of neurite outgrowth from immature chick sensory neurons (DRG) by homogenates of avian or mammalian heart, liver and brain, Neurosci. Lett. 12: 195.

    Article  Google Scholar 

  116. Varon, S., Skaper, S. D., and Manthorpe, M., 1981, Trophic activities for dorsal root and sympathetic ganglion neurons in media conditioned by Schwann and other peripheral cells, Dev. Brain Res. 1: 73.

    Article  Google Scholar 

  117. Coughlin, M. D., Bloom, E. M., and Black, I. B., 1981, Characterization of a neuronal growth factor from mouse heart-cell-conditioned medium, Dev. Biol. 82: 56.

    Article  Google Scholar 

  118. Riopelle, R. J., and Cameron, D. A., 1981, Neurite growth promoting factors of embryonic chick-ontogeny, regional distribution, and characteristics, J. Neurobiol. 12: 175.

    Article  Google Scholar 

  119. Giller, E. L., Jr., Schrier, B. K., Shainberg, A., Fisk, H. R., and Nelson, P. G., 1973, Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from mice, Science 182: 588.

    Article  Google Scholar 

  120. Giller, E. L., Jr., Neale, J. H., Bullock, P. N., Schrier, B. K., and Nelson, P. G., 1977, Choline acetyltransferase activity of spinal cord cell cultures increased by co-culture with muscle and by muscle-conditioned medium, J. Cell Biol. 74: 16.

    Article  Google Scholar 

  121. Godfrey, E. W., Schrier, B. K., and Nelson, P. G., 1980, Source and target cell specificities of a conditioned medium factor that increases choline acetyltransferase activity in cultured spinal cord cells, Dev. Biol. 77: 403.

    Article  Google Scholar 

  122. Dribin, L. B., and Barrett, J. N., 1980, Conditioned medium enhances neuritic outgrowth from rat spinal cord explants, Dev. Biol. 74: 184.

    Article  Google Scholar 

  123. Berg, D. K., 1978, Acetylcholine synthesis by chick spinal cord neurons in dissociated cell culture, Dev. Biol. 66: 500.

    Article  Google Scholar 

  124. Fischbach, G. D., and Nelson, P. G., 1977, Cell culture in neurobiology, in: Handbook of Physiology. Section 1: The Nervous System, vol. 1, part 2 ( J. M. Brookhart and V. B. Mountcastle, eds.), pp. 719–774, American Physiological Society, Bethesda, MD.

    Google Scholar 

  125. Farb, D. H., Berg, D. K., and Fischbach, G. D., 1979, Uptake and release of [3H] aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture, J. Cell Biol. 80: 651.

    Article  Google Scholar 

  126. Barald, K. F., and Berg, D. K., 1979b, Autoradiographic labeling of spinal cord neurons with high affinity choline uptake in cell culture, Dev. Biol. 72: 1.

    Article  Google Scholar 

  127. Cozzati, C., and Hartman, B. K., 1980, Preparation of antibodies specific to choline acetyltransferase from bovine caudate nucleus and immunohistochemical localization of the enzyme, Proc. Natl. Acad. Sci. U.S.A. 77: 7453.

    Article  Google Scholar 

  128. Barber, R. P., and Saito, K., 1976, Light microscopic visualization of GAD and GABA-T in immunocytochemical preparations of rodent CNS, in: GABA in Nervous System Function ( E. Roberts, T. N. Chase, and D. B. Tower, eds.), pp. 113–132, Raven Press, New York.

    Google Scholar 

  129. Wood, J. G., McLaughlin, B. J., and Vaughn, J. E., 1976, Immunocytochemical localization of GAD in electron microscopic preparation of rodent CNS, in: GABA in Nervous System Function ( E. Roberts, T. N. Chase, and D. B. Tower, eds.), pp. 133–148, Raven Press, New York.

    Google Scholar 

  130. Raff, M. C., Brockes, J. P., Fields, K. L., and Mirsky, R., 1979, Neural cell markers: The end of the beginning, Progr. Brain Res. 51: 17.

    Article  Google Scholar 

  131. Raff, M. C., Fields, K. L., Hakomori, S.-I., Mirsky, R., Pruss, R. M., and Winter, J., 1979, Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture, Brain Res. 174: 283.

    Article  Google Scholar 

  132. Barnstable, C. J., 1980, Monoclonal antibodies which recognize different cell types in rat retina, Nature (London) 286: 231.

    Google Scholar 

  133. Chun, L. L. Y., Patterson, P. H., and Cantor, H., 1980, Preliminary studies on the use of monoclonal antibodies as probes for sympathetic development, J. Exp. Biol. 89: 73.

    Google Scholar 

  134. Zipser, B., and McKay, R., 1981, Monoclonal antibodies distinguish identifiable neurons in the leech, Nature (London) 289: 549.

    Article  Google Scholar 

  135. Bennett, M. R., Lai, K., and Nurcombe, V., 1980, Identification of embryonic motoneurons in vitro: Their survival is dependent on skeletal muscle, Brain Res. 190: 537.

    Article  Google Scholar 

  136. Berg, D. K., and Fischbach, G. D., 1978, Enrichment of spinal cord cell cultures with motoneurons, J. Cell Biol. 77: 83.

    Article  Google Scholar 

  137. Schnaar, R. L., and Schaffner, A. E., 1981, Separation of cell types from embryonic chicken and rat spinal cord: Characterization of motoneuron-enriched fractions, J. Neurosci. 1: 204.

    Google Scholar 

  138. Masuko, S., Kuromi, H., and Shimada, Y., 1979, Isolation and culture of motoneurons from embryonic chicken spinal cords, Proc. Natl. Acad. Sci. U.S.A. 76: 3537.

    Article  Google Scholar 

  139. Banker, G. A., and Cowan, W. M., 1977, Rat hippocampal neurons in dispersed cell culture, Brain Res. 126: 397.

    Article  Google Scholar 

  140. Banker, G. A., and Cowan, W. M., 1979, Further observations on hippocampal neurons in dispersed cell culture, J. Comp. Neurol. 187: 469.

    Article  Google Scholar 

  141. Banker, G. A., 1980, Trophic interactions between astroglial cells and hippocampal neurons in culture, Science 209: 809.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Berg, D.K. (1982). Cell Death in Neuronal Development. In: Spitzer, N.C. (eds) Neuronal Development. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1131-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1131-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1133-1

  • Online ISBN: 978-1-4684-1131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics