Skip to main content

Cotranslational Folding and Transmembrane Transport of Proteins

  • Chapter
Ribosomes

Part of the book series: Cellular Organelles ((CORG))

  • 199 Accesses

Abstract

The polypeptide chain on the ribosome elongates by consecutive growth from the N-terminus to the C-terminus. During growth, the C-terminus is covalently fixed in the ribosomal PTC, whereas the N-terminus is free. Obviously, the free N-terminal region of the nascent polypeptide chain must acquire some conformation. This implies that while the protein is being synthesized on the ribosome, it undergoes some folding that begins from its N-terminal part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman, M. R., Sabatini, D. D., and Blobel, G. (1973) Ribosome-membrane interaction: Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components, J. Cell Biol. 56:206–229.

    Article  PubMed  CAS  Google Scholar 

  • Bacher, G., Luetcke, H., Jungnickel, B., Rapoport, T. A., and Dobberstein, B. (1996) Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting, Nature 381:248–251.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, R., Bubeck, D., Grassucci, R., Penczek, P., Verschoor, A., Blobel, G., and Frank, J. (1997) Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex, Science 278:2123–2126.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, R. P., Mizzen, L. A., and Welch, W. J. (1990) Interaction of Hsp 70 with newly synthesized proteins: Implications for protein folding and assembly, Science 248:850–854.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, G. (1980) Intracellular protein topogenesis, Proc. Natl. Acad. Sci. USA 77:1496–1500.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, G., and Dobberstein, B. (1975) Transfer of protein across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes by murine myeloma, J. Cell Biol. 67:835–851.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, G., and Sabatini, D. D. (1970) Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes, J. Cell Biol. 45:130–145.

    Article  PubMed  CAS  Google Scholar 

  • Blobel, G., and Sabatini, D. D. (1971) Ribosome-membrane interaction in eukaryotic cells, in Biomembranes (L. A. Manson, ed.), vol. 2, pp. 193–195, Plenum Press, New York, London.

    Chapter  Google Scholar 

  • Borel, A. C., and Simon, S. M. (1996) Biogenesis of polytopic membrane proteins: membrane segments assemble within translocation channels prior to membrane integration, Cell 85:379–389.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Helenius, J., Braakman, I., and Helenius, A. (1995) Co-translational folding and calnexin binding during glycoprotein synthesis, Proc. Natl. Acad. Sci. USA 92:6229–6233.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A. K. (1994) Negatively-stained polysomes on rough microsome vesicles viewed by electron microscopy: further evidence regarding the orientation of attached ribosomes, Cell Tissue Res. 276:439–444.

    Article  PubMed  CAS  Google Scholar 

  • Corsi, A. K., and Schekman, R. (1996) Mechanism of polypeptide translocation into the endoplasmic reticulum, J. Biol. Chem. 271:30299–30302.

    Article  PubMed  CAS  Google Scholar 

  • Crowley, K. S., Liao, S., Worrell, V. E., Reinhart, G. D., and Johnson, A. E. (1994) Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore, Cell 78:461–471.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R. J., and van der Vies, S. M. (1991) Molecular chaperones, Annu. Rev. Biochem. 60:321–347.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J., Verschoor, A., Li, Y., Zhu, J., Lata, R. K., Radermacher, M., Penczek, P., Grassucci, R., Agrawal, R. K., and Srivastava, S. (1995) A model of the translational apparatus based on a three-dimensional reconstruction of the Escherichia coli ribosome, in Frontiers in Translation (A. T. Matheson, J. E. Davies, P. P. Dennis, and W. E. Hill, eds.), Biochem. Cell Biol. 73:757–765.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, R. B., and Hillson, D. A. (1980) Formation of disulfide bonds, in The Enzymology of Post-translational Modifications of Proteins (R. B. Freedman and H. C. Hawkins, eds.), vol. 1, pp. 157–212, Academic Press, London, New York.

    Google Scholar 

  • Frydman, J., Nimmesgern, E., Ohtsuka, K., and Hartl, F. U. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones, Nature 370:111–117.

    Article  PubMed  CAS  Google Scholar 

  • Ganoza, M. C., and Williams, C. A. (1969) In vitro synthesis of different categories of specific protein by membrane-bound and free ribosomes, Proc. Natl. Acad. Sci. USA 63:1370–1376.

    Article  PubMed  CAS  Google Scholar 

  • Gething, M.-J., and Sambrook, J. (1992) Protein folding in the cell, Nature 355:33–45.

    Article  PubMed  CAS  Google Scholar 

  • Goerlich, D., Prehn, S., Hartmann, E., Kalies, K.-U., and Rapoport, T. A. (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation, Cell 71:489–503.

    Article  Google Scholar 

  • Hamlin, J., and Zabin, I. (1972) β-Galactosidase: Immunological activity of ribosome-bound, growing polypeptide chains, Proc. Natl. Acad. Sci. USA 69:412–416.

    Article  PubMed  CAS  Google Scholar 

  • Hanein, D., Matlack, K. E. S., Jungnickel, B., Plath, K., Kalies, K.-U., Miller, K. R., Rapoport, T. A., and Akey, C. W. (1996) Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation, Cell 87:721–732.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, T. M., Brownlee, G. G., and Milsteiri, C. (1974) Studies on polysome-membrane interactions in mouse myeloma cells, Eur. J. Biochem. 47:613–620.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, F. U. (1996) Molecular chaperones in cellular protein folding, Nature 381:571–580.

    Article  PubMed  CAS  Google Scholar 

  • Harwood, R. (1980) Protein transfer across membranes: The role of signal sequences and signal peptidase activity, in The Enzymology of Post-translational Modifications of Proteins (R. B. Freedman and H. C. Hawkins, eds.), vol. 1, pp. 3–52, Academic Press, London, New York.

    Google Scholar 

  • Hegde, R. S., and Lingappa, V. R. (1996) Sequence-specific alteration of the ribosome-membrane junction exposes nascent secretory proteins to the cytosol, Cell 85:217–228.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., and Unwin, P. N. T. (1975) Three-dimensional model of purple membrane obtained by electron microscopy, Nature 257:28–32.

    Article  PubMed  CAS  Google Scholar 

  • Hendrick, J. P., Langer, T., Davis, T. A., Hartl, F. U., and Wiedman, M. (1993) Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides, Proc. Natl. Acad. Sci. USA 90:10216–10220.

    Article  PubMed  CAS  Google Scholar 

  • High, S., and Stirling, C. J. (1993) Protein translocation across membranes: common themes in divergent organisms, Trends Cell Biol. 3:335–339.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, S. C., and Ivatt, R. J. (1981) Synthesis and processing of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 50:555–583.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, H., and Beckwith, J. (1977) Synthesis and processing of an Escherichia coli alkaline phosphatase precursor in vitro, Proc. Natl. Acad. Sci. USA 74:1440–1444.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, M., and Halegoua, S. (1980) Secretion and membrane localization of proteins in Escherichia coli, CRC Crit. Rev. Biochem. 7:339–371.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, R., and Hunter, T. (1970) Role of methionine in the initiation of protein synthesis, Nature 227:672–676.

    Article  PubMed  CAS  Google Scholar 

  • Jaenicke, R. (1993) Role of accessory proteins in protein folding, Curr. Opinion Struct. Biol. 3:104–112.

    Article  CAS  Google Scholar 

  • Johnson, A. E. (1997) Protein translocation at the ER membrane: a complex process becomes more so, Trends Cell Biol. 7:90–95.

    Article  PubMed  CAS  Google Scholar 

  • Kiho, Y., and Rich, A. (1964) Induced enzyme formed on bacterial polyribosomes, Proc. Natl. Acad. Sci. USA 51:111–118.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, V. A., Makeyev, E. V., Kommer, A., and Spirin, A. S. (1995) Cotranslational folding of proteins, Biochem. Cell Biol. 73:1217–1220.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, V. A., Makeyev, E. V., and Spirin, A. S. (1994) Folding of firefly luciferase during translation in a cell-free system, EMBO J. 13:3631–3637.

    PubMed  CAS  Google Scholar 

  • Komar, A. A., Kommer, A., Krasheninnikov, I. A., and Spirin, A. S. (1997) Cotranslational folding of globin, J. Biol. Chem. 272:10646–10651.

    Article  PubMed  CAS  Google Scholar 

  • Langer, T., Lu, C., Echols, H., Flanagan, J., Hayer, M. K., and Hartl, F. U. (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding, Nature 356:683–688.

    Article  PubMed  CAS  Google Scholar 

  • Lauring, B., Kreibich, G., and Wiedmann, M. (1995) The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex, Proc. Natl. Acad. Sci. USA 92:9435–9439.

    Article  PubMed  CAS  Google Scholar 

  • Lauring B., Sakai, H., Kreibich, G., and Wiedmann, M. (1995) Nascent polypeptide-associated complex prevents mistargeting of nascent chains to the endoplasmic reticulum, Proc. Natl. Acad. Sci. USA 92:5411–5415.

    Article  PubMed  CAS  Google Scholar 

  • Lim, V. I., and Spirin, A. S. (1986) Stereochemical analysis of ribosomal transpeptidation conformation of nascent peptide. APPENDIX. Lim, V. I. Disallowed conformations of the tetrahedral intermediate, J. Mol. Biol. 188:565–577.

    Article  PubMed  CAS  Google Scholar 

  • Luetcke, H. (1995) Signal recognition particle (SRP), a ubiquitous initiator of protein translocation, Eur. J. Biochem. 228:531–550.

    Article  CAS  Google Scholar 

  • Luirink, J., and Dobberstein, B. (1994) Mammalian and Escherichia coli signal recognition particles, Mol. Microbiol. 11:9–13.

    Article  PubMed  CAS  Google Scholar 

  • Makeyev, E. V., Kolb, V. A., and Spirin, A. S. (1996) Enzymatic activity of the ribosome-bound nascent polypeptide, FEBS Letters 378:166–170.

    Article  PubMed  CAS  Google Scholar 

  • Malkin, L. I., and Rich, A. (1967) Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding, J. Mol. Biol. 26:329–346.

    Article  PubMed  CAS  Google Scholar 

  • Martoglio, B., and Dobberstein, B. (1996) Snapshots of membrane-translocating proteins, Trends Cell Biol. 6:142–147.

    Article  PubMed  CAS  Google Scholar 

  • Milstein, C., Brownlee, G. G., Harrison, T. H., and Mathews, M. B. (1972) A possible precursor of immunoglobulin light chains, Nature New Biol. 239:117–120.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, T. G., and Lodish, H. F. (1975) Site of synthesis of membrane and nonmembrane proteins of vesicular stomatitis virus, J. Biol. Chem. 250:6955–6962.

    PubMed  CAS  Google Scholar 

  • Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M., and Craig, E. A. (1992) The translational machinery and 70 kd heat shock protein cooperate in protein synthesis, Cell 71:97–105.

    Article  PubMed  CAS  Google Scholar 

  • Netzer, W. J., and Hartl, F. U. (1997) Recombination of protein domains facilitated by co-translational folding in eukaryotes, Nature 388:343–349.

    Article  PubMed  CAS  Google Scholar 

  • Palmiter, R. D., Gagnon, J., and Walsh, K. A. (1978) Ovalbumin: A secreted protein without a transient hydrophobic leader sequence, Proc. Natl. Acad. Sci. USA 75:94–98.

    Article  PubMed  CAS  Google Scholar 

  • Phelps, C. F. (1980) Glycosylation, in The Enzymology of Post-translational Modifications of Proteins (R. B. Freedman and H. C. Hawkins, eds.), vol. 1, pp. 105–155, Academic Press, London, New York.

    Google Scholar 

  • Powers, T., and Walter, P. (1996) The nascent polypeptide-associated complex modulates interactions between the signal recognition particle and the ribosome, Curr. Biol. 6:331–338.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, T.A., Jungnickel, B., and Kutay, U. (1996) Protein transport across the endoplasmic reticulum and bacterial inner membranes, Annu. Bev. Biochem. 65:271–303.

    CAS  Google Scholar 

  • Redman, C. M. (1969) Biosynthesis of serum proteins and ferritin by free and attached ribosomes of rat liver, J. Biol. Chem. 244:4308–4315.

    PubMed  CAS  Google Scholar 

  • Redman, C. M., Siekevitz, P., and Palade, G. E. (1966) Synthesis and transfer of amylase in pigeon pancreas microsomes, J. Biol. Chem. 241:1150–1160.

    PubMed  CAS  Google Scholar 

  • Ryabova, L. A., Selivanova, O. M., Baranov, V. I., Vasiliev, V. D., and Spirin, A. S. (1988) Does the channel for nascent peptide exist inside the ribosome? Immune electron microscopy study, FEBS Letters 226:255–260.

    Article  CAS  Google Scholar 

  • Sabatini, D. D., and Blobel, G. (1970) Controlled proteolysis of nascent polypeptides in rat liver cell fractions. II. Location of the polypeptides in rough microsomes, J. Cell Biol. 45:146–157.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini, D. D., Tashiro, Y., and Palade, G. E. (1966) On the attachment of ribosomes to microsomal membranes, J. Mol. Biol. 19:503–524.

    Article  PubMed  CAS  Google Scholar 

  • Schechter, I., McKean, D. J., Guyer, R., and Terry, W. (1975) Partial amino acid sequence of the precursor of immunoglobulin light chain programmed by messenger RNA in vitro, Science 188:160–162.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, V., and Walter, P. (1988) Functional dissection of the signal recognition particle, Trends Biochem. Sci. 13:314–316.

    Article  PubMed  CAS  Google Scholar 

  • Siekevitz, P., and Palade, G. E. (1960) A cytochemical study on the pancreas of the guinea pig. V. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions, J. Biophys. Biochem. Cytol. 7:619–630.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. P., Tai, P.-C., and Davis, B. D. (1978a) Nascent peptide as sole attachment of polysomes to membranes in bacteria, Proc. Natl. Acad. Sci. USA 75:814–817.

    Article  PubMed  CAS  Google Scholar 

  • Smith, W. P., Tai, P. C., and Davis, B. D. (1978b) Interaction of secreted nascent chains with surrounding membrane in Bacillus subtilis, Proc. Natl. Acad. Sci. USA 75:5922–5925.

    Article  PubMed  CAS  Google Scholar 

  • Spirin, A. S., and Lim, V. I. (1986) Stereochemical analysis of ribosomal transpeptidation. Translocation, and nascent peptide folding, in Structure, Function, and Genetics of Ribosomes (B. Hardesty and G. Kramer, eds.), pp. 556–572, Springer-Verlag, New York, Berlin.

    Chapter  Google Scholar 

  • Tatu, U., and Helenius, A. (1997) Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum, J. Cell Biol. 136:555–565.

    Article  PubMed  CAS  Google Scholar 

  • Unwin, P. N. T. (1979) Attachment of ribosome crystals to intracellular membranes, J. Mol. Biol. 132:69–84.

    Article  PubMed  CAS  Google Scholar 

  • von Heijne, G. (1988) Transcending the impenetrable: how proteins come to terms with membranes, Biochim. Biophys. Acta 947:307–333.

    Article  Google Scholar 

  • Walter, P., and Johnson, A. E. (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane, Annu. Rev. Cell Biol. 10:87–119.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Sakai, H., and Wiedmann, M. (1995) NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center, J. Cell Biol. 130:519–528.

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann, B., Sakai, H., Davis, T. A., and Wiedmann, M. (1994) A protein complex required for signal-sequence-specific sorting and translocation, Nature 370:434–440.

    Article  PubMed  CAS  Google Scholar 

  • Yonath, A., Leonard, K. R., and Wittmann, H. G. (1987) A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction, Science 236:813–817.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, A., Watanabe, S., and Morris, J. (1970) Initiation of rabbit hemoglobin synthesis: methionine and formylmethionine at the N-terminal, Proc. Natl. Acad. Sci. USA 67:1600–1607.

    Article  PubMed  CAS  Google Scholar 

  • Zipser, D., and Perrin, D. (1963) Complementation on ribosomes, Cold Spring Harbor Symp. Quant. Biol. 28:533–537.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Spirin, A.S. (1999). Cotranslational Folding and Transmembrane Transport of Proteins. In: Ribosomes. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7817-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7817-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46146-0

  • Online ISBN: 978-1-4615-7817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics