Skip to main content

Microbial Ecology of Flooded Rice Soils

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 4))

Abstract

More than 90% of the rice fields in Asia are cultivated with the soil submerged during most of the growth period. Wetland rice fields are of three types: irrigated, shallow-water rain fed, and deep-water rain fed. Management practices in an irrigated rice field include: (1) leveling the land and constructing levees to impound water; (2) puddling of wet soil; (3) maintenance of 5–10 cm of standing water during rice growth; (4) draining and drying at harvest of rice; and (5) re-flooding after an interval of from a few weeks to as long as 8 months. In shallow-water rain-fed fields, the soil is submerged as in the irrigated fields, but the rice crop is frequently subjected to drought or to flooding deeper than the height of rice. In deep-water rice fields, the rice is sown on dry land before the onset of the monsoon, and the depth of the floodwater gradually increases as the rice grows, sometimes reaching 2-5 m. Near the harvest, the floodwater is gradually drained. Rain-fed rice fields in monsoon Asia may be subjected to severe desiccation during the dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alimagno, B. V., Yoshida, T., 1977, In situ acetylene-ethylene assay of biological nitrogen fixation in lowland rice soils, Plant Soil 47: 239–244.

    CAS  Google Scholar 

  • Al-Kaisi, K. A., 1976, Contribution to the algal flora of rice fields of Southeastern Iraq, Nova Hedwigia 27: 813–827.

    Google Scholar 

  • Andal, R., Bhuvaneswari, K., and Subba Rao, N. S., 1956, Root exudates of paddy, Nature (London) 178: 1063–1064.

    Article  Google Scholar 

  • Araragi, M., Tangcham, B., 1975, Microflora related to the nitrogen cycle in paddy soils of Thailand, Jpn. Agric. Res. Q. 8: 256–257.

    Google Scholar 

  • Asami, T., Takai, Y., 1970, Behavior of free iron oxide in paddy soils. IV. Relation between reduction of free iron oxide and formation of gases in paddy soils, Nippon Dojohiryo Gaku Zasshi 41: 48–55 (in Japanese).

    CAS  Google Scholar 

  • Bailey, L. D., Beauchamp, E. G., 1971, Nitrate reduction and redox potentials measured with permanently and temporarily placed platinum electrode in saturated soils, Can. J. Soil Sci. 51: 51–58.

    Article  CAS  Google Scholar 

  • Balandreau, J., Millier, C. R., Dommergues, Y. R., 1974, Diurnal variations of nitrogenase activity in the field, Appl. Microbiol. 27: 662–672.

    PubMed  CAS  Google Scholar 

  • Barber, D. A., Lynch, J. M., 1977, Microbial growth in the rhizosphere, Soil Biol. Biochem. 9: 305–308.

    Article  CAS  Google Scholar 

  • Becking, J. H., 1961, Studies on nitrogen-fixing bacteria of the genus Beijerinckia. I. Geographical and ecological distribution in soils, Plant Soil 14: 49–81.

    Article  CAS  Google Scholar 

  • Becking, J. H., 1978, Beijerinckia in irrigated rice soils, in: Environmental Role of Nitrogen Fixing Blue Green Algae and Asymbiotic Bacteria, Ecology Bulletin (U. Granhall, ed.), pp. 116–129, Stockholm.

    Google Scholar 

  • Bell, R. G., 1969, Studies on the decomposition of organic matter in flooded soil, Soil Biol. Biochem. 1: 105–116.

    Article  CAS  Google Scholar 

  • Bollag, J. M., Czlonkowski, S. T., 1973, Inhibition of methane formation in soil by various nitrogen-containing compounds, Soil Biol. Biochem. 5: 673–678.

    Article  CAS  Google Scholar 

  • Bouldin, D. R., 1968, Models for describing the diffusion of oxygen and other mobile constituents across the mud-water interface, J. Ecol. 56: 77–87.

    Article  Google Scholar 

  • Boureau, M., 1977, Application de la chromatographie en phase gazeuze a l’étude de l’exsudation racinaire du riz, Cah. ORSTOM Ser. Biol. 12: 75–81.

    Google Scholar 

  • Bowen, G. D., Rovira, A. D., 1976, Microbial colonization of plant roots, Annu. Rev. Phytopathol. 14: 121–144.

    Article  Google Scholar 

  • Brewer, R., 1960, Cutans: Their definition, recognition, and interpretation, J. Soil Sci. 11: 280–292.

    Article  Google Scholar 

  • Bromfield, S. M., 1956, Oxidation of manganese by soil microorganisms, Aust. J. Biol. Sci. 9: 238–252.

    CAS  Google Scholar 

  • Bunt, J. S., 1961, Nitrogen-fixing blue-green algae in Australian rice soils, Nature (London) 192: 479–480.

    Google Scholar 

  • Cappenberg, T. E., 1974a, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations, Antonie van Leeuwenhoek J. Microbiol. Serol. 40: 285–296.

    Article  CAS  Google Scholar 

  • Cappenberg, T. E., 1974b, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments, Antonie van Leeuwenhoek J. Microbiol. Serol. 40: 297–306.

    Article  CAS  Google Scholar 

  • Cappenberg, T. E., Prins, R. A., 1974, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. III. Experiments with 14C-labeled substrates, Antonie van Leeuwenhoek J. Microbiol. Serol. 40: 457–469.

    Article  CAS  Google Scholar 

  • Chen, H. K., Chou, C., 1961, Investigation on nitrification and nitrifying organisms in rice field soils. I. Nitrification in rice field soils, Acta Pedol. Sinica 9: 56–64 (in Chinese).

    Google Scholar 

  • Chen, T. W., 1974, The population of Fusarium spp. in paddy soil with special reference to Fusarium moniliforme and its pathogenicity to rice, Proc. Natl. ScL Coun. Taiwan 7: 339–350 (in Chinese).

    Google Scholar 

  • Ch’en, T. Y., 1963, Principal characteristics of rice root microflora, Acta Microbiol. Sinica 9: 186–192 (in Chinese).

    Google Scholar 

  • Connel, W. E., Patrick, W. H., Jr., 1968, Sulfate reduction in soil: Effects of redox potential and pH, Science 159: 86–87.

    Article  Google Scholar 

  • De, P. K., 1936, The problems of the nitrogen supply of rice. I. Fixation of nitrogen in the rice soils under waterlogged condition, Indian J. Agric. Sci. 6: 1237–1245.

    CAS  Google Scholar 

  • De, P. K., Boss, N. M., 1938, Study of the microbial conditions existing in rice soils, Indian J. Agric. Sci. 8: 487–498.

    CAS  Google Scholar 

  • De Bont, J. A. M., Mulder, E. G., 1976, Invalidity of acetylene reduction assay in alkane-utilizing, nitrogen-fixing bacteria, Appl. Environ. Microbiol. 31: 640–647.

    PubMed  Google Scholar 

  • De Bont, J. A. M., Lee, K. K., Bouldin, D. R., 1978, Bacterial oxidation of methane in rice paddy, in: Environmental Role of Nitrogen Fixing Blue Green Algae and Asymbiotic Bacteria, Ecology Bulletin ( De Bont, J. A. M., Lee, K. K., Bouldin, D. R., ed.), pp. 91–99, Stockholm.

    Google Scholar 

  • Derx, H. G., 1950, Further researches on Beijerinckia, Ann. Bogor. 1: 1–11.

    Google Scholar 

  • Diem, H. G., Rougier, M., Hamad-Fares, I., Balandreau, J. P., andDommergues, Y. R., 1978, Colonization of rice roots by diazotroph bacteria, in: Environmental Role of Nitrogen Fixing Blue Green Algae and Asymbiotic Bacteria, Ecology Bulletin ( Diem, H. G., Rougier, M., Hamad-Fares, I., Balandreau, J. P., andDommergues, Y. R., ed.), pp. 305–311, Stockholm.

    Google Scholar 

  • Döbereiner, J., Ruschel, A. P., 1961, Inoculation to rice with N2-fixing bacteria Beijerinckia Derx, Rev. Bras. Biol. 21: 397–407.

    Google Scholar 

  • Dommergues, Y. R., Rinaudo, G., 1979, Factors affecting N2-fixation in the rice rhizosphere, in: Nitrogen and Rice, pp. 241–260, The International Rice Research Institute, Los Baños, Philippines.

    Google Scholar 

  • Dommergues, Y. R., Belser, L. W., Schmidt, E. R., 1978, Limiting factors for microbial growth and activity in soil, in: Advances in Microbial Ecology, Vol. 2 ( M. Alexander, ed.), pp. 49–104, Plenum Press, New York.

    Google Scholar 

  • Focht, D. D., 1978, Microbial kinetics on nitrogen losses in paddy soils, in Nitrogen and Rice, pp. 119–139, The International Rice Research Institute, Los Baños, Philippines.

    Google Scholar 

  • Focht, D. D., Verstraete, W., 1977, Biochemical ecology of nitrification and denitrification, Adv. Microb. Ecol. 1: 135–214.

    CAS  Google Scholar 

  • Furusaka, C., 1968, Studies on the activity of sulfate reducers in paddy soil, Tohoku Daigaku Nogaku Kenkyusho Iho 19: 101–184 (in Japanese).

    Google Scholar 

  • Furusaka, C, 1978, Introduction to microbiology of a paddy soil, Nippon Nogei Kagaku Kaishi 52: R151–R158 (in Japanese).

    Article  Google Scholar 

  • Furusaka, C, Hattori, T., 1956, Studies on the sulfate-reducing activity of several paddy soils, Tohoku Daigaku Nogaku Kenkyusho Hokoku 8: 35–51 (in Japanese).

    Google Scholar 

  • Furusaka, C., Wakao, N., 1973, Distribution and chemical activity of sulfate reducing bacteria in a paddy soil, in: Proceedings of Hydrogeochemistry, Vol. 2 ( E. Ingerson, ed.), pp. 422–435, Clark, Washington, D.C.

    Google Scholar 

  • Furusaka, C, Hattori, T., Sato, K., Yamagishi, H., Hattori, R., Nioh, I., Nioh, T., Nishio, M., 1969, Microbiological, chemical and physicochemical surveys of the paddy field soil, Rep. Inst. Agric. Res. Tohoku Univ. 20: 89–101.

    CAS  Google Scholar 

  • Gamble, T. N., Betlach, M. R., Tiedje, J. M., 1977, Numerically dominant denitrifying bacteria from world soils, Appl. Environ. Microbiol. 33: 926.

    PubMed  CAS  Google Scholar 

  • Garcia, J. L., 1973, Séquence des products formés au cours de la déntriflcation dans les sols de rizieres du Sénégal, Ann. Microbiol. (Inst. Pasteur) 124B: 351–362.

    CAS  Google Scholar 

  • Garcia, J. L., 1974, Réduction de l’oxyde nitreux dans les sols de rizieres du Sénegal: mesure de 1’activité denitrifiante, Soil Biol. Biochem. 6: 79–84.

    Article  CAS  Google Scholar 

  • Garcia, J. L., 1975a, Evaluation de la dénitrification dans les rizieres par la methode de réduction de N2O, Soil Biol. Biochem. 7: 251–256.

    Article  CAS  Google Scholar 

  • Garcia, J. L., 1975b, Effect rhizosphere du riz sur la dénitrification, Soil Biol. Biochem. 7: 139–141.

    Article  CAS  Google Scholar 

  • Garcia, J. L., 1977a, Analyse de differents groups composant la microflore denitrificante des sols de rizieres du Senegal, Ann. Microbiol. (Inst. Pasteur) 128A: 433–446.

    Google Scholar 

  • Garcia, J. L., 1977b, Etude de la dénitrification chez une bacterie thermophile sporulee, Ann. Microbiol. (Inst. Pasteur) 128A: 447–458.

    Google Scholar 

  • Garcia, J. L., Raimbault, M., Jacq, V., Rinaudo, G., Roger, P. A., 1974, Activités microbiennes dans les sols des rizieres du Sénégal: Relations avec les caracteristiques physic-chimiques et influence de la rhizosphere, Rev. Ecol. Biol. Sol. 11: 169–185.

    CAS  Google Scholar 

  • Green, M. S., Etherington, J. R., 1977, Oxidation of ferrous iron by rice (Oryza sativa L.) roots: A mechanism for waterlogging tolerance? J. Exp. Bot. 28: 678–690.

    Article  CAS  Google Scholar 

  • Greenwood, D. J., Goodman, D., 1964, Oxygen diffusion and aerobic respiration in soil spheres, J. Sci. Food Agric. 15: 5792013588.

    Google Scholar 

  • Griffin, D. M., 1969, Soil water in the ecology of fungi, Annu. Rev. Phytopathol. 7: 289–310.

    Article  CAS  Google Scholar 

  • Griffin, D. M., 1972, The Ecology of Soil Fungi, p. 192, Chapman and Hall, London.

    Google Scholar 

  • Gupta, B., 1966, Algal flora and its importance in the economy of rice fields, Hydrobiologia 28: 213–222.

    Article  Google Scholar 

  • Hamdi, Y. A., Yousef, A. N., Al-Azawi, S., Al-Tai, A., Al-Baquari, M. S., 1978, Distribution of certain non-symbiotic nitrogen fixing organisms in Iraq soils, in: Environmental Role of Nitrogen Fixing Blue Green Algae and Asymbiotic Bacteria, Ecology Bulletin ( Hamdi, Y. A., Yousef, A. N., Al-Azawi, S., Al-Tai, A., Al-Baquari, M. S., ed.), pp. 110 - 115, Stockholm.

    Google Scholar 

  • Harrison, W. H., Aiyer, P. A. S., 1915, The gases of swamp rice soils. II. Their utilization for the aeration of the roots of crops, Mem. Dept. Agric. India Chem. Ser. 4: 1–7.

    Google Scholar 

  • Hattori, T., Hattori, R., 1976, The physical environment in soil microbiology: An attempt to extend principles of microbiology to soil microorganisms, Crit. Rev. Microbiol. 4: 423–461.

    Article  CAS  Google Scholar 

  • Hayashi, S., Asatsuma, K., Nagatsuka, T., Furusaka, C., 1978, Studies on bacteria in paddy soil, Rep. Inst. Agric. Res. Tohoku Univ. 29: 19–38.

    Google Scholar 

  • Hirano, T., 1958, Studies on blue green algae. II. Studies on the formation of humus due to the growth of blue green algae, Shikoku Nogyo Shikenjo Hokoku 4: 63–74 (in Japanese).

    Google Scholar 

  • Hiura, K., Hattori, T., Furusaka, C., 1976, Bacteriological studies on the mineralization of organic nitrogen in paddy soils. I. Effect of mechanical disruption of soils on ammonification and bacterial number, Soil Sci. Plant Nutr. Tokyo 22: 459–466.

    Article  CAS  Google Scholar 

  • Hiura, K., Sato, K., Hattori, T., Furusaka, C., 1977, Bacteriological studies on the mineralization of soil organic nitrogen in paddy soils. II. The role of anaerobic isolates on nitrogen mineralization, Soil Sci. Plant Nutr. Tokyo 23: 201–205.

    Article  CAS  Google Scholar 

  • Hoppe, G., 1977, Analysis of actively metabolizing bacterial populations with autographic method, in: Microbial Ecology of Brackish Water Environment ( G. Rheinheimer, ed.), pp. 179–197, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Howeler, R. H., Bouldin, D. R., 1971, The diffusion and consumption of oxygen in submerged soils, Soil Sci. Soc. Am. Proc. 35: 202–208.

    Article  CAS  Google Scholar 

  • Ichimura, S., 1954, Ecological studies on the plankton in paddy fields. I. Seasonal fluctuations in the standing crop and productivity of plankton, Jpn. J. Bot. 14: 269–279.

    Google Scholar 

  • Ishimoto, M., Koyama, J., Omura, T., Nagai, Y., 1954, Biochemical studies on sulfate-reducing bacteria. III. Sulfate reduction by cell suspension, J. Biochem. 41: 537–546.

    CAS  Google Scholar 

  • Ishizawa, S., Toyoda, H., 1964, Microflora of Japanese soils, Nogyo Gijutsu Kenkyusho Hokoku 14B: 204–284 (in Japanese).

    Google Scholar 

  • Ishizawa, S., Araragi, M., Suzuki, T., 1969, Actinomycete flora of Japanese soils. III. Actinomycete flora of paddy soils (a). On the basis of morphological, cultural and biochemical characters, Soil Sci. Plant Nutr. Tokyo 15: 104–112.

    Article  Google Scholar 

  • Ishizawa, S., Suzuki, T., Araragi, M., 1975, Ecological study of free-living nitrogen fixers in paddy soil, in: Nitrogen Fixation and Nitrogen Cycle ( H. Takahashi, ed.), pp. 41–50, University of Tokyo Press, Tokyo.

    Google Scholar 

  • Jacq, V. A., 1973, Biological sulfate reduction in the spermatosphere and the rhizosphere of rice in some acid sulfate soils of Senegal, in: Acid Sulfate Soil, Vol. 2 ( H. Dost, ed.), pp. 82–98, University of Wageningen, Holland.

    Google Scholar 

  • Jaq, V., 1975, La sulfato-réduction en relation avec 1’excretion racinaire, Soc. Bot. Fr. Coll. Rhizosphere 136: 136–146.

    Google Scholar 

  • Jacq, V. A., 1978, Utilization du sulfur coated urea en riziere et production de sulfures toxiques, Cah. ORSTOM Ser. Biol. 13: 133–136.

    Google Scholar 

  • Jacq, V. A., Roger, P. A., 1978, Evaluation des risques de sulfato-réduction en rizière au moyen d’un critère microbiologique mesurable in situ, Cah. ORSTOM Ser. Biol. 13: 137–142.

    Google Scholar 

  • Jordan, J. H., Jr., Patrick, W. H., Jr., Willis, W. H., 1967, Nitrate reduction by bacteria isolated from waterlogged Crowley soil, Soil Sci. 104: 129–133.

    Article  CAS  Google Scholar 

  • Joshi, M. M., Hollis, J. P., 1977, Interaction of Beggiatoa and rice plant: Detoxification of hydrogen sulfide in the rice rhizosphere, Science 195: 179–180.

    Article  PubMed  CAS  Google Scholar 

  • Jutono, 1973, Blue-green algae in rice soils of Jogjakarta, Central Java, Soil Biol Biochem. 5: 91–95.

    Article  Google Scholar 

  • Kagawa, H., 1968, Distribution of bacteria in paddy soils, Tsuchi to Biseibutsu 10: 1–8 (in Japanese).

    Google Scholar 

  • Kagawa, H., Takai, Y., 1969, Predominant aerobic bacteria in the water percolating through submerged paddy soil, Nippon Dojohiryo Gaku Zasshi, 40: 332–336 (in Japanese).

    Google Scholar 

  • Kamura, T., Takai, Y., 1961, The microbial reduction mechanisms of ferric iron in paddy soils (Part I), Nippon Dojohiryo Gaku Zasshi 32: 135–138 (in Japanese).

    CAS  Google Scholar 

  • Kamura, T., Takai, Y., Ishikawa, K., 1963, Microbial reduction mechanism of ferric iron in paddy soils (Part I), Soil Sci Plant Nutr. Tokyo 9: 171–175.

    Google Scholar 

  • Kawata, S., Ishihara, K., 1961, Studies on the effects of some organic acids on the root hair formation in root of rice plants, Nippon Sakumotsu Gakkai Kiji 30: 72–78.

    Google Scholar 

  • Kawata, S., Ishihara, K., Shioya, T., 1964a, Studies on the root hairs of lowland rice plants in the upland field, Nippon Sakumotsu Gakkai Kiji 32: 250–253 (in Japanese).

    Google Scholar 

  • Kawata, S., Ishihara, K., Iizuka, K., 1964b, Some microorganisms on and in rice roots, Nippon Sakumotsu Gakkai Kiji 33: 164–167.

    Google Scholar 

  • Kikuchi, E., Furusaka, C., Kurihara, Y., 1975, Surveys of the fauna and flora in the water and soil of paddy fields, Rep. Inst. Agric. Res. Tohoku Univ. 26: 25–35.

    Google Scholar 

  • Kimura, M., Wada, H., Takai, Y., 1977a, Rhizosphere of the rice plant. I. Physicochemical features of the rhizosphere (1), Nippon Dojohiryo Gaku Zasshi 48: 85–90 (in Japanese).

    CAS  Google Scholar 

  • Kimura, M.. Wada, H., Takai, Y., 1977b, Rhizosphere of the rice plant. II. Microbiological features of the rhizosphere (1), Nippon Dojohiryo Gaku Zasshi 48: 91–95 (in Japanese).

    Google Scholar 

  • Kimura, M., Wada, H., Takai, Y., 1977c, Rhizosphere of the rice plant. III. Microbiological features of the rhizosphere (2), Nippon Dojohiryo Gaku Zasshi 48: 111–114 (in Japanese).

    Google Scholar 

  • Kimura, M., Wada, H., and Takai, Y., 1977d, Rhizosphere of rice plants. V. Rhizosphere effects of rice at the nursery stage growing under upland condition, Nippon Dojohiryo Gaku Zasshi 48: 540–545 (in Japanese).

    Google Scholar 

  • Kobayashi, M., Haque, M. Z., 1971, Contribution to nitrogen fixation and soil fertility by photosynthetic bacteria, Plant Soil, Spec. Vol. 443: 456.

    Google Scholar 

  • Kobayashi, M., Katayama, T., Okuda, A., 1965a, Nitrogen fixation in mixed culture of photosynthetic bacteria (R. capsulatus) with other heterotrophic bacteria (3), Association with B. subtilis.Soil Sci. Plant Nutr. Tokyo 11: 74–77.

    Google Scholar 

  • Kobayashi, M., Katayama, T., Okuda, A., 1965b, Nitrogen fixation in mixed culture of photosynthetic bacteria (R. capsulatus) with other heterotropic bacteria, (8), Effect of light on the mixed culture of R. capsulatus with B. megaterium, Soil Sci. Plant Nutr. Tokyo 11: 200–203.

    Google Scholar 

  • Kobayashi, M., Takahashi, E., Kawaguchi, K., 1967, Distribution of nitrogen-fixing microorganisms in paddy soils of Southeast Asia, Soil Sci. 104: 113–118.

    Article  Google Scholar 

  • Kobo, K., Uehara, H., 1943, Fertility increase of paddy soil during submergence, Nippon Dojohiryo Gaku Zasshi 17: 344–346 (in Japanese).

    Google Scholar 

  • Koyama, T., 1963, Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen, J. Geophys. Res. 68: 3971–3973.

    CAS  Google Scholar 

  • Kumari, L. M., Kavimandan, S. K., and Subba Rao, N. S., 1976, Occurrence of nitrogen-fixing Spirillum in roots of rice, sorghum, maize and other plants, Indian J. Exp. Biol. 14: 638–639.

    Google Scholar 

  • Kurasawa, H., 1956, The weekly succession in the standing crop of plankton and zoobenthos in the paddy field (Part I), Shigen Kagaku Kenkyusho Iho 41/42: 86–98 (in Japanese).

    Google Scholar 

  • Kurasawa, H., 1957, The weekly succession in the standing crop of plankton and zoobenthos in the paddy field (Part II), Shigen Kagaku Kenkyusho Iho 45: 73–83 (in Japanese).

    Google Scholar 

  • Lee, K. K., Watanabe, L, 1977, Problems of acetylene reduction technique applied to water-saturated paddy soils, Appl Environ. Microbiol. 34: 654–660.

    PubMed  CAS  Google Scholar 

  • Lim, G., 1967, Fusarium populations in rice field soils, Phytopathology 57: 1152–1153.

    Google Scholar 

  • Lim, G., 1972, Fusarium in paddy soils of West Malaysia, Plant Soil 36: 47–51.

    Google Scholar 

  • MacRae, I. C., Castro, T. F., 1966, Carbohydrates and amino acids in the root exudates of rice seedlings, Phyton 23: 95–100.

    CAS  Google Scholar 

  • MacRae, I. C., Ancajas, R. R., Salandanan, S., 1968, The fate of nitrate nitrogen in some tropical soils following submergence, Soil Sci. 105: 327–334.

    Article  CAS  Google Scholar 

  • Magdoff, F. R., Bouldin, D.R., 1970, Nitrogen fixation in submerged soil-sand-energy material media and the aerobic-anaerobic interface, Plant Soil 33: 49–61.

    Article  Google Scholar 

  • Mague, T. H., 1977, Ecological aspects of dinitrogen fixation by blue-green algae, in: Agronomy and Ecology, Vol. 4 ( R. W. F. Hardy and A. H. Gibson, eds.), pp. 85 - 140, John Wiley & Sons, New York.

    Google Scholar 

  • Mah, R. A., Ward, D. M., Baresi, L., Glass, T. L., 1977, Biogenesis of methane, Annu. Rev. Microbiol. 31: 309–341.

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud, S. A. Z., Ibrahim, A. N., 1970, Studies on the rhizosphere microflora of rice, Acta Agron. Acad. Sci. Hung. 19: 71–78.

    Google Scholar 

  • Mahmoud, S. A. Z., El-Sawy, M., Ishae, Y.Z., El-Safty, M. M., 1978, The effect of salinity and alkalinity on the distribution and capacity of N2 -fixation by Azotobacter in

    Google Scholar 

  • Egyptian soils, in: Environmental Role of Nitrogen Fixing Blue Green Algae and Asymbiotic Bacteria, Ecology Bulletin (U. Granhall, ed.), pp. 99–109, Stockholm.

    Google Scholar 

  • Martin, J. K., 1977a, Factors influencing the loss of organic carbon from wheat roots, Soil Biol Biochem. 9: 1–7.

    Article  CAS  Google Scholar 

  • Martin, J. K., 1977b, Effect of soil moisture on the release of organic carbon from wheat loots, Soil Biol. Biochem. 9: 303–304.

    Article  CAS  Google Scholar 

  • Matsuguchi, T., 1979, Factors affecting heterotrophic nitrogen fixation in submerged rice soils, in: Nitrogen and Rice, pp. 207–222, The International Rice Research Institute, Los Baños, Philippines.

    Google Scholar 

  • Mitsui, S., Tensho, K., 1951, The reducing power of the roots of growing plants as revealed by nitrite formation in the nutrient solution, Nippon Dojohiryo Gaku Zasshi 22: 301–307 (in Japanese).

    Google Scholar 

  • Mitsui, S., Tensho, K., 1952, The mechanism of nitrite formation by metabolizing plant roots, Nippon Dojohiryo Gaku Zasshi 23: 5–8 (in Japanese).

    CAS  Google Scholar 

  • Mitsui, S., Kumazawa, K., Mukai, N., 1959, The growth of the rice plant in poorly drained soil as affected by the accumulation of volatile organic acids (Part I), Nippon Dojohiryo Gaku Zasshi 30: 345–348 (in Japanese).

    CAS  Google Scholar 

  • Miyashita, M., Wada, H., Takai, Y., 1977, Decomposition of the root of the rice plant. II. Invasion by microorganisms of the rice root, Nippon Dojohiryo Gaku Zasshi 48: 558–563 (in Japanese).

    Google Scholar 

  • Morishita, M., 1959, Measuring of the dispersion of individuals and analysis of the individual patterns, Mem. Fac. Sci. Kyushu Univ. Ser. E. Biol. 2: 215–253.

    Google Scholar 

  • Motomura, S., 1966, Estimation of the number of manganese-oxidizing bacteria in paddy soils: Studies on the oxidative sediments in paddy soils (Part II), Nippon Dojohiryo

    Google Scholar 

  • Gaku Zasshi 37: 263–268 (in Japanese).

    Google Scholar 

  • Munch, J. C., Ottow, J. C. J., 1977, Model experiments about mechanism of bacterial iron-reduction in waterlogged soils, Z. Pflanzenernaehr. Dueng. Bodenkd. 140: 549–562.

    CAS  Google Scholar 

  • Nagatsuka, T., Furusaka, C., 1976, Effect of oxygen tension on bacterial number in a soil suspension, Soil Sci. Plant Nutr. Tokyo 22: 287–294.

    Article  Google Scholar 

  • Nishigaki, S., Shibuya, M., Hanaoka, I., 1960, The method of measurement of soil Eh in relation to plant growth, in: Manual of Studying Crops, Vol. II (N. Yamada, ed.), pp. 497–540, Nogyo Gijutsu Kyokai, Tokyo (in Japanese).

    Google Scholar 

  • Okajima, H., 1958, On the relationship between the nitrogen deficiency of the rice plant roots and the reduction of the medium, Nippon Dojohiryo Gaku Zasshi 29: 175–180 (in Japanese).

    Google Scholar 

  • Okajima, H., 1960, Studies on the physiological function of the root system in rice plant, viewed from the nitrogen nutrition, Tohoku Daigaku Nogaku Kenkyusho Iho 12: 12–49 (in Japanese).

    Google Scholar 

  • Okuda, A., Yamaguchi, M., Kamata, S., 1957, Nitrogen-fixing microorganisms in paddy soils. III. Distribution of non-sulfur purple bacteria hi paddy soils, Soil Sci. Plant Nutr. Tokyo 2: 131–133.

    Article  CAS  Google Scholar 

  • Okuda, A., Yamaguchi, M., Kobayashi, M., 1960, Nitrogen fixation in mixed culture of photosynthetic bacteria (Rhodopseudomonas capsulatus species) with other heterotrophic bacteria (Part I), Soil Sci. Plant Nutr. Tokyo 6: 35–39.

    Article  Google Scholar 

  • Okuda, A., Yamaguchi, M., Yong-Gil, S., 1964, Effect of organic substances on the growth of higher plants. I. A new device of sterile water culture apparatus and excretion of some enzymes by rice plant root, Nippon Dojohiryo Gaku Zasshi 35: 311–314 (in Japanese).

    CAS  Google Scholar 

  • Old, K. M., Nicolson, T. H.. 1975, Electron microscopical studies of the microflora of roots of sand dune passes, New Phytol. 74: 51–58.

    Article  Google Scholar 

  • Ottow, J. C. G., 1969a, Mechanism of iron-reduction by nitrate reductase inducible aerobic microorganisms, Naturwissenschaften 56: 371–372.

    Article  PubMed  CAS  Google Scholar 

  • Ottow, J. C. G., 1969b, The distribution and differentiation of iron-reducing bacteria hi gley soils, Zentralbl. Bakteriol. Parasitenkde Hyg. Abt. 2 123: 601–615.

    Google Scholar 

  • Ottow, J. C. G., 1969c, Effect of nitrate, chlorate, sulfate, iron oxide form and growth conditions on the extent of bacterial reduction of iron, Z. Pflanzenernaehr. Dueng. Bodenkd. 124: 238–253.

    CAS  Google Scholar 

  • Ottow, J. C. G., 1970, Selection, characterization and iron-reducing capacity of nitrate re-ductaseless (nit -) mutants from iron-reducing bacteria, Z. Allg. Mikrobiol. 10: 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Ottow, J. C. G., 1971, Iron reduction and gley formation by nitrogen-fixing clostridia, Oecologia (Berlin) 6: 164–175.

    Google Scholar 

  • Ottow, J. C. G., Glathe, H., 1971, Isolation and identification of iron-reducing bacteria from gley soils, Soil Biol. Biochem. 3: 43–55.

    Article  Google Scholar 

  • Ottow, J. C. G., Glathe, H., 1973. Pedochemie and Pedomikrobiologie hydromorphor, Bodenkd. Chem. Erde 32: 1–37.

    CAS  Google Scholar 

  • Ottow, J. C. G., von Klopotek, A., 1969, Enzymatic reduction of iron oxide by fungi, Appl. Microbiol. 18: 41–43.

    PubMed  CAS  Google Scholar 

  • Pandey, D. C., 1965, A study of the algae from paddy soils of Ballia and Ghazipur districts of Uttar Pradesh, India. I. Cultural and ecological consideration, Nova Hedwigia 9: 229–334.

    Google Scholar 

  • Pantastico, J. B., Suayan, Z. A., 1973, Algal succession in the rice-fields of College and Bay, Laguna, Philipp. Agric. 57: 313–326.

    Google Scholar 

  • Patrick, W. H., 1960, Nitrate reduction rates in a submerged soil as affected by redox potential, Trans. 7th Int. Cong. Soil Sci. 2: 494–500.

    Google Scholar 

  • Patrick, W. H., Gotoh, S., 1974, The role of oxygen in nitrogen loss from flooded soils, Soil. Sci. 118: 78–81.

    Article  CAS  Google Scholar 

  • Patrick, W. H., Reddy, K. R., 1977, Fertilizer nitrogen reactions in flooded soil, in: Proceedings of the International Symposium, Soil Environment and Fertilizer Management in Intensive Agriculture, pp. 275–280, Japanese Society of Soil Science, Tokyo.

    Google Scholar 

  • Patrick, W. H., Turner, F. T., 1968, Effect of redox potential on manganese transformation in waterlogged soil, Nature (London) 220: 476–478.

    CAS  Google Scholar 

  • Patrick, W. H., Tusneem, M. E., 1972, Nitrogen loss from flooded soil, Ecology 53: 732–737.

    Article  Google Scholar 

  • Pearsall, W. H., Mortimer, C. H., 1939, Oxidation-reduction potentials in waterlogged soils, natural water and muds, J. Ecol. 27: 485–501.

    Google Scholar 

  • Peterson, E. A., Rouatt, J. W., Katznelson, H., 1965, Microorganisms in the root zone in relation to soil moisture, Can. J. Microbiol. 11: 483–489.

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., Biebl, H., 1916, Desulforomonas acetoxidans, gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium, Arch. Microbiol. 110: 3–12.

    Google Scholar 

  • Pichinoty, F., Mandel, M., Greenway, B., Garcia, J. L., 1977, Isolation and properties of a denitrifying bacterium related to Pseudomonas lemoignei, Int. J. Syst. Bacteriol. 27: 346–348.

    Article  CAS  Google Scholar 

  • Ponnamperuma, F. N., 1955, The Chemistry of Submerged Soils in Relation to the Growth and Yield of Rice, Ph.D. Thesis, Cornell University, Ithaca, New York.

    Google Scholar 

  • Ponnamperuma, F. N., 1972, Chemistry of submerged soils, Adv. Agron. 24: 29–96.

    Article  CAS  Google Scholar 

  • Ponnamperuma, F. N., Bradfield, R., Peech, M., 1956, The chemistry of submerged soils in relation to the growth of rice, Proc. 6th Int. Soil Sci. Soc. R4: 503.

    Google Scholar 

  • Postgate, J. R., Campbell, L. L., 1966, Classification of Desulfovibrio species, the non-sporulating sulfate-reducing bacteria, Bacteriol. Rev. 30: 732–738.

    PubMed  CAS  Google Scholar 

  • Purushothaman, D., Oblisami, G., Balasun, C. S., 1976, Nitrogen fixation by Azotobacter in rice rhizosphere, Madras Agric. J. 63: 595–599.

    Google Scholar 

  • Rangaswami, G., Narayanaswami, R., 1965, Studies on the microbial population of irrigation water in rice field, Int. Rice Comm. News. 14: 35–42.

    Google Scholar 

  • Rangaswami, G., Venkatesan, R., 1966. Microorganisms in Paddy Soil, p. 192, Annamalai University, Madras, India.

    Google Scholar 

  • Reddy, K. R., Patrick, W. H., Jr., 1976, A method for sectioning saturated soil cores, Soil Sci. Soc. Am. J. 40: 611–612.

    Article  Google Scholar 

  • Reddy, K. R., Patrick, W. H., Jr., Philipps, R. E., 1976, Ammonium diffusion as a factor in nitrogen loss from flooded soils, Soil Sci. Soc. Am. J. 40: 528–533.

    Article  CAS  Google Scholar 

  • Reynaud, P. A., Roger, P. A., 1977, Milieu selectifs pour la numeration des algues eucaryotes, procaryotes et fixatrices d’ azote, Rev. Ecol. Biol. Sol 14: 421–428.

    Google Scholar 

  • Reynaud, P. A., Roger, P. A., 1978a, N2 fixing algal biomass in Senegal rice fields, in: Environmental Role of Nitrogen Fixing Blue Green Algae and Asymbiotic Bacteria, Ecology Bulletin ( Reynaud, P. A., Roger, P. A., ed.), pp. 148–157, Stockholm.

    Google Scholar 

  • Reynaud, P. A., Roger, P. A., 1978b, Vertical distribution of algae and acetylene-reducing activity in an algae mat on a sandy waterlogged tropical soil, in: Limitations and Potentials for Biological Nitrogen Fixation in the Tropics ( J. Döbereiner, ed.), pp. 346–347, Plenum Press, New York.

    Google Scholar 

  • Reynolds, D. R., 1970, Fungi isolated from rice paddy soil at Central Exp. Station, UP College of Agriculture, Philipp. Agric. 54: 55–59.

    Google Scholar 

  • Rice, W. A., Paul, E. A., 1972, The organisms and biological process involved in symbiotic nitrogen fixation in waterlogged soil amended with straw, Can. J. Microbiol. 18: 715–723.

    Article  PubMed  CAS  Google Scholar 

  • Rinaudo, G., Dommergues, Y., 1971, Valedité de l’estimation de la fixation biologique de l’azote dans la rhizosphere par la methode de reduction de l’acetylene, Ann. Inst. Pasteur (Paris) 121: 93–99.

    CAS  Google Scholar 

  • Roger, P. A., Reynaud, P. A., 1976, Dynamique de la population algael an cours d’un cycle de culture dans une rizière sahelienne, Rev. Ecol. Biol. Sol 13: 545–560.

    Google Scholar 

  • Roger, P. A., Reynaud, P. A., 1977, La biomass algae dans les rizieres du Senegal: importance relative des Cyanophycées fixatrices de N2, Rev. Ecol. Biol. Sol 14: 519–530.

    Google Scholar 

  • Roger, P. A., Reynaud, P. A., 1978, Ecology of blue-green algae in paddy fields, in: Nitrogen and Rice, pp. 287–310, The International Rice Research Institute, Los Baños, Philippines.

    Google Scholar 

  • Saito, M., Watanabe, L, 1978, Organic matter production in rice field flood water, Soil Sci. Plant Nutr. Tokyo 24: 427–444.

    Article  Google Scholar 

  • Saito, M.,Wada, H., Takai, Y., 1977a, Microbial ecology of cellulose decomposition in paddy soils. I. Modification of Tribe’s cellophane film method and staining methods for the observation of microorganisms growing on cellulose material, Nippon Dojohiryo Gaku Zasshi 48: 313–317 (in Japanese).

    Google Scholar 

  • Saito, M., Wada, H., Takai, Y., 1977b, Microbial ecology of cellulose decomposition in paddy soils. II. Succession of microorganisms growing on cellulose material, Nippon Dojohiryo Gaku Zasshi 48: 318–322.

    CAS  Google Scholar 

  • Sen, M. A., 1929, Is bacterial association a factor in nitrogen assimilation by rice plants?, Agric. J. India 24: 229–231.

    CAS  Google Scholar 

  • Sewell, G. W. F., 1965, The effect of altered physical condition of soil on biological control, in: Ecology of Soil-borne Plant Pathogens—Pielude to Biological Control (K. F. Baker et al., eds.), pp. 479–494, University of California Press, Berkeley.

    Google Scholar 

  • Shchapova, L. N., 1971, Microflora of rice soils of Primore, Mikrobiologiya 40: 702–706.

    CAS  Google Scholar 

  • Shioiri, M., 1941, On denitrification in the paddy field, Kagaku 11: 24–29 (in Japanese).

    Google Scholar 

  • Singh, R. N., 1961, Role of Blue Green Algae in Nitrogen Economy of Indian Agriculture, p. 175, Indian Council for Agricultural Research, New Delhi.

    Google Scholar 

  • Sivasithamparam, K., 1971, Survival of seed borne fungi in submerged soils, Trop. Agric.Ceylon 127: 85–92.

    Google Scholar 

  • Sørensen, J., 1978, Occurrence of nitric and nitrous oxides in a coastal marine sediment, Appl Environ. Microbiol. 36: 809–813.

    PubMed  Google Scholar 

  • Stover, R. H., Thornton, N. C., and Dunlap, V. C., 1953, Flood-fallowing for eradication of Fusarium oxysporum f. cubense: I. Effect of flooding on fungus flora of clay loam soils in Ulua valley, Honduras, Soil Sci. 76: 225–238.

    Article  Google Scholar 

  • Suleimanova, S. I., 1971, Denitrifying bacteria in the soils of Kazakhstan rice paddies, Izv. Akad. NaukKaz. SSR Ser. Biol. 9: 31–35.

    Google Scholar 

  • Suzuki, T., 1967, Characteristics of microorganisms in paddy field soils, Jpn. Agric. Res. Q. 2: 8–11.

    Google Scholar 

  • Taha, S. M., Mahmoud, S. A. Z., Ibrahim, A. N., 1967, Microbiological and chemical properties of paddy soil, Plant Soil 26: 33–48.

    Article  CAS  Google Scholar 

  • Takai, Y., 1969, The mechanism of reduction in paddy soil, Jpn. Agric. Res. Q. 4: 20–23.

    CAS  Google Scholar 

  • Takai, Y., 1970, The mechanism of methane fermentation in flooded paddy soil, Soil Sci. Plant Nutr. Tokyo 16: 238–244.

    Article  CAS  Google Scholar 

  • Takai, Y., 1978, Reduction mechanism of paddy soils, in: Suidendofogaku ( K. Kawaguchi, ed.), pp. 23–55, Kodansha, Tokyo (in Japanese).

    Google Scholar 

  • Takai, Y., Kamura, T., 1969, The mechanism of reduction in waterlogged paddy soil, Folia Microbiol. 11: 304–313.

    Article  Google Scholar 

  • Takai, Y., Tezuka, C., 1971, Sulfate-reducing bacteria in paddy and upland soils, Nippon Dojohiryo Gaku Zasshi 42: 145–151.

    CAS  Google Scholar 

  • Takai, Y., Uehara, Y., 1973, Nitrification and denitrification in the surface layer of submerged soils. I. Oxidation-reduction condition, nitrogen transformation and bacterial flora in the surface and deeper layers of submerged soils, Nippon Dojohiryo Gaku Zasshi 44: 463–470.

    CAS  Google Scholar 

  • Takai, Y., Koyama, T., Kamura, T., 1956, Microbial metabolism in reduction process of paddy soil (Part I), Soil Plant Food Tokyo 2: 63–66.

    CAS  Google Scholar 

  • Takai, Y., Koyama, T., Kamura, T., 1963a, Microbial metabolism in reduction process of paddy soils. III. Effect of iron and organic matter on the reduction process (2), Soil Sci. Plant Nutr. Tokyo 9: 207–211.

    CAS  Google Scholar 

  • Takai, Y., Koyama, T., Kamura, T., 1963b, Microbial metabolism in reduction process of paddy soils. II. Effect of iron and organic matter on the reduction process (1), Soil Sci. Plant Nutr. Tokyo 9: 176–180.

    CAS  Google Scholar 

  • Takai, Y., Kagawa, H., Kobo, K., 1968, Movement of bacteria by water percolation in submerged paddy soils (Part I), Nippon Dojohiryo Gaku Zasshi 39: 219–223.

    Google Scholar 

  • Takai, Y., Koyama, T., Kamura, T., 1969a, Effects of rice plant roots and percolating water on the reduction process of flooded paddy soil in pot. V. Microbial metabolism in reduction process of paddy soils, Nippon Dojohiryo Gaku Zasshi 40: 15–19 (in Japanese).

    CAS  Google Scholar 

  • Takai, Y., Kagawa, H., Kobo, K., 1969b, Movement of bacteria by water percolation in submerged paddy soils. II. On the behavior of aerobic Gram-negative bacteria, Nippon Dojohiryo Gaku Zasshi 40: 358–363 (in Japanese).

    Google Scholar 

  • Takai, Y., Shimazu, T., Yoshida, H., Kagawa, H., Kondo, H., Wada, H., 1970, Enrichment of bacteria on the surface, a cutanic material, of prismatic peds developed in paddy subsoil (Part I), Nippon Dojohiryo Gaku Zasshi 41: 401–405 (in Japanese).

    CAS  Google Scholar 

  • Takai, Y., Wada, H., Kagawa, H., Kobo, K., 1974, Microbial mechanism of effects of water percolation on Eh, iron, and nitrogen transformation hi the submerged paddy soils, Soil Sci. Plant Nutr. Tokyo 20: 33–45.

    Article  CAS  Google Scholar 

  • Takeda, K., Furusaka, C., 1970, Studies on the bacteria isolated anaerobically from paddy field soil, Rep. Inst. Agric. Res. Tohoku Univ. 21: 1–22.

    Google Scholar 

  • Takeda, K., Furusaka, C., 1975a, Studies on the bacteria isolated anaerobically from paddy field soil. III. Production of fatty acids and ammonia by Clostridium species, Soil Sci. Plant Nutr. Tokyo 21: 113–118.

    Article  CAS  Google Scholar 

  • Takeda, K., Furusaka, C., 1975b, Studies on the bacteria isolated anaerobically from paddy field soil. IV. Model experiments on the production of branched-chain fatty acids, Soil Sci. Plant Nutr. Tokyo 21: 119–127.

    Article  CAS  Google Scholar 

  • Toerien, D. F., Hattingh, W. H. J., 1969, Anaerobic digestion. I. The microbiology of anaerobic digestion, Water Res. 3: 385–408.

    Article  CAS  Google Scholar 

  • Tribe, H. T., 1957, Ecology of microorganisms hi soils as observed during their development upon buried cellulose film, in: Microbial Ecology ( R. E. O. Williams, ed.), pp. 287–298, Cambridge University Press, Cambridge.

    Google Scholar 

  • Trimble, R. B., Ehrlich, H. L., 1968, Bacteriology of manganese nodules. III. Reduction of MnO2 by two strains of nodule bacteria, Appl. Microbiol. 16: 695–702.

    PubMed  CAS  Google Scholar 

  • Trimble, R. B., Ehrlich, H. L., 1970, Bacteriology of manganese nodules. IV. Induction of an MnO2 - reductase system hi a marine Bacillus, Appl. Microbiol. 19: 966–972.

    CAS  Google Scholar 

  • Trolldenier, G., 1973, Secondary effects of potassium and nitrogen nutrition of rice: Change hi microbial activity and iron reduction hi the rhizosphere, Plant Soil 38: 267–279.

    Article  CAS  Google Scholar 

  • Trolldenier, G., 1977a, Mineral nutrition and reduction processes hi the rhizosphere of rice, Plant Soil 47: 193–202.

    Article  CAS  Google Scholar 

  • Trolldenier, G., 1977b, Influence of some environmental factors on nitrogen fixation in the rhizosphere of rice, Plant Soil 47: 203–217.

    Article  CAS  Google Scholar 

  • Tu, C. C., 1975, Fusarium wilt suppressive soil in Taiwan and the existence of Fusarium oxysporum f. sp. lini in rice root, Natl. Sci. Coun. Monogr. (Taiwan) 3 (9): 20–36.

    Google Scholar 

  • Uehara, Y., Wada, E., Takai, Y., 1978, Nitrification and denitrification in the surface layers of submerged soils, Proc. 11th Int. Soil Sci. Soc. Cong., Edmonton, Canada 1: 299–300.

    Google Scholar 

  • Van Cleemput, O., Patrick, W. H., Jr., Mcllhenny, R. C., 1975, Formation of chemical and biological denitrification products in flooded soil at controlled pH and redox potential, Soil Biol. Biochem. 7: 329–332.

    Article  Google Scholar 

  • Van Cleemput, O., Patrick, W. H., Jr., Mcllhenny, R. C., 1976, Nitrite decomposition in flooded soil under different pH and redox potential conditions, Soil Sci. Soc. Am. J. 40: 55–60.

    Article  Google Scholar 

  • Van Raalte, M H., 1941, On the oxygen supply of rice roots, Ann. Bot. Garden Buitenzorg 50: 99–114.

    Google Scholar 

  • Venkataraman, G. S., 1975, The role of blue-peen algae in tropical rice cultivation, in: Nitrogen Fixation by Free-living Microorganisms ( W. D. P. Stewart, ed.), pp. 207–218, Cambridge University Press, London.

    Google Scholar 

  • Venkatesan, R., Rangaswami, G., 1965, Studies on the microbial populations of paddy soil as influenced by moisture percentage and rice crop, Indian J. Exp. Bot. 3: 30–31.

    Google Scholar 

  • Vostrov, I. S., Dolgikh, Y. R.. 1970, Microflora of submerged soils of the rice field, Izv. Akad. Naukkaz. SSR Ser. Biol. 1: 64–69 (in Russian).

    Google Scholar 

  • Wada, H., 1971, Stereoscopic observation of paddy soils (Part I), Nippon Dojohiryo Gaku Zasshi 42: 421–428 (in Japanese).

    Google Scholar 

  • Wada, H., 1974, Chemical and biological changes at micro-site of submerged soils. I. Generation and disappearance of bubbles and biological reduction of TTC, Nippon Dojohiryo Gaku Zasshi 45: 435–440 (in Japanese).

    CAS  Google Scholar 

  • Wada, H., 1975, Micropedological approach to the study of dynamics of paddy soils, Jpn. Agric. Res. Q. 9: 24–29.

    Google Scholar 

  • Wada, H., 1976, Chemical and biological changes at micro-sites of submerged soil. II. Formation of ferrous sulfide and reduction of NTB and TB, Nippon Dojohiryo Gaku Zasshi 47: 109–113 (in Japanese).

    CAS  Google Scholar 

  • Wada, H., Kanazawa, S., 1970, Method of fractionation of soil organic matter according to its size and density (Part I), Nippon Dojohiryo Gaku Zasshi 41: 273–280 (in Japanese).

    CAS  Google Scholar 

  • Wada, H., Yoshida, H., Takai, Y., 1971, Cutans developed in subsurface horizons of clayey paddy soils (Part I), Nippon Dojohiryo Gaku Zasshi 42: 12–17 (in Japanese).

    Google Scholar 

  • Wada, H., Ishii, H., Takai, Y., 1974, Distribution pattern of substances and microorganisms in connection with aggregates of different sizes of paddy soil. II. Content of chemical substances and population of microorganisms, Nippon Dojohiryo Gaku Zasshi 45: 208–212 (in Japanese).

    CAS  Google Scholar 

  • Wada, H., Seiyarosakol, A., Kimura, M., Takai, Y., 1978a, The process of manganese deposition in paddy soils. I. A hypothesis and its verification, Soil Sci. Plant Nutr. Tokyo 24: 55–62.

    Article  CAS  Google Scholar 

  • Wada, H., Seiyarosakol, A., Kimura, M., Takai, Y., 1978b, The process of manganese deposition in paddy soils. II. Microorganisms responsible for manganese deposition, Soil Sci. Plant Nutr. Tokyo 24: 319–325.

    Article  CAS  Google Scholar 

  • Wakao, N., Furusaka, C., 1972, A new agar plate method for the quantitative study of sulfate-reducing bacteria in soil, Soil Sci. Plant Nutr. Tokyo 18: 39–44.

    Article  Google Scholar 

  • Wakao, N., Furusaka, C., 1973, Distribution of sulfate-reducing bacteria hi paddy-field soil, Soil Sci. Plant Nutr. Tokyo 19: 47–52.

    Article  Google Scholar 

  • Wakao, N., Furusaka, C., 1976a, Presence of microaggregates containing sulfate-reducing bacteria in a paddy-field soil, Soil Biol. Biochem. 8: 157–159.

    Article  Google Scholar 

  • Wakao, N., Furusaka, C., 1976b, Influence of organic matter on the distribution of sulfate-reducing bacteria in a paddy-field soil, Soil Sci. Plant Nutr. Tokyo 22: 203.

    Article  Google Scholar 

  • Wakao, H., Hattori, T., Furusaka, C., 1973, Study on the distribution patterns of sulfate reducing bacteria in a paddy-field soil by Iδ -index, Soil Sci. Plant Nutr. Tokyo 19: 201–203.

    Article  Google Scholar 

  • Watanabe, I., 1974, A statistical study on the relationship between Nitrosomonas population and nitrifying activity of soil, Nippon Dojohiryo Gaku Zasshi 45: 279–284 (in Japanese).

    Google Scholar 

  • Watanabe, I, 1978, Biological nitrogen fixation in rice soils, in: Soil and Rice, pp. 465–478, The International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Watanabe, I, Barraquio, W. L., 1979, Low levels of fixed nitrogen required for isolation of free-living N2 -fixing organisms from rice roots, Nature (London) 277: 565.

    Article  CAS  Google Scholar 

  • Watanabe, I., Cholitkul, W., 1979, Field studies on nitrogen fixation in paddy softs, in: Nitrogen and Rice, pp. 223–239, The International Rice Research Institute, Los Baños, Philippines.

    Google Scholar 

  • Watanabe, L, Lee, K. K., Alimagno, B. V., Sato, M., Del Rosario, D. C., De Guzman, M. R., 1977, Biological Nitrogen Fixation in Paddy Fields Studied by in situ Acetylene-Reduction Assays, IRRI Research Paper Series, No. 3, p. 9, The International Rice Research Institute, Los Baños, Philippines.

    Google Scholar 

  • Watanabe, I., Lee, K. K., Alimagno, B. V., 1978a, Seasonal change of N2-fixing rate in rice field assayed by in situ acetylene reduction technique. I. Experiments hi long term fertility plots. Soil Sci. Plant Nutr. Tokyo 24: 1–14.

    Article  CAS  Google Scholar 

  • Watanabe, I., Lee, K. K., De Guzman, M. R., 1978b, Seasonal change of N2-fixing rate in rice field assayed by in situ acetylene reduction technique. II. Estimate of nitrogen fixation associated with rice plants, Soil Sci. Plant Nutr. Tokyo 24: 465–472.

    Article  CAS  Google Scholar 

  • Watanabe, L, Barraquio, W., De Guzman, M. R., Cabrera, D. A., 1979, Nitrogen-fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice, Appl. Environ. Microbiol. 37: 813–819.

    PubMed  CAS  Google Scholar 

  • Widdel, F., Pfennig, N., 1977, A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans, Arch. Microbiol. 112: 119–122.

    Article  CAS  Google Scholar 

  • Winfrey, M. R., Zeikus, J. G., 1977, Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments, Appl. Environ Microbiol. 33: 275–281.

    PubMed  CAS  Google Scholar 

  • Yamagata, U., 1924, On the distribution of Azotobacter in relation to the reaction of soils in Japan, Nippon Nogei Kagaku Kaishi 1: 85–126 (in Japanese).

    Article  Google Scholar 

  • Yamaguchi, M., 1979, Biological nitrogen fixation in flooded rice field in: Nitrogen and Rice, pp. 193–204, The International Rice Research Institute, Los Baños, Philippines.

    Google Scholar 

  • Yamane, I, 1957, Nitrate reduction and denitrification in flooded soils, Soil Plant Food Tokyo 3: 100–107.

    CAS  Google Scholar 

  • Yamane, I., Sato, K., 1964, Decomposition of glucose and gas formation in flooded soil, Soil Sci. Plant Nutr. Tokyo 10: 127–133.

    CAS  Google Scholar 

  • Yamane, I., Sato, K., 1967, Effect of temperature on the decomposition of organic substances in flooded soil, Soil Sci. Plant Nutr. Tokyo 13: 94–100.

    Article  CAS  Google Scholar 

  • Yoneyama, T., Lee, K. K., Yoshida, T., 1977, Decomposition of rice residues in tropical soils. IV. The effect of rice straw on nitrogen fixation by heterotrophic bacteria in some Philippine soils, Soil Sci. Plant Nutr. Tokyo 23: 287–295.

    Article  CAS  Google Scholar 

  • Yoshida, K., 1975, The reduction mechanism of manganese in paddy soils. VIII. The role of ferrous iron in manganese reduction in waterlogged paddy soils, Nippon Dojohiryo Gaku Zasshi 46: 458–461 (in Japanese).

    CAS  Google Scholar 

  • Yoshida, T., 1975, Microbial metabolism of flooded soils, in: Soil Biochemistry, Vol. 3 ( E. A. Paul and A. D. MacLaren, eds.), pp. 83–122, Marcel Dekker, New York.

    Google Scholar 

  • Yoshida, T., Ancajas, R. R., 1971, Nitrogen fixation by bacteria hi the root zone of rice, Soil Sci. Soc. Am. Proc. 35: 156–157.

    Article  CAS  Google Scholar 

  • Yoshida, K., Kamura, T., 1972a, The reduction mechanisms of manganese in paddy soils. II. Role of microorganisms in the reduction process of manganese, Nippon Dojohiryo Gaku Zasshi 43: 447–450 (in Japanese).

    CAS  Google Scholar 

  • Yoshida, K., Kamura, T., 1972b, The reduction mechanism of manganese in paddy soils. III. Manganese-reducing microorganisms in soils and the reduction mechanisms of manganese in the culture solution, Nippon Dojohiryo Gaku Zasshi 43: 451–455 (in Japanese).

    CAS  Google Scholar 

  • Yoshida, T., Broadbent, F. E., 1975, Movement of atmospheric nitrogen in rice plants, Soil Sci. 120: 288–291.

    Article  CAS  Google Scholar 

  • Yoshida, K., Kamura, T., 1975a, The reduction mechanism of manganese in paddy soils. VI. The reaction conditions of manganese reduction by metabolic products of microorganisms, Nippon Dojohiryo Gaku Zasshi 46: 377–381 (in Japanese).

    CAS  Google Scholar 

  • Yoshida, K., Kamura, T., 1975b, The reduction mechanism of manganese in paddy soils. VII. Model experiments on the role of ferrous iron in manganese reduction, Nippon Dojohiryo Gaku Zasshi 46: 382–388 (in Japanese).

    CAS  Google Scholar 

  • Zeikus, J. G., 1977, The biology of methanogenic bacteria, Bacteriol Rev. 41: 514–541.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Watanabe, I., Furusaka, C. (1980). Microbial Ecology of Flooded Rice Soils. In: Alexander, M. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8291-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8291-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8293-9

  • Online ISBN: 978-1-4615-8291-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics