MEGAGAUSS PHYSICS AND TECHNOLOGY

MEGAGAUSS PHYSICS AND TECHNOLOGY

Edited by

Washington, D. C.

Peter J. Turchi Naval Research Laboratory

PLENUM PRESS · NEW YORK AND LONDON

Library of Congress Cataloging in Publication Data

International Conference on Megagauss Magnetic Field Generation and Related Topics, 2d, Washington, D.C., 1979. Megagauss physics and technology.

 Includes index.

 1. Magnetic fields-Congresses. 2. Magnetics-Congresses. I. Turchi, Peter J. II. Title.

 QC754.2.M3I57
 1979
 538
 80-16385

 ISBN-13: 978-1-4684-1050-1
 e-ISBN-13: 978-1-4684-1048-8
 B0-16385

 DOI: 10.1007/978-1-4684-1048-8
 E-ISBN-13: 978-1-4684-1048-8
 B0-16385

Proceedings of the Second International Conference on Megagauss Magnetic Field Generation and Related Topics, held in Washington, D.C., May 30-June 1, 1979.

© 1980 Plenum Press, New York Softcover reprint of the hardcover 1st edition 1980 A Division of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher

EDITOR'S PREFACE

The generation and use of megagauss magnetic fields have been subjects of research and development in laboratories around the world for over a quarter of a century. Research goals have included the development of compact, short-pulse, electrical power sources and the production of ultrahigh magnetic field strengths over significant experimental volumes. Energies measured in megajoules, currents in megamperes and timescales of microseconds are not uncommon in such work. Phase changes, insulator breakdowns, and local destruction of the apparatus are also frequently encountered. Some efforts have involved the use of high explosive systems, developing methodologies rather distinct from those of a normal physics laboratory. Manipulation of magnetic flux to exchange energy between high speed, electrically conducting flows and high strength electromagnetic fields remains, of course, a basic interaction of classical physics.

The remoteness of the necessary experimental sites (at least in many instances) and the various national concerns for security of defense-related research have often limited the flow of information between investigators of separate organizations, working in common areas of technical concern. Occasionally, however, it has been possible for the community of scientists and engineers engaged in work on high magnetic fields and related high energy density systems to gather together and exchange results and plans, successes and failures. The first such international gathering was in 1965 at the Conference on Megagauss Magnetic Field Generation by Explosives and Related Experiments, Frascati, Italy. The proceedings of the conference were published by Euratom (EUR 2750.e) and have served as a useful reference for many years.

The present volume, *Megagauss Physics and Technology*, is based on papers given at the Second International Conference on Megagauss Magnetic Field Generation and Related Topics, held in Washington, D.C., 30 May-1 June 1979. It may be hoped that this work will also be a useful reference. Topics at the Conference ranged from magnetic flux-compression generator design to applications of high magnetic field techniques for controlled thermonuclear fusion, and included discussions of diagnostic methods, accelerator concepts, switching, and theoretical modeling. Some topics are of passing or recurrent interest, while others are more fundamental or utilitarian in nature.

As might be expected, the sixty technical papers presented here have many points of contact and overlap with each other. Often, reports of both theoretical and experimental work on several subjects are included within a single paper. The arrangement of papers has, therefore, generally followed the

V

order of presentation at the Conference, thereby at least preserving some mnemonic advantage for the Conference participants. It should be noted, however, that nine Soviet papers which were synopized at different times during the Conference are collected at the end of the volume since closely-related aspects of research efforts at two laboratories are reviewed in these papers. (Careful comparison with the actual program of the Conference would reveal to those so inclined that there are some other additions, omissions, and rearrangements, due primarily to limited editorial resources relative to nonsubmission of papers and forms, inadequate figures, or late arrivals.)

The editorial work involved two close screenings of the re-typed manuscripts to eliminate typographical errors, and to provide occasional adjustments of language. In the latter regard, English translations of technical expressions have generally been left in the form supplied by the authors, since special points of view may be indicated by language usage. Comparison with other literature is also facilitated by this policy. Some phrases, however, typically involving less subtle features such as suffixes, have been adjusted.

At various places, omissions in the text have occurred without a reasonably certain clue as to the author's intention. In such circumstances, since the authors have not been available for ready consultation during the editorial process, a best estimate is provided, with the notation [ed. est.]. Other notational policies are the use of italics for algebraic symbols, bold-face italics for vectors, parentheses for equation numbers, and brackets for reference numbers. No attempt has been made to verify the accuracy of the mathematics presented by various authors. Indeed, technical review was not provided (even though the editor had considerable reservations in some instances) and no endorsement of the scientific merit or validity of the reported efforts should be inferred by presentation in this volume. Much of the material, however, was discussed at the Conference itself and was thereby subjected to community review. Correction of significant errors (especially those introduced by the editorial process) can be attempted by contacting a member of the Organizing Committee of the Conference. An errata sheet for the volume may then be generated and distributed at a future date. A list of organizational mailing addresses has been provided for direct correspondence with the authors.

The Conference, known to its friends as Megagauss II, was possible due to the considerable contributions of the Organizing Committee and Sponsoring Organizations listed on the following page, and to the enthusiastic response of the Conference participants and authors. Special appreciation is due to Ms. Francine Rosenberg who served as the Conference Secretary and handled the great many details involved in preparing and carrying out the tasks of the Conference, thereby ensuring its success.

The text of the present volume was prepared through the gracious efforts of Mrs. Dora Wilbanks and her staff using the computer-assisted composition system at the Naval Research Laboratory. The considerable tasks of arranging the text by hand, correction and re-setting were accomplished by the dedicated effort of Mrs. Judy Kogok. Errors and delays in publication of this volume are due to the editor:

P. J. Turchi

SECOND INTERNATIONAL CONFERENCE ON MEGAGAUSS MAGNETIC FIELD GENERATION AND RELATED TOPICS 29 May - 1 June 1979 Washington, D.C.

ORGANIZING COMMITTEE:

M. Cowan Sandia Laboratories, Albuquerque

C. M. Fowler Los Alamos Scientific Laboratory

J. W. Shearer Lawrence Livermore Laboratory G. A. Shvetsov Institute of Hydrodynamics, Novosibirsk

V. M. Titov Institute of Hydrodynamics, Novosibirsk

P. J. Turchi (Chairman) Naval Research Laboratory Washington, D.C.

SPONSORING ORGANIZATIONS:

Institute of Hydrodynamics, Novosibirsk Lawrence Livermore Laboratory Los Alamos Scientific Laboratory Naval Research Laboratory Sandia Laboratories Air Force Office of Scientific Research Office of Naval Research Office of Fusion Energy, Department of Energy Office of Inertial Fusion, Department of Energy

vii

CONTENTS

Experimental Techniques in Ultrahigh Magnetic Field Generation	
Pulsed Magnetic Field Generators and Their Practical Applications Fritz Herlach	1
Production and Measurements of Megagauss Magnetic Fields in Single-Turn Coils N.N. Gennadiev, V.F. Demichev, and P.A. Levit	27
Measurement of Pulsed Magnetic Fields Produced by Flux Compression in Imploding Liners R.A. Nuttelman, J.H. Degnan, G.F. Kiuttu, R.E. Reinovsky, and W.L. Baker	37
TOFS-A Timing Optical Fiber System Dan L. Davis	47
Test Bench for Operation with Great Explosive Charges Under Laboratory Conditions A.F. Demtshuk, V.V. Poljudov, V.M. Titov, and G.A. Shvetsov	55
Conductors and Insulators at High Energy Densities and Speeds	
High-Energy Electric Pulse Generation by Cumulative Explosion G.A. Shvetsov and V.M. Titov	61
Explosive Plasma Source Experiment Dennis W. Baum and W. Lee Shimmin	77
Electrophysical Properties of Detonation Products of Condensed Explosives A.P. Ershov, L.A. Lukjantshikov, Ju. V. Rjabinin, and P.I. Zubkov	89
Xenon Shock Waves Driven by High Magnetic Fields J.W. Shearer, J.W. Beasley, A. Reyenga, and D. Steinberg	99
Extinguishing of the Electric Arc Compressed by Shock Waves L.A. Lukjantshikov, K.A. Ten, and P.I. Zubkov	111
Design and Analysis of Isentropic Compression Experiments R.S. Hawke	117

Effects of Metallurgical Microstructure of Armatures on Compressed Magnetic Field Generators	131
Shock-Induced Electrical Switching in Polymeric Films R.A. Graham	147
Generation of Ultrahigh Magnetic Fields by Small-Scale Single-Shot Experiments Y. Nakagawa, S.M. Miura, T. Goto, and Y. Syono	151
Modeling of Magnetodynamic Systems	
Small Helical Flux Compression Amplifiers J.E. Gover, O.M. Stuetzer, and J.L. Johnson	163
Energy Capabilities and Magnetic Flux Losses in "Bellows"-Type Explosive Generators E.I. Bitshenkov and V.A. Lobanov	181
COMAG-III: A 2-D MHD Code for Helical CMF Generators J.M. McGlaun,, S.L. Thompson, and J.R. Freeman	193
Numerical Studies of Helical CMF Generators J.R. Freeman, J.M. McGlaun, S.L. Thompson, and E.C. Cnare	205
MHD Phenomena at High Magnetic Reynolds Number S.P. Gill	219
Plasma Crowbars in Cylindrical Flux Compression Experiments L.J. Suter	231
Magnetic Flux Compression by Expanding Plasma Armatures T.P. Wright, L. Baker, M.Cowan, and J.R. Freeman	241
An Equivalent Circuit Model for a Solenoidal Compressed Magnetic Field Generator M. Jones	249
A Finite-Element Model of Compressed Magnetic Field Generators T.J. Tucker	265
Advanced Pulsed Power Topics	
Pulse Transformer Operation in Megagauss Fields C.M. Fowler, R.S. Caird, D.J. Erickson, B.L. Freeman, and W.B. Garn	275
Magnetic Propulsion for a Hypervelocity Launcher J.P. Barber, R.A. Marshall, and S. Rashleigh	287

Magnetic Propulsion Railguns: Their Design and Capabilities R.S. Hawke and J.K. Scudder	297
Shiva X-Ray Source Experiments R.E. Reinovsky, J.H. Degnan, G.F. Kiuttu, R.A. Nuttelman, and W.L. Baker	313
Numerical Simulation of the Effects of an Injected B _z Field on an Imploding Hollow Plasma Liner T.W. Hussey, D.A. Kloc, C.W. Beason, and N.F. Roderick	327
Inductively Driven Imploding Plasma System for X-Ray Generation D.L. Smith, R.P. Henderson, and R.E. Reinovsky	337
A Very Fast Electromagnetically Operated Circuit Breaker P. D'Hommee-Caupers, C. Rioux, F. Rioux-Damidau, and C. Jablon	351
Fast Opening Switches Carrying Multimegampere Currents D.J. Steinberg and J.W. Shearer	361
Imploding Liner Systems for Fusion	
Review of the NRL Liner Implosion Program P.J. Turchi, A.L. Cooper, R.D. Ford, D.J. Jenkins, and R.L. Burton	375
On Efficiency of Two-Step Energy Transformation in a System with Inductive Storage for MCG Magnetic Field Production E.A.Azizov, V.P. Bazilevski, Ju. A. Kareev, and I.V. Kochurov	387
Results from the Los Alamos Fast Liner Experiment A.R. Sherwood, E.L. Cantrell, C.A. Ekdahl, I. Henins, H.W. Hoida, T.R. Jarboe, P.L. Klingner, R.C. Malone, J. Marshall, and G.A. Sawyer	391
Liner Thermonuclear Systems with Superhigh Magnetic Field and $\beta > 1$ Ju.A. Kareev, I.K. Konkashbaev, and L.B. Nikandrov	399
Adiabatic Compression of 3-D Plasma Magnetic Field Configuration W. Grossman and J. Saltzman	403
Numerical Simulation of Dynamics of Quasispherical Metallic Liner V.M. Goloviznin, R.Kh. Kurtmullaev, V.N. Semenov, V.A. Gasilov, A.P. Favorsky, and M.Yu. Shashkov	415
A Conceptual Design for an Imploding-Liner Fusion Reactor A.E. Robson	425
Stabilization Concepts of Imploding Liquid Metal Liner Y. Itoh and Y. Fujii-E	437

Modeling of LINUS-Type Stabilized Liner Implosions A.L. Cooper, J.M. Pierre, P.J. Turchi, J.P. Boris, and R.L. Burton	447
Megagauss Field Generation	
Megagauss Fields Produced with Small Explosive Charges R.S. Caird, J.H. Brownell, D.J. Erickson, C.M. Fowler, B.L. Freeman, and T. Oliphant	461
Investigation of Capabilities of Magneto-Cumulative Megagauss Magnetic Field Generation E.I. Bitshenkov, V.A. Lobanov, V.I. Telenkov, and A.M. Trubatshev	471
Production of Megagauss Fields by Compression of Magnetic Flux by a Metallic Liner A.M. Andrianov, Yu.A. Alekseev, V.L. Baryshev, V. I. Vasil'ev, M.N. Kazeev, and V.V. Kisula	479
Megagauss Magnetic Field Production in Small Volumes U.N. Botcharov, A.I. Krutchinin, S.I. Krivosheev, A.N. Chetchel, and G.A. Shneerson	485
On a Novel Scheme for the Generation of Megagauss Fields O.K. Mawardi	497
Superhigh Magnetic Field Generation by a Cumulating Liner and Magnetopressed Discharge S.G. Alikhanov and V.P. Novikov	505
Experimental and Computational Study of Axial Magnetic Field Compression by Cylindrical Plasma Liners J.H. Degnan, R.A. Nuttelman, G.F. Kiuttu, R.E. Reinovsky, and W.L. Baker	511
Applications of Ultrahigh Magnetic Field Techniques	
Abstract of Report of the Panel on High Magnetic Field Research and Facilities S.P. Keller	519
Design, Performance and Use of a Near Megagauss Pulsed Machine N.T. Olson, J. Bandas, and A.C. Kolb	521
Experimental Research on Explosive-Driven Magnetic Generator Performance with Resistive-Inductive Load B.D. Khristoforov, I.I. Divnov, N.I. Zotov, and O.P. Karpov	527

Megagauss Fields and Current Pattern in Focussed Discharges W.H. Bostick, V. Nardi, J. Feugeas, L. Grunberger, W. Prior, C. Cortese, F. Mezzetti, and A. Pedrielli	. 533
Application of Strong Magnetic Fields for the Acceleration	
of Charged Particles	. 543
V.S. Panasjuk, A.A. Sokolov, and B.M. Stepanov	
Magnetocumulative Generator Systems	
 Magnetic Cumulation Generator Parameters and Means to Improve Them A.I. Pavlovskii, R.Z. Lyudaev, V.A. Zolotov, A.S. Seryoghin, A.S. Yuryzhev, M.M. Kharlamov, A.M. Shuvalov, V.Ye. Gurin, G.M. Spirov, and B.S. Makaev 	557
 A Multiwire Helical Magnetic Cumulation Generator A.I. Pavlovskii, R.Z. Lyudaev, L.I. Sel'chenkov, A.S. Seryoghin, V.A. Zolotov, A.S. Yuryzhev, O.I. Zenkov, V.Ye. Gurin, A.S. Boriskin, and V.F. Basmanov 	585
 Formation and Transmission of Magnetic Cumulation Generators Electromagnetic Energy Pulses A.I. Pavlovskii, R.Z. Lyudaev, A.S. Kravchenko, V.A. Vasyukov, L.N. Pljashkevich, A.M. Shuvalov, A.S. Russkov, V.Ye. Gurin, B.A. Boyko, and V.A. Zolotov 	595
 Transformer Energy Output Magnetic Cumulation Generators A.I. Pavlovskii, R.Z. Lyudaev, L.N. Pljashkevich, A.M. Shuvalov, A.S. Kravchenko, Yu.I. Plyushchev, D.I. Zenkov, V.F. Bukharov, V.Ye. Gurin, and V.A. Vasyukov 	611
Reproducible Generation of Multimegagauss Magnetic Fields A.I. Pavlovskii, N.P. Kolokolchikov, O.M. Tatsenko, A.I. Bykov, M.I. Dolotenko, and A.A. Karpikov	627
High Inductance Explosive Magnetic Generators with	
High Energy Multiplication V.K. Chernyshev, E.J. Zharinov, V.A. Demidov, and S.A. Kazakov	641
Generation of the Magnetic Flux by Multicascade Capture V.K. Chernyshev and V.A. Davydov	651
Ultimate Capacities of Transformer Method of Energy Transfer from Explosive Magnetic Generator to Inductive Load V.K. Chernyshev and V.A. Davydov	657
Study of Basic Regularities of Formation of Multi-MA-Current Pulses with Short Risetime by EMG Circuit Interruption V.K. Chernyshev, G.S. Volkov, V.A. Ivanov, and V.V. Vakrushev	663

xiv

Addresses of Author Organizations	677
Author Index	679
Subject Index	683