Skip to main content

Molecular Biology of Muscle Development

The Myosin Gene Family of Caenorhabditis elegans

  • Chapter
Molecular Neurobiology

Part of the book series: Current Topics in Neurobiology ((CTNB))

  • 44 Accesses

Abstract

The small soil nematode Caenorhabditis elegans is an attractive organism in which to apply biochemical and genetic approaches to the study of muscle development and function. Only two major muscles are present in the organism—the pharyngeal muscle and the body wall muscle—and the anatomy and lineage of all the muscle cells in the organism throughout development is known (Sulston et al., 1983; Sulston and Horvitz, 1977). Because a large fraction of the nematode tissue mass is muscle, the major contractile proteins can be isolated in milligram quantities from a few liters of nematode culture (Epstein et al.,1974; Waterston et al., 1977; Harris and Epstein, 1977; MacLeod et al., 1977a,b; Zengel and Epstein, 1980c). Caenorhabditis elegans exhibits a characteristic swimming pattern on the surface of agar plates. Genetic analysis (Brenner, 1974) defined mutations in more than 100 different genes that produce animals with defective motility (the uncoordinated or unc phenotype). Mutations in 25 of these unc genes produce gross abnormalities in muscle ultrastructure (Waterston et al.,1980; Zengel and Epstein, 1980b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelstein, R. S., and Eisenberg, E., 1980, Regulation and kinetics of the actin—myosin—ATP interaction, Annu. Rev. Biochem. 49: 921–956.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, D. G., 1984, Localization of the ribosomal genes in Caenorhabditis elegans chromosomes by in situ hybridization using biotin-labeled probes. EMBO J. 3: 1227–1234.

    PubMed  CAS  Google Scholar 

  • Alberston, D. G., 1985, Mapping muscle protein genes by in situ hybridization using biotin-labeled probes, EMBO J. 4: 2493–2498.

    Google Scholar 

  • Albertini, A. M., Hoter, M., Calos, M. P., and Miller, J. H., 1982, On the formation of spontaneous deletions: The importance of short sequence homologies in the generation of large deletions, Cell 29: 319–328.

    Google Scholar 

  • Anderson, P., and Brenner, S., 1984, A selection for myosin heavy chain mutants in the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 81: 4470–4474.

    Article  PubMed  CAS  Google Scholar 

  • Balant, M., Wolf, I., Tarcsafalvi, A., Gergely, J., and Streter, A., 1978, Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin, Arch. Biochem. Biophys. 190: 793–799.

    Google Scholar 

  • Benian, G. M., Barstead, R., Moerman, D. G., and Waterston, R. H., 1987, The une-22 gene of Caenorhabditis elegans encodes a 500,000 Mr component of the thick filament, J. Mol. Biol., submitted for publication.

    Google Scholar 

  • Bennet, A. J., Patel, N., Wells, C., and Bagshaw, C. R., 1984, 8-Anilino-1-naphthalenesulphonate, a fluorescent probe for the regulatory light chain binding site of scallop myosin. J. Muscle Res. Cell Motil., 5: 165–182.

    Google Scholar 

  • Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV40 early promoter region, Nature (Lond.) 290: 304–310.

    Article  CAS  Google Scholar 

  • Biggin, M. D., Gibson, T. J., and Hong, G. F., 1983, Buffer gradient gels and 35S label as an aid to rapid DNA sequencing, Proc. Natl. Acad. Sci. USA 13: 3963–3965.

    Article  Google Scholar 

  • Bolten, S. L., Powell-Abel, P., Fischoff, D. A., and Waterston, R. H., 1984, The sup-7 (st5) X gene of Caenorhabditis elegans encodes a tRNATrP amber suppressor. Proc. Natl. Acad. Sci USA 81: 6784–6788.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S., 1974, Thé genetics of Caenorhabditis elegans, Genetics 77: 71–94.

    PubMed  CAS  Google Scholar 

  • Burke, M., and Kamalkannan, V., 1985, Effect of trypic cleavage on the stability of myosin subfragment-1.Isolation and properties of the severed heavy chain subunit, Biochemistry 24: 846–852.

    Article  PubMed  CAS  Google Scholar 

  • Burke, M., and Reisler, E., 1977, Effect of nucleotide binding on the proximity of the essential sulfhydryl groups of myosin. Chemical probing of movement of residues during conformational transitions, Biochemistry 16: 5559–5563.

    Article  PubMed  CAS  Google Scholar 

  • Burke, M., Sivaramakrishnan, M., and Kamalakannan, V., 1983, On the mode of the alkali light chain association to the heavy chain of myosin subfragment-1. Evidence for the involvement of the carboxyl-terminal region of the heavy chain, Biochemistry 22: 3046–3053.

    Article  PubMed  CAS  Google Scholar 

  • Cardinaud, R., 1979, Proteolytic fragmentation of myosin: Location of SH-1 and SH-2 thiols, Biochemie 61: 807–821.

    Article  CAS  Google Scholar 

  • Capony, J., and Elzinga, M., 1981, The amino acid sequence of a 34,000 dalton fragment from S-2 of myosin, Biophys. J. 33: 148a.

    Google Scholar 

  • Chaussepied, P., Mornet, D., Andemard, C., Derancourt, J., and Kassab, R., 1986a, Abolition of ATPase activities of skeletal myosin subfragment-1 by a new selective proteolytic cleavage within the 50 kilodalton heavy chain segment, Biochemistry 25: 1134–1140.

    Article  PubMed  CAS  Google Scholar 

  • Chaussepied, P., Mornet, D., Barman, T. E., Travers, F., and Kassab, R., 1986b, Alteration of the ATP hydrolysis and actin binding properties of thrombin-cut myosin subfragment-1; Biochemistry 25: 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T., Appelgate, D., and Reisler, E., 1985, Cross-linking of actin to myosin subfrag- ment-1: Course of reaction and stoichiometry of products, Biochemistry 24: 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Chizzonite, R. A., Everett, A. W., Clark, W. A., Jakovicic, S., Rabinowitz, M., and Zak, R., 1982, Isolation and characterization of two molecular variants of myosin heavy chain from rabbit ventricle, J. Biol. Chem 257: 2056–2065.

    PubMed  CAS  Google Scholar 

  • Cochet, M., Gannon, F., Hen, R., Maroteaux, L., Perrin, F., and Chambon, P., 1979, Organisation and sequence studies of the 17-piece chicken conalbumin gene, Nature (Lond.) 282: 567–574.

    Article  CAS  Google Scholar 

  • Cohen, C., 1982, Matching molecules in the catch mechanism, Proc. Natl. Acad. Sci. USA 79: 3176–3178.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, C., Szent-Györgyi, A. G., and Kendrick-Jones, J., 1971, Paramyosin and the filaments of molluscan “catch” muscles, I. Paramyosin: Structure and assembly, J. Mol. Biol. 56: 223–237.

    Article  PubMed  CAS  Google Scholar 

  • Coulondre, C., and Miller, J. H., 1977, Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacl gene of Escherichia coli, J. Mol. Biol. 117: 577–606.

    Article  PubMed  CAS  Google Scholar 

  • Craig, R. W., 1977, Structure of A-segments from frog and rabbit skeletal muscle, J. Mol. Biol. 109: 69–81.

    Article  PubMed  CAS  Google Scholar 

  • Craig, R. W., and Offer, G., 1976, The location of C-protein in rabbit skeletal muscle, Proc. R. Soc. Lond. B 192: 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F. H. C., 1952, Is alpha-keratin a coiled coil? Nature (Loud.) 170: 882–883.

    Article  CAS  Google Scholar 

  • Cummins, C., and Anderson, P, 1987, The myosin light chain genes of Caenorhabditis elegans, J. Mol. Biol., submitted for publication.

    Google Scholar 

  • Davis, T. S., 1981, pressure-jump studies on the length regulation kinetics of the self-assembly of myosin from vertebrate skeletal muscle into thick filament, Biochem. J. 197: 309–314.

    Google Scholar 

  • Dayhoff, M. O., 1978, Atlas of Protein Sequence and Structure, The National Biomedical Research Foundation, Washington, D. C.

    Google Scholar 

  • Dente, L., Cesarini, G., and Cortese, R., 1983, pEMBL: A new family of single-stranded plasmids, Nucleic Acids Res. 11: 1645–1657.

    Google Scholar 

  • Dibb, N. J., Brown, D. M., Kam, J., Moerman D. G., Bolten, S. L., and Waterston, R. H., 1985, Sequence analysis of mutations that affect the synthesis, assembly and enzymatic activity of the unc-54 myosin heavy chain of Caenorhabditis elegans, J. Mol. Biol. 183: 543–551.

    Article  PubMed  CAS  Google Scholar 

  • Dibb, N. J., Maruyama, I., and Kam, J., 1987, The Caenorhabditis elegans myosin heavy chain gene family, J. Mol. Biol., submitted for publication.

    Google Scholar 

  • Doolittle, R. F., Goldbaum, D. M., and Doolittle, L. R., 1978, Designation of sequences involved in the “coiled-coil” interdomainal connections in fibrinogen: Construction of an atomic scale model, J. Mol. Biol. 120: 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Dugaiczyk, A., Woo, S. L. C., Lai, E. C., Mace, M. L., McReynolds, L., and O’Malley, B. W., 1978, The natural ovalbumin gene contains seven intervening sequences, Nature (Lond.) 274: 328–333.

    Article  CAS  Google Scholar 

  • Elliot, A., and Offer, G., 1978, Shape and flexibility of the myosin molecule, J. Mol. Biol. 123: 505–519.

    Article  Google Scholar 

  • Ellis, R. E., Sulston, J. E., and Coulson, A. R., 1986 The rDNA of Caenorhabditis elegans: Sequence and structure. Nucleic Acids Res. 14: 2345–2364.

    Article  PubMed  CAS  Google Scholar 

  • Elzinga, M., and Collins J. H., 1977, Amino acid sequence of a myosin fragment that contains SH-1, SH-2, and N-methylhistidihe, Proc. Natl. Acad. Sci. USA 74: 4281–4284.

    Article  PubMed  CAS  Google Scholar 

  • Elzinga, M., and Trus, B. L., 1980, Sequence and proposed structure of a 17,000 dalton fragment of myosin, in: Methods in Peptide and Protein Sequence Analysis ( C. Birr, ed.), pp. 213–224, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Emmons, S. W., Yesner, L., Kuan, K.-S., and Katzenberg, D., 1983, Evidence for a transposon in Caenorhabditis elegans, Cell 32: 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, H. F., and Miller, D. M. III, 1983, Different locations of two myosin isoforms paramyosin, and core filaments within nematode thick filaments, J. Cell Biol. 97: 2642.

    Google Scholar 

  • Epstein, H. F., Waterston, R. H., and Brenner, S., 1974, A mutant affecting the heavy chain of myosin in Caenorhabditis elegans, J. Mol. Biol. 90: 291–300.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, H. F., Miller, D. M. III, Gossett, L. A., and Hecht, R. M., 1982a, Immunological studies of myosin isoforms in nematode embryos, in: Muscle Development ( M. Pearson and H. Epstein eds.), pp. 7–14, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Epstein, H. F., Berman, S. A., and Miller, D. M. III, 1982b, Myosin synthesis and assembly in nematode body wall muscle, in: Muscle Development ( M. Pearson and H. Epstein, eds.), pp. 419–427, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Fabian, F., and Muhlrad, A., 1968, Effect of trinitrophenylation on myosin ATPase, Biochem. Biophys. Acta 162: 596–603.

    Article  PubMed  CAS  Google Scholar 

  • Falkenthal, S., Parker, V., and Davidson, N., 1985, Developmental variations in the splicing pattern of transcripts from the Drosophila gene encoding myosin alkali light chain result in different carboxy-terminal amino acid sequences, Proc. Natl. Acad. Sci. USA 82: 449–453.

    Article  PubMed  CAS  Google Scholar 

  • Files, J. G., and Hirsh, D., 1981, Ribosomal DNA of Caenorhabditis elegans, J. Mol. Biol. 149: 223–240.

    Article  PubMed  CAS  Google Scholar 

  • Files, J. G., Carr, S., and Hirsh, D., 1983, Actin gene family in Caenorhabditis elegans, J. Mol Biol. 164: 355–375.

    Article  PubMed  CAS  Google Scholar 

  • Flicker, P. F., Wallimann, T., and Vibert, P., 1983, Electron microscopy of Scallop myosin: Location of regulatory light chains, J. Mol. Biol. 169: 723–741.

    Article  PubMed  CAS  Google Scholar 

  • Flicker, P. F., Peitz, G., Sheetz, M. P., Parhaw, P. and Spudich, J. A., 1985, Site specific inhibition of myosin-mediated motility in vitro by monoclonal antibodies. J. Cell Biol. 100: 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Frank, G., and Weeds, A., 1974, The amino acid sequence of the alkali light chains of rabbit skeletal—muscle myosin, Eur. J. Biochem. 44: 317–334.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1973, Conformation in Fibrous Proteins, Academic Press, New York.

    Google Scholar 

  • Garcea, R. L., Schachat, F., and Epstein, H. F., 1978, Coordinate synthesis of two myosins in wild-type and mutant nematode muscle during larval development, Cell 15: 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978, Why genes in pieces?, Nature (Loud.) 271: 501.

    Article  CAS  Google Scholar 

  • Gossett, L. M., and Hecht, R. M., 1980, A squash technique demonstrating nuclear cleavage of the nematode, Caenorhabditis elegans, J. Histochem. Cytochem. 28: 507–510.

    Article  PubMed  CAS  Google Scholar 

  • Greene, L. E., 1984, Stoichiometry of actin-S-1 cross-linked complex, J. Biol. Chem. 259: 7363–7366.

    PubMed  CAS  Google Scholar 

  • Hardwicke, P. M. D., and Szent-Györgyi, A. G., 1985, Proximity of regulatory light chains in scallop myosin, J. Mol. Biol. 183: 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Hardwicke, P. M. D., Wallimann, T., and Szent-Györgyi, A. G., 1982, Regulatory and essential light chain interactions in scallop myosin I. Protection of essential light chain thiol groups by regulatory light chains, J. Mol. Biol. 156: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Hardwicke, P. M. D., Wallimann, T., and Szent-Györgyi, A. G., 1983, Light-chain movement and regulation in scallop myosin, Nature (Lond.) 301: 478–482.

    Article  CAS  Google Scholar 

  • Harris, H. E., and Epstein, H. F., 1977, Myosin and Paramyosin of Caenorhabditis elegans: Biochemical and structural properties of wild-type and mutant proteins, Cell 10: 421–428.

    Article  Google Scholar 

  • Hawthorne, D. G., and Leupold, U., 1974, Suppressor mutations in yeast, Curr. Topics Microbiol. Immunol. 64: 1–47.

    Article  CAS  Google Scholar 

  • Heaphy, S., and Treager, R., 1984, Stoichiometry of covalent acting-subfragment-1 complexes formed on reaction with a zero-length cross-linking compound, Biochemistry 23: 2211–2214.

    Article  PubMed  CAS  Google Scholar 

  • Heidecker, G., Messing, J., and Gronenborn, B., 1980, A versatile primer for DNA sequencing in the M13mp2 cloning system, Gene 10: 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Henry, G. D., Winstanley, M. A., Dalgarno, D. C., Scott, G. M. M., Levine, B. A., and Trayer, I. P., 1985, Characterization of the actin binding site on the alkali light chain of myosin, Biochim. Biophys. Acta 830: 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka, T., 1986, Role of the 50-kilodalton tryptic peptide of myosin subfragment-1 as a communicating apparatus between the adenosinetriphosphate and actin binding sites, Biochemistry 25: 2101–2109.

    Article  PubMed  CAS  Google Scholar 

  • Hirsh, D., Files, J. G., and Carr, S. H., 1982, Isolation and genetic mapping of the actin genes of Caenorhabditis elegans, in: Muscle Development ( M. Pearson and H. Epstein, eds.), pp. 77–86, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Hozumi, T., and Muhlrad, A., 1981, Reactive lysyl of myosin subfragment-1: Location on the 27K fragment and labeling properties, Biochemistry 20: 2945–2950.

    Article  PubMed  CAS  Google Scholar 

  • Hulmes, D. H., Miller, A., Parry, A. D., Piez, K. A., and Woodhead-Galloway, J., 1973, Analysis of the primary structure of collagen for the origins of molecular packing, J. Mol. Biol. 79: 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E., 1969, The mechanism of muscular contraction, Science (Wash.) 164: 1356–1366. Huxley, H. E., and Brown, W., 1967, The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor, J. Mol. Biol. 30: 383–434.

    Article  Google Scholar 

  • Hvidt, S., Nestler, F. H. M., Greaser, M. L., and Ferry, J. D., 1982, Flexibility of myosin rod determined from dilute solution viscoelastic measurements, Biochemistry 21: 4064–4072.

    Article  PubMed  CAS  Google Scholar 

  • Kagawa, H., Brenner, S., and Kam, J., 1987, Exon-expression cloning of the paramyosin gene from Caenorhabditis elegans, Mol. Cell Biol., submitted for publication.

    Google Scholar 

  • Kam, J., Brenner, S., Barnett, L., and Cesareni, G., 1980, Novel bacteriophage X cloning vector, Proc. Natl. Acad. Sci. USA 77: 5172–5176.

    Article  Google Scholar 

  • Kam, J., McLachlan, A. D., and Barnett, L., 1982, unc-54 myosin heavy chain gene of Caenorhabditis elegans: Genetics, sequence, structure, in: Muscle Development (M. Pearson and H. Epstein, eds.), Cold Spring Harbor Laboratory, pp. 129–142, Cold Spring Harbor, New York.

    Google Scholar 

  • Kam, J., Brenner, S., and Barnett, L., 1983a, Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by introns, Proc. Natl. Acad. Sci. UA 80: 4253–4257.

    Article  Google Scholar 

  • Kam, J., Brenner, S. and Barnett, L., 1983b, New Bacteriophage X. vectors with positive selection for cloned inserts, Methods Enzymol. 101: 1–19.

    Google Scholar 

  • Katoh, T., and Morita, F., 1984, Interaction between myosin and F-actin. Correlation with actin-binding sites on subfragment-1. J. Biochem. (Jpn. )96: 1223–1230.

    Google Scholar 

  • Katoh, T., Imae, S. and Morita, F., 1984, Binding of F-actin to a region between SH-1 and SH-2 groups of myosin subfragment-1 which may determine the high affinity of actosubfragment-1 complex at rigor. J. Biochem (Jpn. )95: 447–454.

    Google Scholar 

  • Katoh, T., Katoh, H., and Morita, F., 1985, Actin-binding peptide obtained by the cyanogen bromide cleavage of the 20 kDa fragment of myosin subfragment-1, J. Biol. Chem. 260: 6723–6727.

    PubMed  CAS  Google Scholar 

  • Kavinsky, C. J., Emeda, P. K., Sinha, A. M., Elzinga, M., Tong, S. W., Zak, R., Jakovicic, S., and Rabinowitz, M., 1983, Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle, J. Biol. Chem. 258: 5196–5205.

    PubMed  CAS  Google Scholar 

  • Kendrick-Jones, J., Szentkiralyi, E. M., and Szent-Györgyi, A. G., 1976, Regulatory light chains in myosins, J. Mol. Biol. 104: 747–779.

    Article  PubMed  CAS  Google Scholar 

  • Kensler, R. W., and Levine, R. J. C., 1982, An electron microscopic and optical diffraction analysis of the structure of similar felson muscle thick filaments, J. Cell Biol 92: 443–45.

    Article  PubMed  CAS  Google Scholar 

  • Kensler, R. W., and Stewart, M., 1983, Frog skeletal muscle thick filaments are three-stranded, J. Cell. Biol. 96: 1797–1802.

    Article  PubMed  CAS  Google Scholar 

  • Kiehart, P. D., and Pollard, T. D., 1984, Stimulation of Acanthamoeba actomyosin ATPase activity by myosin-II polymerization, Nature (Loud.), 308: 864–866.

    Article  CAS  Google Scholar 

  • Kramer, J. M., Cox, G. N., and Hirsh, D., 1982, Comparisons of the complete sequences of two collagen genes from Caenorhabditis elegans, Cell 30: 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, S., Tokura, S., and Tonomura, Y., 1960, On the active site of myosin A-adenosine triphosphatase I. Reaction of the enzyme with trinitrobenzenesulfonate, J. Biol. Chem. 235: 2835–2839.

    PubMed  CAS  Google Scholar 

  • Kubo, S., Tokuyama, H., and Tonomura, Y., 1965, On the active site of myosin A-adenosine triphosphatase. V. Partial solution of the chemical structure around the binding site of trinitrobenzenesulfonate, Biochem. Biophys. Acta 100: 459–470.

    Article  PubMed  CAS  Google Scholar 

  • Labbe, J. P., Mornet, D., Roseau, G., and Kasab, R., 1982, Cross-linking of F-actin to skeletal muscle myosin subfragment-1 with bis(imido esters): Further evidence for the interaction of myosin-head heavy chain with an actin dimer, Biochemistry 21: 6897–6902.

    Article  PubMed  CAS  Google Scholar 

  • Landel, C. P., Krause, M., Waterston, R. H., and Hirsh, D., 1984, DNA rearrangements of the actin gene cluster in Caenorhabditis elegans accompany reversion of three muscle mutants, J. Mol. Biol. 180: 497–513.

    Article  PubMed  CAS  Google Scholar 

  • Leinwand, L. A., Fournier, R. E. K., Nadal-Ginard, B., and Shows, T. B., 1983, Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome, Science (Wash.) 221: 766–768.

    Article  CAS  Google Scholar 

  • Levine, R. J. C., Kensler, R. W., Reedy, M. C., Hofman, W., and King, H. A., 1983, Structure and paramyosin content of tarantula thick filaments, J. Cell. Biol, 97: 186–195.

    Article  PubMed  CAS  Google Scholar 

  • Lewin, R., 1982, On the origin of introns, Science (Wash.) 217: 921–922.

    Article  CAS  Google Scholar 

  • Lewis, J. A., Wu, C.-H., Berg, H., and Levine, H. H., 1980a, The genetics of levamisole resistance in the nematode Caenorhabditis elegans, Genetics 95: 905–928.

    PubMed  CAS  Google Scholar 

  • Lewis, J. A., Wu, C.-H., Levine, J. H., and Berg, H., 1980b, Levamisole resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors, Neuroscience 5: 967–989.

    Article  PubMed  CAS  Google Scholar 

  • Lowey, S., Slayter, H. S., Weeds, A., Baker, H., 1969, Substructure of the myosin molecule I. Subfragments of myosin by enzymic degradation, J. Mol. Biol. 42: 1–29.

    Article  PubMed  CAS  Google Scholar 

  • Lu, R. C., 1980, Identification of a region susceptible to proteolysis in myosin subfragment-2, Proc. Natl. Acad. Sci. USA 77: 2010–2013.

    Article  PubMed  CAS  Google Scholar 

  • Lu, R. C., and Wong A., 1982, The primary structure of the susceptible region of long S2, Biophys. J. 37: 52a.

    Google Scholar 

  • MacKenzie, J. M., Jr., and Epstein, H. F., 1980, Paramyosin is necessary for determination of nematode thick filament length in vivo, Cell 22: 747–765.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie, J. M., Jr., and Epstein, H. F., 1981, Electron microscopy of nematode thick filaments, J. UItrastruc. Res. 76: 277–285.

    Article  CAS  Google Scholar 

  • MacKenzie, J. M., Jr., Garcea, R. L., Zengel, J. M., and Epstein, H. F., 1978a, Muscle development in Caenorhabditis elegans; mutants exhibiting retarded sarcomere construction, Cell 15: 751–762.

    Article  PubMed  CAS  Google Scholar 

  • MacKenzie, J. M., Jr., Schachat, F., and Epstein, H. F., 1978b, Immunocytochemical localization of two myosins within the same muscle cells in Caenorhabditis elegans, Cell 15: 413–419.

    CAS  Google Scholar 

  • MacLeod, A. R., Waterston, R. H., and Brenner, S., 1977a, An internal deletion mutant of a myosin heavy chain in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 74: 5336–5340.

    Article  CAS  Google Scholar 

  • MacLeod, A. R., Waterston, R. H., Fishpool, R. M., and Brenner, S., 1977b, Identification of the structural gene for a myosin heavy chain in Caenorhabditis elegans, J. Mol. Biol. 114: 133–140.

    Article  CAS  Google Scholar 

  • MacLeod, A. R., Kam, J., Waterston, R. H., and Brenner, S., 1979, The unc-54 myosin heavy chain gene of Caenorhabditis elegans: A model system for the study of genetic suppression in higher eukaryotes, in: Nonsense Mutations and tRNA Suppressors ( J. E. Celis and J. D. Smith, eds.), pp. 301–311, Academic Press, New York.

    Google Scholar 

  • MacLeod, A. R., Kam, J., and Brenner, S., 1981, Molecular analysis of the unc-54 myosin heavy chain gene of Caenorhabditis elegans, Nature (Land.) 291: 386–390.

    Article  CAS  Google Scholar 

  • Mandavi, V., Chambers, A. P., and Nadal-Ginard, B., 1984, Cardiac a-and (3-myosin heavy chain genes are organized in tandem, Proc. Natl. Acad. Sci. USA 81: 2626–2630.

    Article  Google Scholar 

  • Marston, F. A. D., Lowe, P. A., Doel, M. T., Schoemaker, J M., White, S., and Argal, S., 1984, Biotechnology 2: 800–804.

    Article  CAS  Google Scholar 

  • McLachlan, A. D., and Kam, J., 1982, Periodic charge distributions in the myosin rod mino add sequence match cross-bridge spacings in muscle, Nature (Land.) 299: 226–231.

    Article  CAS  Google Scholar 

  • McLachlan, A. D., and Kam, J., 1983, Periodic features in the amino acid sequence of nematode myosin rod, J. Mol. Biol. 164: 605–626.

    Article  PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1976, The 14-fold periodicity in a-tropomyosin and the interaction with actin, J. Mol. Biol. 103: 271–298.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson, R. A., Morales, M. F., and Botts, J., 1973, Segmental flexibility of the S-1 moiety of myosin, Biochemistry 12: 2250–2255.

    Article  PubMed  CAS  Google Scholar 

  • Messing, J., Crea, B., and Seeburg, P. H., 1981, A system for shotgun DNA sequencing, Nucleic Acids Res. 9: 309–321.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A., and Tregear, R. T., 1972, Structure of insect fibrillus flight muscle in the presence and absence of ATP, J. Mol. Biol. 70: 85–104.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. M. III, and Maruyama, I., 1986, Myosin heavy chain amplification as a suppressor mutation in Caenorhabditis elegans, in: Molecular Biology of Muscle Development, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 29 ( C. Emerson, D. A. Fishman, B. Nadal-Ginard, and M. A. Q. Siddiqui, eds.), pp. 124–130, Alan R. Liss, New york.

    Google Scholar 

  • Miller, D. M. III, MacKenzie, J. M., Bolton, L. H., and Epstein, H. F., 1981, Monoclonal antibodies to nematode myosin heavy chain isoenzymes, J. Cell. Biol. 91: 20023a.

    Article  Google Scholar 

  • Miller, D. M. III, Ortiz, I., Berliner, G. C., and Epstein, H. F., 1983, Differential localization of two myosins within nematode thick filaments, Cell 34: 477–490.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. M. III, Stockdale, F. E., and Kam, J., 1986, Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 83: 2305–2309.

    Article  CAS  Google Scholar 

  • Mitchell, E. J., Jakes, R., and Kendrick-Jones, J., 1986, Localization of light chain and actin binding sites on myosin, Eur. J. Biochem. 161: 25–35.

    Google Scholar 

  • Moerman, D. G., and Baillie, D. L., 1979, Genetic organization in Caenorhabditis elegans: Fine structure analysis of the unc-22 gene, Genetics 91: 95–103.

    PubMed  CAS  Google Scholar 

  • Moerman, D. G., Plurad, S., Waterston, R. H., and Baillie, D. L., 1982, Mutations in the unc-54 myosin heavy chain gene of Caenorhabditis elegans that alter contractility but not muscle structure, Cell 29: 773–781.

    Article  PubMed  CAS  Google Scholar 

  • Moerman, D. G., Benin, G. M., and Waterston, R. H., 1986, Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tcl transposon-tagging, Proc. Natl. Acad. Sci. USA 83: 2579–2583.

    Google Scholar 

  • Mornet, D., Pantel, P., Audemard, E., and Kassab, R., 1979, The limited tryptic cleavage of chymotryptic S-1: An approach to the characterization of the actin site in myosin heads, Biochem. Biophys. Res. Commun. 89: 925–932.

    Article  PubMed  CAS  Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E., and Kassab, R., 1981a, Structure of the actin-myosin interface, Nature (Lond.) 292: 301–306.

    Article  CAS  Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E., and Kassab, R., 1981b, Proteolytic approach to structure and function of actin recognition site in myosin heads, Biochemistry 20: 2110–2120.

    Article  PubMed  CAS  Google Scholar 

  • Mornet, D., Pantel, P., Andemard, C., Derancourt, J., and Kassab, R., 1985, Molecular movements promoted by metal nucleotides in the heavy-chain regions of myosin heads from skeletal muscle, J. Mol. Biol. 183: 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Morse, D. E., Mosteller, R. D., and Yanofsky, C, 1969, Dynamics of synthesis, translation and degredation of trp operon messenger RNA in E. coli, Cold Spring Harbor Symp. Quant. Biol. 34: 725–741.

    Article  CAS  Google Scholar 

  • Mount, S. M.,1982, A catalogue of splice junction sequences, Nucleic Acids Res. 10: 459–472. Nagai, K., Perutz, M. F., and Poyart, C., 1985, Oxygen binding properties of human hemoglobin mutants synthesized in Escherichia coli, Proc. Natl. Acad. Sci. USA 82: 7252–7255.

    Google Scholar 

  • Nakamaye, K. L., Wells, J. A., Bridenbaugh, R. L., Okamoto, Y., and Young, R. G., 1985, 2-[(4-azido-2-nitrophenyl)amino]ethyl triphosphate, a novel chromophoric..and photoaffinity analogue of ATP. Synthesis, characterization and interactions with myosin subfragment-1, Biochemistry 24: 5226–5235.

    Google Scholar 

  • Niederman, R., and Peters, L. K., 1982, Native bare zone assemblage nucleates myosin filament assembly, J. Mol. Biol. 161: 505–517.

    Article  PubMed  CAS  Google Scholar 

  • Offer, G. C., Moos, C., and Starr, R., 1973, A new protein of the thick filaments. Extraction, purification, and characterization, J. Mol. Biol. 74: 653–676.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, Y., and Yount, R. G., 1983 Identification of an active site peptide of myosin after photoaffinity labeling, Biophys. J. 41: 298a.

    Google Scholar 

  • Otsuka, A., 1987, Sup-3 suppression affects muscle structure and myosin heavy chain accumulation in Caenorhabditis elegans, J. Mol. Biol. submitted for publication.

    Google Scholar 

  • Pai, E. G., Sachsenheimer, W., Schirmer, R. H., and Schulz, G. E., 1977, Substrate po- sitions and induced-fit in crystalline adenylate kinase, J. Mol. Biol. 114: 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Parry, D. A. D., 1978, Fibrinogen: A preliminary analysis of the amino acid sequences of the portions of the a, ß and 4- chains postulated to form the interdomainal link between globular regions of the molecule, J. Mol. Biol. 120: 545–551.

    Article  CAS  Google Scholar 

  • Parry, D. A. D., 1981, Structure of rabbit skeletal myosin analysis of the amino acid sequences of two fragments from the rod region, J. Mol. Biol. 153: 459–464.

    Article  PubMed  CAS  Google Scholar 

  • Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and MacRae, T. P., 1977, Structure of a-keratin: Structural implications of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113: 449–454.

    Article  PubMed  CAS  Google Scholar 

  • Reinach, F. C., Nagai, K., and Kendrick-Jones, J., 1986, Site directed mutagenesis of the regulatory light chain Ca/Mg binding site and its role in hybrid myosins. Nature (Lond.) 322: 80–83.

    Article  CAS  Google Scholar 

  • Reisler, E., Smith, C., and Seegan, G., 1980, Myosin minifilaments, J. Mol. Biol. 143: 129–145.

    Article  PubMed  CAS  Google Scholar 

  • Riddle, D. L., and Brenner, S., 1978, Indirect suppression in Caenorhabditis elegans, Genetics 89: 299–314.

    CAS  Google Scholar 

  • Rozek, C. E., and Davidson, N., 1983, Drosophila has one myosin heavy chain gene with three developmentally regulated transcripts, Cell 32: 23–34.

    CAS  Google Scholar 

  • Rüther, U., and Müller-Hill, B., 1983, Easy identification of cDNA clones, EMBO J. 2: 1791–1794.

    PubMed  Google Scholar 

  • Rüther, U., Koenen, M., Sippel, A. E., and Muller-Hill, B., 1982, Exon cloning: Immunoenzymatic identification of exons of the chicken lysozyme gene, Proc. Natl. Acad. Sci. USA 79: 6852–6855.

    Article  PubMed  Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., and Roe, B. A., 1980, Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol. 143: 161–178.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F., and Petersen, G. B., 1982, Nucleotide sequence of bacteriophage X DNA, J. Mol. Biol. 162: 729–773.

    Article  PubMed  CAS  Google Scholar 

  • Schachat, F. H., Harris, H. E., and Epstein, H. F., 1977, Two homogeneous myosins in body-wall musde of Caenorhabditis elegans, Cell 10: 721–728.

    CAS  Google Scholar 

  • Schachat, F. H., Garcea, R. L., and Epstein, H. F., 1978, Myosins exist as homodimers of heavy chains: Demonstration with specific antibody purified by nematode mutant myosin affinity chromatography, Cell 15: 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Sellers, J. R., and Harvey, E. V., 1984, Localization of a light-chain binding site on smooth muscle myosin revealed by light chain overlay of sodium dodecyl sulfate-polyacrylamide electrophoretic gels, J. Biol. Chem. 259: 14203–14207.

    PubMed  CAS  Google Scholar 

  • Sheetz, M. P., and Spudich, J. A., 1983, Movement of myosin-coated fluorescent beads on actin cables in vitro, Nature (Loud.) 303: 31–35.

    Article  CAS  Google Scholar 

  • Sivaramakrishnan, M. and Burke, M., 1982, The free heavy chain of vertebrate skeletal myosin sub fragments shows full enzymatic activity, J. Biol. Chem. 257: 1102–1105.

    PubMed  CAS  Google Scholar 

  • Sjöström, M., and Squire, J. M., 1977, Fine structure of the A-band in cryo-sections. The structure of the A-band of human skeletal muscle fibers from ultra-thin cryo sections negatively stained, J. Mol. Biol. 109: 49–68.

    Article  PubMed  Google Scholar 

  • Spudich, J. A., Kron, S. T., and Sheetz, M. P., 1985, Movement of myosin coated beads on orientated filaments reconstituted from purified actin. Nature (Lond.) 315: 584–586.

    Article  CAS  Google Scholar 

  • Squire, J. M., 1981, The Structural Basis of Molecular Contraction, Plenum Press, New York.

    Book  Google Scholar 

  • Staden, R., 1984, Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing, Nucleic Acids Res. 12: 521–538.

    Article  PubMed  CAS  Google Scholar 

  • Staden, R., and McLachlan, A. D., 1982, Codon preference and its use in identifying protein coding regions in long DNA sequences, Nucleic Acids Res. 10: 141–156.

    Article  PubMed  CAS  Google Scholar 

  • Starr, R., and Offer, G., 1973, Polarity of the myosin molecule, J. Mol. Biol. 81: 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Starr, R., and Offer, G., 1983, H-Protein and X-Protein. Two new components of the thick filaments of vertebrate skeletal muscle, J. Mol. Biol. 170: 675–698.

    Article  PubMed  CAS  Google Scholar 

  • Strehler, E. E., Strehler-Page, M.-A., Perriard, J.-C., Periamsy, M., and Nadal-Ginard, B., 1986, Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene: Evidence against intron-dependent evolution of the rod, J. Mol. Biol. 190: 291–319.

    Article  PubMed  CAS  Google Scholar 

  • Sulston, J. E., and Horvitz, H. R., 1977, Postembryonic cell lineages of the nematode Caenorhabditis elegans, Dey. Biol. 56: 100–156.

    Google Scholar 

  • Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N., 1983, The embryonic cell lineage of the nematode Caenorahabditis elegans, Dey. Biol. 100: 64–119.

    CAS  Google Scholar 

  • Sutoh, K., 1983, Mapping of actin binding sites on the heavy chain of myosin subfragment1, Biochemistry 22: 1579–1585.

    Google Scholar 

  • Sutoh, K., Yamomoto, K., and Wakabayashi, T., 1984, Electron microscopic visualization of the SH-1 thiol of myosin by the use of an avidin-biotin system, J. Mol. Biol. 178: 323–339.

    Article  PubMed  CAS  Google Scholar 

  • Sutoh, K., Yamomoto, K., and Wakabayashi, T., 1986, Electron microscopic visualization of the ATPase site of myosin by photoaffinity labeling with a biotinylated photoreactive ADP analogue, Proc. Natl. Acad. Sci. USA 83: 212–216.

    Article  PubMed  CAS  Google Scholar 

  • Szent-Györgyi, A. G., Cohen, C., and Kendrick-Jones, J., 1971, Paramyosin and the filaments of Molluscan catch muscles. II. Native filaments: Isolation and characterization, J. Mol. Biol. 56: 239–258.

    Article  PubMed  Google Scholar 

  • Szentkiralyi, E. M., 1984, Tryptic digestion of scallop S-1: Evidence for a complex between the two light chains and a heavy chain peptide. J. Muscle Res. Cell Motil. 5: 147–164.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., 1978, Topography of the myosin molecule as visualized by an improved negative staining method, J. Biochem. (Jpn.) 83: 905–908.

    CAS  Google Scholar 

  • Takashi, R., Mulrad, A., and Botts, J., 1982, Spatial relationship between a fast-reacting thiol and a reactive lysine residue of myosin subfragment-1, Biochemistry 21: 5661–5668.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. D., Seidel, J. C., Hyde, J. S., and Gergely, J., 1975, Motion of subfragment1 in myosin and its supramolecular complexes: Saturation transfer electron paramagnetic resonance, Proc. Natl. Acad. Sci. USA 72: 1729–1733.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. D., Ishiwata, S., Seidel, J. C., and Gergely, J., 1980, Submillisecond rotational dynamics of spin-labeled myosin heads in myofibrils, Biophys. J. 32: 873–889.

    Article  PubMed  CAS  Google Scholar 

  • Vibert, P., and Craig, R., 1982, Three dimensional reconstruction of thin filaments decorated with a Ca’ -regulated myosin. J. Mol. Biol. 157: 299–319.

    Article  PubMed  CAS  Google Scholar 

  • Vibert, P. and Craig, R., 1983, Electron microscopy and image analysis of myosin filaments from scallop studied muscle, J. Mol. Biol. 165: 303–320.

    Article  PubMed  CAS  Google Scholar 

  • Vibert, P. D., Cohen, C., Hardwicke, P. M. D. and Szent-Györgyi, A. G., 1985, Electron microscopy of cross-linked scallop myosin, J. Mol. Biol. 183: 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Vibert, P. D., Szentkiralyi, E., Hardwicke, P., Szent-Györgyi, A. G., and Cohen, C., 1986, Structural models for the regulatory switch of myosin, Biophys. J. 49: 131–133.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, P. D., and Giniger, E., 1981, Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains, Nature (Lond.) 292: 560–562.

    Article  CAS  Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J., 1982, Distantly related sequences in the a-and 0-subunits of ATP synthease, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1: 945–951.

    PubMed  CAS  Google Scholar 

  • Waller, G. G., and Lowey, S., 1985, Myosin subunit interactions. Localization of the alkali light chains, J. Biol. Chein. 260: 14368–14373.

    CAS  Google Scholar 

  • Waterston, R. H., 1981, A second informational suppressor, sup-7 X, in Caenorhabditis elegans, Genetics 97: 307–325.

    Google Scholar 

  • Waterston, R. H., and Brenner, S., 1978, A suppressor mutation in the nematode acting on specific alleles of many genes, Nature (Loud.) 275: 715–719.

    Article  CAS  Google Scholar 

  • Waterston, R. H., Fishpool, R. M., and Brenner, S., 1977, Mutants affecting paramyosin in Caenorhabditis elegans, J. Mol. Biol. 117: 825–842.

    Article  Google Scholar 

  • Waterston, R. H., Thomson, J. N., and Brenner, S., 1980, Mutant with altered muscle structure in Caenorhabditis elegans, Dey. Biol. 77: 271–302.

    Article  CAS  Google Scholar 

  • Waterston, R. H., Smith, K. C., and Moerman, D. G., 1982a, A genetic fine structure analysis of the myosin heavy chain gene unc-54 Caenorhabditis elegans, J. Mol. Biol. 158: 1–15.

    Article  CAS  Google Scholar 

  • Waterston, R. H., Bolton, S., Sive, H. L., and Moerman, D. G., 1982b, Mutationally altered myosins in Caenorhabditis elegans, in: Muscle Development ( M. Pearson and H. E. Epstein, eds.), pp. 119–129, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Waterston, R. H., Hirsh, D., and Lane, T. R., 1984, Dominant mutations affecting muscle structure in Caenorhabditis elegans that map near the actin gene cluster, J. Mol. Biol. 180: 473–496.

    Article  PubMed  CAS  Google Scholar 

  • Weeds, A. G., and Lowey, S., 1971, Substructure of the myosin molecule. II. The light chains of myosin, J. Mol. Biol. 61: 701–725.

    Article  PubMed  CAS  Google Scholar 

  • Weeds, A. G., and Pope, B., 1977, Studies on the chymotryptic digestion of myosin effects of divalent cations on proteolytic susceptibility, J. Biol. Chem. 255: 1598–1602.

    Google Scholar 

  • Wells, J., and Young, R. G., 1979, Active site trapping of nucleotides by crosslinking two sulfhydryls in myosin subfragment-1, Proc. Natl. Acad. Sci. USA 76: 4966–4970.

    Article  PubMed  CAS  Google Scholar 

  • Wells, J., and Young, R. G., 1980, Magnesium nucleotide is stoichiometrically trapped at the active site of myosins and its active proteolytic fragments by thiol cross-linking reagents, J. Biol. Chem. 255: 1598–1602.

    PubMed  CAS  Google Scholar 

  • Williams, D. c., Van Frank, R. M., Muth, W. L., and Burnett, J. P., 1982, Cytoplasmic inclusion bodies in E. coli producing biosynthetic human insulin proteins, Science (Wash.) 215: 687–689.

    Google Scholar 

  • Wills, N., Gesteland, R. F., Kam, J., Barnett, L., Bolton, S., and Waterston, R. H., 1983, The genes sup-7 X and sup-5 III of Caenorhabditis elegans suppress amber nonsense mutations via altered transfer RNA, Cell 33: 575–583.

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann, D. A., Lowey, S., and Press, J. R., 1983, Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis, Cell 34: 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann, D. A., Almeda, S., Vibert, P., and Cohen, C., 1984, A new myosin fragment: Visualization of the regulatory domain, Nature (Lond.) 307: 758–760.

    Article  CAS  Google Scholar 

  • Wozney, J., Hanahan, D., Morimoto, R., Boedtker, H., and Doty, P., 1981, Fine structural analysis of the chicken a-2-collagen gene, Proc. Natl. Acad. Sci. USA 78: 712–716.

    Article  PubMed  CAS  Google Scholar 

  • Wray, J. S., 1979, Structure of the backbone in myosin filaments of muscle, Nature (Lond.) 277: 37–40.

    Article  CAS  Google Scholar 

  • Zengel, J. M., and Epstein, H. F., 1980a, Mutants altering coordinate synthesis of specific myosins during nematode muscle development, Proc. Natl. Acad. Sci. USA 77: 852–856.

    Article  PubMed  CAS  Google Scholar 

  • Zengel, J. M., and Epstein, H. F., 1980b, Identification of genetic elements associated with muscle structure in the nematode Caenorhabditis elegans, Cell Motil. 1: 73–97.

    Article  CAS  Google Scholar 

  • Zengel, J. M., and Epstein, H. F., 1980c, Muscle development in Caenorhabditis elegans: A molecular genetic approach, in: Nematodes as Biological Models ( B. Zuckerman, ed.), pp. 73–126, Academic Press, New York.

    Google Scholar 

  • Zweig, S. E., 1981, The muscle specificity and structure of two closely related fast-twitch white myosin heavy chain isozymes, J. Biol. Chem. 256: 11847–11853.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Karn, J., Dibb, N.J., Miller, D.M., Mitchell, E.J. (1987). Molecular Biology of Muscle Development. In: Heinemann, S., Patrick, J. (eds) Molecular Neurobiology. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7488-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7488-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7490-3

  • Online ISBN: 978-1-4615-7488-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics