Skip to main content

Abstract

The study of the effects of ionizing radiations on both growing and adult CNS appears as an aspect directly related to the general theme of this Handbook, since it refers to the “radiobiochemical lesion” of the neuroaxis. Such effects can resemble those produced by other noxious agents. Because we deal here with the intrinsic mechanism through which the ionizing radiation affects the nervous tissue, there is a radiobiological review at the beginning of the chapter. Neuroradiobiochemistry, one of the least known and cultivated frontiers of neurochemistry, does not represent more than 1 to 2% of the published papers of specialized journals, congresses, or symposia, in spite of the fact that the CNS is structurally the best system of animal economy and biologically the one most apt to register any energy change of the external medium; it could be supposed that the absorption of radiant energy would be rapidly transformed into physicochemical, biochemical, and functional alterations of the system. In this chapter we shall refer to neuroradiochemical facts of major significance, attempting to explain, as far as possible, the eventual mechanisms which may have bearing on such processes. In the past 8 years numerous books, reviews, and articles have been published on the effect of ionizing radiation on CNS. They contain excellent references to the radioneurobiochemical studies.(1–22)

Most of the experimental work reported by E. Egaña et al. in this chapter has been carried out under a grant from the International Atomic Energy Agency, Vienna. Contracts No. 95, RB/1 and RB/2, and, at present, No. 887, also under a grant from the Comisión de la Investigation Cientifica, Faculty of Medicine, University of Chile, 1967–1970.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Effects of Ionizing Radiation on the Nervous System, International Atomic Energy Agency, Proceedings Series; Vienna Symposium, Vienna (1962).

    Google Scholar 

  2. International J. Neurology 3: 533–572 (1962). (Issue devoted to ionizing radiation and central nervous system). Montevideo, Uruguay.

    Google Scholar 

  3. T. J. Haley and K. S. Snider, eds., Response of the Nervous System to Ionizing Radiation; First International Symposium, Academic Press, New York (1962).

    Google Scholar 

  4. T. J. Haley and R. S. Snider, eds., Response of the Nervous System to Ionizing Radiation; Second International Symposium, Little Brown, Boston (1964).

    Google Scholar 

  5. N. N. Livshits, Physiological effects of nuclear radiations on the central nervous system, Ad. Biol. Med. Phys. 7:173–248 (1960).

    CAS  Google Scholar 

  6. H. Gangloff and O. Hugh, The effects of ionizing radiation on the nervous system, Ad. Biol. Med. Phys. 10:1–90 (1965).

    CAS  Google Scholar 

  7. A. V. Levedinsky and Z. N. Nakhil’nitskaya, Effects of ionizing radiation on the central nervous system, Elsevier Publ. Co. Amsterdam (1963).

    Google Scholar 

  8. D. J. Kumeldorf and E. L. Hunt, Ionizing Radiation: Neural Function and Behavior, Academic Press, New York (1965).

    Google Scholar 

  9. W. R. Stahl, A review of Soviet research on the central nervous system effects of ionizing radiation,J. Ment. Dis. 124:511–529 (1959).

    Google Scholar 

  10. W. R. Stahl, Recent Soviet work on reactions of the central nervous system to ionizing radiation,J. Ment. Dis. 131:213–233 (1960).

    Google Scholar 

  11. C. D. van Cleave, Irradiation and the Nervous System, Rownan, Littlefield, New York (1963).

    Google Scholar 

  12. P. T. Lascelles, in Biochemical Aspects of Neurological Disorder (Third Series), (J. N. Cumings and M. Kremer eds.), pp. 200–213. Oxford Blackwell Scient. Publ., Oxford (1968).

    Google Scholar 

  13. A. M. Jeliffe, in Biochemical Aspects of Neurological Disorders (Third Series), (J. N. Cumings and M. Kremer eds.), pp. 174–199, Oxford Blackwell Scient. Publ., Oxford (1968).

    Google Scholar 

  14. K. J. Altman, G. B. Gerber, and Sh. Okada, eds., Radiation Biochemistry, Vol. 1. Cells, Academic Press, New York (1969).

    Google Scholar 

  15. G. B. Gerber and K. J. Altman, eds., Radiation Biochemistry, Vol. 2, Tissue and Body Fluids, Academic Press, New York (1969).

    Google Scholar 

  16. W. Haymaker, in The Structure and Function of Nervous Tissue (G. H. Bourne, ed.). Vol. 3, pp. 441–518. Academic Press, New York (1969).

    Google Scholar 

  17. J. N. Yamazaki, A review of the literature on the radiation dosage required to cause manifest central nervous system disturbances from in utero and post-natal exposure, Pediatrics 37:877–903 (1966).

    PubMed  Google Scholar 

  18. L. V. Cherkasova, K. B. Fomidenko, T. M. Myronova, F. D. Koldovska, V. A. Kukuchkina, and V. G. RemCerCerg, The ionizing radiation and the substrate metabolism, Akad. Nauk, URSS, Minsk (1962) (Russian).

    Google Scholar 

  19. W. Geests, Influence des radiations ionizantes sur le developpement du systeme nerveux, Acta Genet. Med. (Roma) 16:275–309 (1967).

    Google Scholar 

  20. L. C. Cherkasova, Biochemistry of the low dose of ionizing radiation, Akad. Nauk SSSR, Minsk. (1964) (Russian).

    Google Scholar 

  21. M. R. Sikow and D. D. Mablum, eds., Radiation Biology of the Fetal and Juvenile Mammal, AEC Symposium Series (Batelle Symposium, USAEC Division of Technical Information Extension, Oak Ridge (1970)).

    Google Scholar 

  22. S. P. Hicks and C. J. D’Amato, in Advances in Teratology (O. H. M. Woollam, ed.), pp. 196–250, Logos Press, London (1966).

    Google Scholar 

  23. R. Latarjet and L. H. Gray, Definition of the terms protection and restoration, Acta Radiol 41:61–62 (1954).

    PubMed  CAS  Google Scholar 

  24. G. P. Swanson and B. Kihlman, in Ciba Found. Symposium Ionizing Radiations and Cell Metabolism (G. E. W. Wolstenholme and C. M. O’Connor, eds.), pp. 239–251, J. & A. Churchill, London (1956).

    Google Scholar 

  25. R. L. Platzman, An isotopic effect in the probability of ionizing a molecule by energy transfer from a metastable noble-gas atom, Nature 195:790–791 (1962).

    Google Scholar 

  26. E. J. Hart and R. L. Platzman, in Mechanisms in Radiobiology (M. Errera and A. Forssberg, eds.) Vol. 1, Chapter 2, pp. 94–257, Academic Press, New York (1961).

    Google Scholar 

  27. R. L. Platzman, in Symposium on Radiobiology (J. J. Nickson, ed.), Chapter 7, John Wiley and Sons, New York (1952).

    Google Scholar 

  28. R. L. Platzman, in Radiation Biology (W. Claus, ed.), chapter 2, pp. 15–72, Addison-Wesley, Reading, Mass. (1958).

    Google Scholar 

  29. R. L. Platzman, in Radiation Research (Proc. Third Int. Cong. Radiat. Res., Cortina d’Ampezzo, Italy) (G. Silini, ed.), pp. 20–42, North Holland Publ., Amsterdam (1967).

    Google Scholar 

  30. M. G. Ord and L. A. Stoken, in Mechanisms in Radiobiology, Vol. 1, Chapter 3, pp. 259–331 (M. Errera and A. Forssberg, eds.), Academic Press, New York (1961).

    Google Scholar 

  31. S. Wolff, in Mechanisms in Radiobiology (M. Errera and A. Forssberg, eds.), Vol. 1, Chapter 6, pp. 419–475, Academic Press, New York (1961).

    Google Scholar 

  32. D. E. Lea, Actions of Radiations on Living Cells, Cambridge Univ. Press, London (1946).

    Google Scholar 

  33. N. W. Timofeeff-Ressovsky and K. G. Zimmer, Das Trefferprinzip in der Biologie, Hirzel, Leipzig (1947).

    Google Scholar 

  34. F. Hutchinson and E. Pollard, in Mechanisms in Radiobiology (M. Errera and A. Forrsberg, eds.), Vol. 1, Chapter 1, pp. 71–92, Academic Press, New York (1961).

    Google Scholar 

  35. W. Gordy, in Proc. Int. Congr. Radiat. Res., Burlington, Vt., Suppl. 1, pp. 491–510 (1959).

    Google Scholar 

  36. H. Shield and W. Gordy, Electron spin resonance studies of radiation damage to the nucleic acids and their constituents, Proc. Nat. Acad. Sci. 45:269–281 (1959).

    Google Scholar 

  37. W. Gordy, Free radicals from biological purines and pyrimidines, Ann. N. Y., Acad. Sci. 158, Art. 1, pp. 100–123 (1969).

    CAS  Google Scholar 

  38. A. O. Allen, Radiation yields and reactions in dilute inorganic solutions, Rad. Res. Suppl. 4:54–73 (1964).

    Google Scholar 

  39. M. Daniel and E. Wigg, Oxygen as a primary species in radiolysis of water, Science 153:1533–1534(1966).

    Google Scholar 

  40. E. Egaña, R. Valderas, and J. Suarez, in Fisiopatologia General (E. Egaña, F. Ugalde, A. Valenzuela, and S. Bozzo, eds.), Chapter VIII, pp. 311–404, Editorial A. Bello, Santiago (1963) (Spanish).

    Google Scholar 

  41. S. P. Hicks, Radiation as an experimental tool in mammalian developmental neurology, Physiol. Rev. 38:337–356 (1958).

    PubMed  CAS  Google Scholar 

  42. S. P. Hicks and C. J. D’Amato, in Disorders of the Developing Nervous System (W. S. Fields and M. M. Desmond, eds.) Chapter 4, pp. 60–97, C. C. Thomas, Springfield (1961).

    Google Scholar 

  43. S. P. Hicks and C. J. D’Amato, Low-level radiation and changes in glia and neurons populations in developing brain, Fed. Proc. 23, Part I, p. 128 (1964).

    Google Scholar 

  44. S. P. Hicks, C. J. D’Amato, and J. L. Falk, Some effects of radiation on structural behavioral development, Int. J. Neurol. 3:335–348 (1962).

    Google Scholar 

  45. W. Haymaker, G. L. Laqueur, W. H. Nauta, J. E. Pickering, J. C. Sloper, and F. S. Vogel, The effects of 140barium and 140lanthanum gamma radiation, of the central nervous system and pituitary gland of macaque monkeys,J. Neuropathol. Exp. Neurol. 17:12–57 (1958).

    PubMed  CAS  Google Scholar 

  46. J. Klatzo, J. Miquel, W. Haymaker, C. Tobias, and L. S. Wolfe, in Effects of Ionizing Radiation on the Nervous System, International Atomic Energy Agency, Proceedings Series, Vienna Symposium, Vienna (1962).

    Google Scholar 

  47. W. Haymaker, M. Z. H. Ibrahin, J. Miquel, N. Call, and A. J. Riopello, Delayed radiation effects in the brain of monkeys exposed to X-rays and Y-rays,J. Neuropathol. Exp. Neurol, 27:50–79 (1968).

    PubMed  CAS  Google Scholar 

  48. W. Haymaker, in Neurological Problems (J. Chorobski, ed.), pp. 173–176, Pergamon Press, Oxford (1967).

    Google Scholar 

  49. A. Arnold and P. Bailey, Alterations in the glia cells following irradiation of the brain in primates, AMA. Arch. Pathol. 57:383–391 (1954).

    PubMed  CAS  Google Scholar 

  50. R. H. Brownson, D. B. Suter, and D. D. Diller, Acute brain damage induced by low dosage X-irradiation, Neurology 13:181–191 (1963).

    PubMed  CAS  Google Scholar 

  51. S. P. Hicks, K. A. Wright, and K. E. Leigh, Time intensity factor in radiation response, acute effects of megavolt electrons (cathode rays) and high and low energy X-rays with especial reference to brain, AMA. Arch. Pathol, 61:226 (1956).

    PubMed  CAS  Google Scholar 

  52. A. Goldfeder, Ionizing radiation as a tool in biological research, Trans. N. Y. Acad. Sci., Series II, 20:809–837 (1958).

    PubMed  CAS  Google Scholar 

  53. B. Andersson, B. Larsson, L. Leksell, W. Mair, B. Rexed, and P. Sourander, in Response of the Nervous System to Ionizing Radiation, First International Symposium (T. J. Haley and R. S. Snider, eds.), pp. 345–358, Academic Press, New York (1962).

    Google Scholar 

  54. B. Larssen, L. Leksell, B. Rexed, and P. Sourandei, Effects of high energy protons on the spinal cord, Acta Radiol 51:57–64 (1957).

    Google Scholar 

  55. M. M. Aleksandrovskaya, Comparative morphologic studies of changes of the rat brain, antenatal irradiation with 50, 150, and 200 r doses at the 12th day of embryological development, Voprossi Nevkopath 10:125–127 (1962) (Russian).

    Google Scholar 

  56. M. M. Aleksandrovskaya, Histologic changes in the central nervous system of animals exposed to ionizing radiation during intoxication and infections. Trans. Inst. Higher Nervous Activity, Pathophysiology Series, Izd. Akad. Nauk SSSR, 4:226–234 (1958) Moscow (Russian).

    Google Scholar 

  57. N. Schummelfeder, in Response of the Nervous System to Ionizing Radiation, First International Symposium (T. J. Haley and R. S. Snider, eds.) pp. 191–220, Academic Press, New York (1962).

    Google Scholar 

  58. W. Lierse and H. D. Franke, Ultrastrukturelle Frühreaktionen am Kleinhirn des Meerschweinchens nach 60Co-Bestrahlung des Kopfes, Strahlentherapie 131:595–602 (1966).

    PubMed  CAS  Google Scholar 

  59. J. M. Ordy, T. Samorajski, L. A. Horrocks, W. Zeman, and H. J. Curtis, Changes in memory electrophysiology, neurochemistry and neuronal ultrastructure after deuteron irradiation of the brain in C57B1/10 mice,J. Neurochem. 15:1245–1256 (1968).

    PubMed  CAS  Google Scholar 

  60. B. Kaack, Augmentation of bioelectric activity by gamma irradiation, Am. J. Physiol. 213:625–628 (1967).

    PubMed  CAS  Google Scholar 

  61. G. La Grutta, S. Abbadessa, S. Avellone, E. Natale, I. Di Gregorio, M. E. Montal-bano, E. A. Ortolani, and M. T. Zagami, Azioni delle radiazioni ionizzanti su alcuna attivita biochemiche e bioelettriche del sistema nervoso centrale, Arch. Fisiol. 65:271–312(1967).

    PubMed  Google Scholar 

  62. A. L. Carsten, Irradiation and functional pathogenesis of X-irradiation effects in the monkey cerebral cortex, Brain Res. 7:5–27 (1968).

    Google Scholar 

  63. V. M. Anan’ev, A. M. Kogan, and V. A. Nazarov, Electro-physiological study of cortical activity in the rabbit under the influence of total ionizing radiation, Biull. Eksp. Biol. Med. 65:32–36 (1968) (Russian).

    PubMed  Google Scholar 

  64. T. Minamisava, T. Tsuchiya, and H. Eto, The effects of ionizing radiation on the spontaneous and evoked brain electrical activity in rabbits. 2. The effects of X-rays on the hippocampal spontaneous electrical activity, Nippon Acta Radiol. 27:1243–1249 (1967) (Japanese).

    Google Scholar 

  65. A. J. Stepanov, Certain indices of the bioelectric cerebral activity in persons subjected to the action of ionizing radiation during work, Grg. Sanit. 4:47–49 (1967) (Russian).

    Google Scholar 

  66. G. A. Antropov, V. P. Godin, and A. V. Kolesnikova, Effect of small doses of penetrating radiation on the cortico-subcortical interaction, Grg. Sanit. 7:49–52 (1968) (Russian).

    Google Scholar 

  67. J. Garcia, D. J. Kimeldorf, and E. L. Hunt, The use of ionizing radiation as a motivating stimulus. Psychol. Rev. 68:383–395 (1961).

    PubMed  CAS  Google Scholar 

  68. J. Garcia, B. H. Buchwald, B. H. Feder, and C. Wakefield, in Effect of Ionizing Radiation on the Nervous System, International Atomic Energy Agency, Proceedings Series; Vienna Symposium, Vienna (1962).

    Google Scholar 

  69. V. Novakova and J. Sterc, Higher nervous activity in rats irradiated at different periods of postnatal development, Physiol. Behav. 2:421–423 (1967).

    Google Scholar 

  70. W. R. Adey and R. L. Schoenbrun, Irradiation effects of brain wave correlates of conditioned behavior. Final Report (1960–1965) (UCLA# 34P-60) (N67–13272#) (1965).

    Google Scholar 

  71. L. Court, P. Magnien, M. Avargues, and P. Laget, Modifications de la vigilance chez le lapin adulte soumis a une irradiation gamma-globate non lethale C. R. Acad. Sci. (D) (Paris) 266:1052–1055 (1968).

    CAS  Google Scholar 

  72. E. L. Hunt, H. W. Carroll, and D. J. Kimeldorf, Effects of dose and of partial exposure on conditioning through a radiation induced factor, Physiol. Rev. 3:809–813 (1968).

    Google Scholar 

  73. J. M. Johnson, The effects of repeated low dose X-irradiation on discrimination and radiosensitivity, Ph.D. thesis, Florida State University, Tallahasee, Fla. (1968).

    Google Scholar 

  74. V. A. Khasabova, Changes in higher nervous activity in rhesus monkeys induced by a total gamma-irradiation, Zh. Vysshci Nervnoi DeyateVnost: im I. P. Pavlova 17:730–738 (1967) (Russian).

    CAS  Google Scholar 

  75. O. N. Voevodina, Distant results of X-rays influence on higher nervous activity of dogs, Leningrad, Meditsina, 146 pp. (1967) (Russian).

    Google Scholar 

  76. R. J. Young, P. H. Chapman, D. J. Barnes, G. Carroll-Brown, and C. Hurst, Behavioral and physiological responses of Maceca mulata monkeys to supralethal doses of radiation, N69–20576; AD68–746; SAM-TR68–73.

    Google Scholar 

  77. J. C. Martin, Spatial avoidance in a paradigm in which ionizing irradiation precedes spatial confinement, Radiat, Res. 27:284–289 (1966).

    Google Scholar 

  78. W. S. Moos, H. Le Van, B. T. Mason, H. C. Mason, and D. L. Hebion, Radiation-induced avoidance behavior transfer by brain extracts of mice, Experientia 25:1215–1219(1969).

    Google Scholar 

  79. H. Brust-Carmona, H. Kasprzak, and E. L. Gasteiger, Role of the olfactory bulbs in X-ray detection, Radiation Res. 29:354–361 (1966).

    PubMed  CAS  Google Scholar 

  80. E. L. Gasteiger and S. A. Helling, X-ray detection by the olfactory system: ozone as a masking odorant, Science 154:1038–1041 (1966).

    PubMed  CAS  Google Scholar 

  81. G. P. Cooper and D. J. Kimeldorf, Responses of single neurons in the olfactory bulbs of rabbits, dogs, and cats to X-rays, Experientia 23:137–138 (1967).

    PubMed  CAS  Google Scholar 

  82. G. P. Cooper, Receptor origin of the olfactory bulb response to ionizing radiation, Am. J. Physiol, 215:803–806 (1968).

    PubMed  CAS  Google Scholar 

  83. G. P. Cooper, Response of olfactory bulbs neurons to X-rays, as a function of nasal oxygen concentration, Science 167:1726–1727 (1970).

    PubMed  CAS  Google Scholar 

  84. W. Zeman, in Response of the Nervous System to Ionizing Radiation, Second International Symposium (T. J. Haley and R. S. Snider, eds.) General Discussion of Part V., pp. 722–724, Little, Brown, Boston (1964).

    Google Scholar 

  85. Yu. K. Kudritskiy, Change in the excitability of a motor reflex under a summation of the effects of small doses of X-rays, Vestn. Rentgenol. Radiol. 6:15–21 (1955) (Russian).

    Google Scholar 

  86. M. N. Livanov and D. A. Biryukov, Changes in the Nervous System following Exposure to Ionizing Irradiation, Reports at the Second V. N. Conference, Peaceful Uses of Atomic Energy, Vol. 22, U.N., Geneva (1958).

    Google Scholar 

  87. R. Pape and J. Zakovsky, Die Röntgen Strahlensensibilität der Retina, Forsch. Gebiete Röntgenstrahlen 80:65–71 (1954).

    CAS  Google Scholar 

  88. F. N. Serkov, Ye. D. Dubovyy, and M. A. Yamnovsky, Electroencephalographic changes in polycythemia patients treated with radioactive phosphorus, Vrach. Delo. 10:1010 (1956) (Russian).

    Google Scholar 

  89. Yu. G. Grigor’yev, Problems pertaining to the action of small doses of ionizing radiation on physiological functions, Radiobiolog. 1:966–968 (USAEC Rept. AEC-tr-5427), pp. 236–241 (1961).

    Google Scholar 

  90. Yu. G. Grigor’yev and L. N. Krasnikova, Reception of ionizing radiation by organism, Med. Radiol. 8:85–91 (1963) (abstract from Nucl. Sci. Abstr., 17:31908 (1963)).

    Google Scholar 

  91. S. P. Hicks and C. J. D’Amato, Low dose radiation of developing brain, Science 141:903–905(1963).

    PubMed  CAS  Google Scholar 

  92. H. E. Himwich, P. Sykowski, and J. F. Fazekas, A comparative study of excised cerebral tissue of adult and infant rats, Am. J. Physiol, 132:293–296 (1941).

    CAS  Google Scholar 

  93. H. E. Himwich, Brain Metabolism and Cerebral Disorders, Williams and Wilkins, Baltimore (1951).

    Google Scholar 

  94. J. R. Lott and J. F. Hines, Effects of X-irradiation on respiration in rat brain tissue slices, Texas. J. Sci. 19:391–394 (1967).

    Google Scholar 

  95. E. Egana and F. Ugalde, Energetic metabolism of the CNS, Rev. Med. Chile 80:359–362 (1952) (Spanish).

    PubMed  CAS  Google Scholar 

  96. E. Egana and S. Candiani, Correlation between the symptomatology, blood sugar and metabolic indexes of the CNS during the experimental insulin coma; First International Congress of Neurological Sciences, Brussels, July 1957; Vol. V, pp. 152–167, Pergamon Press, London (1959).

    Google Scholar 

  97. G. M. Frank, Early reactions of the organism to irradiation in relation to the localization of the effect, in Proc. Int. Conf. Peaceful Uses Atomic Energy, 1st Geneva, 1955, Vol. 2, p. 93, I.D.S., Columbia Univ. Press, New York (1956).

    Google Scholar 

  98. G. M. Frank, N. A. Aladjova, and A. D. Snezhko, Some aspects of the biophysical analysis of radiobiological effects, Proc. Int. Conf. Peaceful Uses Atomic Energy 2nd Geneva, 1958, Vol. 22, p. 383, I.D.S., Columbia Univ. Press, New York (1959).

    Google Scholar 

  99. A. D. Snezhko, Change in the oxygen consumption of brain tissue, following X-irradiation. Biofizika 2:67–78 (1957) (Russian).

    CAS  Google Scholar 

  100. A. D. Snezhko, Measurement of the free oxygen concentration in the normal cerebral tissue in chronic experimental conditions, Biofizika 1:585–592 (1956) (Russian).

    CAS  Google Scholar 

  101. W. H. Florsheim, C. Doernbach, and M. E. Morton. Effect of X-ray on radioactive phosphorus turnover and oxygen consumption of brain, Proc. Soc. Exp. Biol. Med. 81:121–122(1952).

    PubMed  CAS  Google Scholar 

  102. P. S. Timiras, J. A. Moguilevsky, and S. Geel, in Response of the Nervous System to Ionizing Radiation’, Second International Symposuim (T. J. Haley and R. S. Snider, eds.) pp. 365–376, Little, Brown, Boston (1964).

    Google Scholar 

  103. J. A. Moquilevsky and S. Geel, Long-term effects of whole body X-irradiation on cortex and hypothalamus, Oo2 in rats, Fed. Proc. 22:272 (1963).

    Google Scholar 

  104. E. Egana, in Effects of Ionizing Radiation on the Nervous System, International Atomic Energy Agency, Proceedings Series, pp. 267–282, Vienna Symposium, Vienna (1962).

    Google Scholar 

  105. E. Egana, Some effects of ionizing radiations on the metabolism of the central nervous system, Int. J. Neurol. 3:631–647 (1962).

    Google Scholar 

  106. B. Chance and G. R. Williams. The respiratory chain and oxidative phosphorylation, Advan. Enzymol. 17:65–134 (1956).

    CAS  Google Scholar 

  107. J. K. Grant, ed., Methods of Separation of Subcellular Structural Components, Cambridge University Press, Cambridge (1963).

    Google Scholar 

  108. B. Chance, ed., Energy-linked Functions of Mitochondria, First Colloquium of the Johnson Res. Found., Academic Press, New York (1963).

    Google Scholar 

  109. A. L. Lehninger, The Mitochondrion, W. A. Benjamin, Inc., New York (1965).

    Google Scholar 

  110. J. M. Tager, S. Papa, E. Quagliariello, and E. C. Slater, eds., Regulation of Metabolic Process in Mitochondria, B. B. A. Library, Vol. 7, Elsevier, Amsterdam (1966).

    Google Scholar 

  111. B. Chance, ed., Control of Energy Metabolism, Colloquium of the Johnson Res. Found., Academic Press, New York (1965).

    Google Scholar 

  112. E. C. Slater, Z. Kaniuga, and L. Wojtczak, eds., Biochemistry of Mitochondria, Academic Press, New York (1967).

    Google Scholar 

  113. T. P. Singer, ed., Biological Oxidations, Interscience Publ., New York (1968).

    Google Scholar 

  114. D. E. Green and H. Baum, Energy and the Mitochondria, Academic Press, New York (1969).

    Google Scholar 

  115. L. G. Abood and L. Romanchek, Inhibition on oxidative phosphorylation in brain mitochondria by electrical current and the effect of chelating agents and other substances, Biochem. J. 60:233–238 (1955).

    PubMed  CAS  Google Scholar 

  116. R. Tanaka and L. G. Abood, Isolation from rat brain of mitochondria devoid of glycolytic activity, J.Neurochem. 10:571–576 (1963).

    CAS  Google Scholar 

  117. A. A. Abdel-Latif and L. G. Abood, Biochemical studies on mitochondria and other cytoplasmic fractions of rat brain, J. Neurochem. 11:9–15 (1964).

    PubMed  CAS  Google Scholar 

  118. L. G. Abood, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. 2, pp. 303–326, Plenum Press, New York (1969).

    Google Scholar 

  119. E. Egana and C. Oberti, CNS mitochondria morphology and irradiation (to be published).

    Google Scholar 

  120. E. Egana and R. Valderas, The effect of β-internal irradiation on CNS mitochondria, Progress Report to the International Energy Agency, Vienna, Contract 95, RB/2 January (1963).

    Google Scholar 

  121. E. Egana and B. San Martin, The effect of whole body-gamma (60Co) irradiation on the CNS mitochondria respiration, First International Meeting of the International Society for Neurochemistry, Strassbourg, July/August (1967) (abstract).

    Google Scholar 

  122. K. F. Swaiman and J. M. Milstein, Oxidative decarboxylation of aspartate, alanine and glycine in developing rabbit brain, Biochim. Biophys. Acta. 93:64–70 (1964).

    PubMed  CAS  Google Scholar 

  123. K. F. Swaiman and J. M. Milstein, Oxidation of leucine, isoleucine and related ketoacids in developing rabbit brain, J.Neurochem, 12:981–986 (1965).

    PubMed  CAS  Google Scholar 

  124. J. M. Milstein, J. G. White, and K. F. Swaiman, Oxidative phosphorylation in mitochondria of developing rat brain, J.Neurochem. 15:411–415 (1968).

    PubMed  CAS  Google Scholar 

  125. E. Egana, B. San Martin, and B. Oporto, Gamma-(60Co)-whole body-irradiation and biochemical indexes of developing CNS mitochondria, Second International Meeting of the International Society for Neurochemistry, Milan, Sept. 1969 (abstract).

    Google Scholar 

  126. D. R. Dahl and F. E. Samson, Jr., Metabolism of rat brain mitochondria during postnatal developments. Am. J. Physiol. 196:470–472 (1959).

    PubMed  CAS  Google Scholar 

  127. B. Chance and M. Baltscheffsky, Spectroscopic effects of adenosinediphosphate upon the respiratory pigment of rat-breast-muscle sarcoma, Biochem. J. 68:283–295 (1958).

    PubMed  CAS  Google Scholar 

  128. E. S. Higgins, Factors influencing respiratory control in brain mitochondria, J.Neurochem. 15:589–596 (1968).

    PubMed  CAS  Google Scholar 

  129. M. Bacila, A. P. Campello, C. H. Vianna, and D. O. Voss, The respiration chain of the rat cerebrum and cerebellum mitochondria: respiration and oxidative phosphorylation. J.Neurochem. 11:231–242 (1964).

    PubMed  CAS  Google Scholar 

  130. D. E. Smith and J. F. Thomson, Physiological and biochemical studies on various species exposed to massive X-irradiation, Radiat. Res. 11:198–205 (1959).

    PubMed  CAS  Google Scholar 

  131. P. Mitchell and J. Moile, Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase system of the rat liver mitochondria. Nature. 208:147–151 (1965).

    PubMed  CAS  Google Scholar 

  132. P. Mitchell and J. Moile, in Biochemistry of Mitochondria (E. C. Slater, Z. Kaniuga, and L. Wojtczak, eds.) pp. 53–74, Academic Press, New York (1967).

    Google Scholar 

  133. H. R. Mahler and E. H. Cordes, Biological Chemistry, Harper International, New York (1966).

    Google Scholar 

  134. W. H. Florsheim and M. E. Morton, Brain and liver phosphorus metabolism in the acute irradiation syndrome, Am. J. Physiol. 176:15–19 (1954).

    PubMed  CAS  Google Scholar 

  135. E. Egana and R. Valderas, 32P chromatographic studies in β -internal irradiated CNS, 2nd International Congress of Radiation Research, Harrogate, Great Britain, August (1962) (abstract).

    Google Scholar 

  136. K. Ozawa, K. Seta, H. Takada, and C. Araki, On the isolation of mitochondria with high respiratory control from rat brain, J.Biochem. (Tokyo) 59:501–510 (1966).

    CAS  Google Scholar 

  137. K. Ozawa, K. Seta, and H. Handa, The effect of magnesium on brain mitochondrial metabolism, J.Biochem. (Tokyo) 60:268–273 (1966).

    CAS  Google Scholar 

  138. G. Y. Gorodiskaya and O. N. Barmine in Voprosy Biokhim. Nervnoi Sistemy (A. V. Pallatin, ed.) p. 295, Acad. Nauk Ukr. SSR, Kiev. (1957) (Russian).

    Google Scholar 

  139. B. M. Grayevskaya and R. Y. Keilina, Changes of carbohydrate metabolism induced by whole body X-ray irradiation in the organism of animals, Vest. Rentgenol. Radiol. 4:21–26 (1955) (Russian).

    Google Scholar 

  140. E. Egafia, N. Francotte, R. Valderas, and O. Gonzalez, Effects of gamma whole-body irradiation (60Co) on the synthesis of some CNS “free amino acids” from glucose, Nuclear Hematology, November/December (1968).

    Google Scholar 

  141. E. Egafia and R. Rodrigo, unpublished data.

    Google Scholar 

  142. R. E. Kay and H. Chan, Effect of X-irradiation on glucose metabolism in rat cerebral cortex slices, J. Neurochem. 14:401–403 (1967).

    PubMed  CAS  Google Scholar 

  143. S. Nakazava, T. Hara, and K. Veki, The effects of X-irradiation on protein metabolism on the brain, Can. J. Biochem. 43:1091 (1965).

    Google Scholar 

  144. J. de Vellis, Glycolysis in rat brain tissue slices following neonatal head X-irradiation: relation of regional differences to the LDH:GPDH ratio, J.Neurochem. 15:1057–1060(1969).

    Google Scholar 

  145. J. de Vellis and O. A. Schjeide, Time-dependence of the effect of X-irradiation on the formation of glycerol phosphate dehydrogenase and other dehydrogenases in the developing rat brain, Biochem. J. 107:259–264 (1969).

    Google Scholar 

  146. J. de Vellis, O. A. Schjeide, and C. D. Clémente, Protein synthesis and enzymic patterns in the developing brain following head X-irradiation of newborn rats, J.Neurochem 14:499–511 (1967).

    PubMed  Google Scholar 

  147. V. Bonavita, G. Amore, S. Avellone, and R. Guarnieri, Lactate dehydrogenase isoenzymes in the nervous tissue. V. The effects of X-rays on the enzyme of the developing and adult rat brain, J.Neurochem. 12:37–43 (1965).

    PubMed  CAS  Google Scholar 

  148. D. Richter, in Molecular Basis of Some Aspects of Mental Activity, Vol. 1 (O. Walaas, ed.), Academic Press, New York (1966).

    Google Scholar 

  149. H. Schields and W. Gordy. Electron-spin-resonance of X-irradiated nucleic acids, Bull. Am. Phys. Soc. 1:267 (1956) (abstract).

    Google Scholar 

  150. J. N. Herak and W. Gordy, ESR study of nucleosides bombarded with hydrogen atoms, Proc. Nat. Acad. Sci. 57:7–11 (1966).

    Google Scholar 

  151. W. Gordy and H. Schields, Electron spin resonance investigation of the proteins, Bull. Acad. Roy. Belge (Classe Sciences) 33:191–207 (1961).

    CAS  Google Scholar 

  152. J. Duchesne. Origine de la radiorésistence des proteins et des acids nucléiques, Rapports de la Reun. Int. Physique, pp. 1–4, Paris (1964).

    Google Scholar 

  153. A. van de Vorst, Effect des rayonnements ionizants sur la matière en phase solide, Doctoral thesis, Département de Physique Atomique et Moléculaire et Institute de Physique, Faculté de Sciences, Université de Liège, 131 pp., Liège (1963).

    Google Scholar 

  154. F. Shimazu and A. L. Tappel, Comparative radiolability of amino acids of proteins and free amino acids, Radiat.Res. 23:203–209 (1964).

    PubMed  CAS  Google Scholar 

  155. W. M. Dale, in Actions Chimiques et Biologiques des Radiations (M. Haissinsky, ed.), Masson et Cie., Paris (1955).

    Google Scholar 

  156. W. M. Dale, in Ciba Found. Symposium Ionizing Radiation and Cell Metabolism (G. E. W. Wolstenholme and C. M. O’Connor, eds.) pp. 25–34, Churchill, London (1956).

    Google Scholar 

  157. T. Hasseltrom, M. C. Henry, and B. Murr, Synthesis of amino acids by beta-irradiation, Science 125:350–351 (1967).

    Google Scholar 

  158. B. B. Singh and M. G. Ormerod, Primary radical formation in irradiated proteins, Nature 206:1314–1315 (1965).

    PubMed  CAS  Google Scholar 

  159. A. Beloff-Chain, R. Cantarazo, E. B. Chain, J. Massi, and F. Pocchiari, Fate of uniformly labelled 14C-glucose in brain slices, Proc. Roy. Soc. B. 144:22–28 (1955).

    CAS  Google Scholar 

  160. R. Balazs, K. Magyar, and D. Richter, in Comparative Neuro chemistry (D. Richter, ed.) pp. 225–248, Pergamon Press, London (1964).

    Google Scholar 

  161. R. Balàzs and R. J. Haslam, Exchange transamination and the metabolism of glutamate in brain, Biochem. J. 94:131–141 (1965).

    PubMed  Google Scholar 

  162. M. K. Gaitonde, D. R. Dahl, and K. A. C. Elliott, Entry of glucose carbon into amino-acids of rat brain and liver “in vivo” after injection of uniformly 14C-labelled glucose, Biochem. J. 94:345–352 (1965).

    PubMed  CAS  Google Scholar 

  163. R. Vrba, M. K. Gaitonde, and D. Richter. The conversion of glucose carbon into protein in the brain and other organs of the rat, J. Neurochem. 9:465–475 (1962).

    PubMed  CAS  Google Scholar 

  164. A. Geiger, Y. Kawakita, and S. S. Barkulis, Major pathways of glucose utilization in the brain perfusion experiments in vivo and in situ, J. Neurochem. 5:323–338 (1960).

    PubMed  CAS  Google Scholar 

  165. J. E. Cremer, Amino acid metabolism in rat brain; studied with 14C-labelled glucose, J.Neurochem. 11:165–185 (1964).

    PubMed  CAS  Google Scholar 

  166. E. Egana and E. Szirmai, in Symposium der Arbeitsgemeinschaft für Strahlenbiologie in der Deutschen Röntgengeseilschaft, Stuttgart, pp. 78–82, 11 Mai, 1969. Thieme Verlag, Stuttgart (1970).

    Google Scholar 

  167. E. Egana, unpublished data.

    Google Scholar 

  168. S. N. Alexandrov. Doklady Akad. Nauk SSSR 106:153 (1956), quoted in reference 5.

    Google Scholar 

  169. J. de Vellis and O. A. Schjeide, Effects of ionizing radiation on the biochemical differentiation of the rat brain, Proc. Ninth Ann. Conf. Hanford Biol. Symp. Radiation Fetal Juvenile Mammal (Batelle Symposium) (M. R. Sikov and D. D. Mablum, eds.), VSAEC Division of Technical Information Extension, Oak Ridge (1970).

    Google Scholar 

  170. M. K. Gaitonde and D. Richter, The metabolic activity of the protein of the brain, Proc. Roy. Soc. B. 145:83–99 (1956).

    CAS  Google Scholar 

  171. F. N. Minard and D. Richter, Electroshock induced seizures and the turnover of brain protein in the rat. J. Neurochem. 15:1463–1468 (1968).

    PubMed  CAS  Google Scholar 

  172. F. Orrego and F. Lipman, Protein synthesis in brain slices; effects of electrical stimulation and acidic amino acids, J.Biol. Chem. 242:665–671 (1967).

    PubMed  CAS  Google Scholar 

  173. G. P. Talwar, S. P. Chopra, B. K. Goel, and B. d’Monte, Correlation of the functional activity of the brain with metabolic parameters. III. Protein metabolism of the occipital cortex in relation to light stimulus. J. Neurochem. 13:109–116 (1966).

    PubMed  CAS  Google Scholar 

  174. W. Florsheim, C. Doernbach, and M. E. Morion, Effect of X-ray on radioactive phosphorus turnover and oxygen consumption of brain, Proc. Soc. Exp. Biol. Med. 81:121–122(1952).

    PubMed  CAS  Google Scholar 

  175. S. V. Gastevz and D. A. Chetverikov, The intensity of phospholipid exchange in the central nervous system of the rat during severe radiation sickness, Doklady

    Google Scholar 

  176. Akad. Nauk SSSR 142:1180–1183 (1962) (Russian).

    Google Scholar 

  177. M. P. Vinogradov, Effect of whole body X-irradiation upon turnover rate of lipids in the rat brain. Radiologia 2:695–699 (1962) (Russian).

    CAS  Google Scholar 

  178. O. A. Smirnova. Influence of ionizing radiation on metabolism of brain phospholipids, Ukr. Biokhim. Zh. 33:208–213 (1961) (Russian).

    CAS  Google Scholar 

  179. E. Grossi, M. Poggi, and R. Paoletti, in Response of the Nervous System to Ionizing Radiation, Second International Symposium (T. J. Haley and R. S. Snider, eds.) pp. 389–402, Little, Brown, Boston (1964).

    Google Scholar 

  180. A. Vernadakis, R. Casper, and P. S. Timiras, Influence of prenatal X-radiation on brain lipid and cerebroside content in developing rats. Experientia 24:237–238 (1968).

    PubMed  CAS  Google Scholar 

  181. O. A. Schjeide, R. I-San Lin, and J. de Vellis, Molecular composition of myelin synthesized subsequent to irradiation, Radiat. Res. 33:107–128 (1968).

    PubMed  CAS  Google Scholar 

  182. Ch. O. Lee, Radiation effects on the metabolism of phospholipids in the central nervous system of albino rats, Progress Report V., Nasa-CR 96228-PR-5., August (1968).

    Google Scholar 

  183. W. O. Carter, E. S. Redgate, and W. D. Amstrong, Changes in the central nervous system after 700 r total-body X-irradiation, Radiat. Res. 8:92–97 (1958).

    Google Scholar 

  184. W. O. Carter and W. D. Amstrong, in Effects of Ionizing Radiation of the Nervous System, International Atomic Energy Agency, Proceedings Series, Vienna Symposium, Vienna (1962).

    Google Scholar 

  185. M. M. Aleksandrovskaya, Some data of ionizing radiation on the central nervous system of animals, Trans. Inst. Higher Nervous Activity, Pathophysiology Series, Izd. Akad, Nauk SSSR Moscow, 4:211–217 (1958) (Russian).

    Google Scholar 

  186. M. M. Aleksandrovskaya, Histopathologic changes in the central nervous system exposed to ionizing radiation during intoxication and infections, Trans. Inst. Higher Nervous Activity, Pathophysiology Series, Izd. Akad. Nauk SSSR, Moscow (1957), USAEC Rept. AEC-tr-3661 (Bk 1) pp. 108–112.

    Google Scholar 

  187. M. I. Artynkhina, On the effects of ionizing radiation on the central nervous system of rabbits, Transactions of the Institute of Higher Nervous Activity, Pathophysiology Series, Izd. Akad. Nauk SSSR, Moscow, 4:238–247 (1958) (Russian).

    Google Scholar 

  188. M. I. Artyukhina, Histopathological changes in the central nervous system and internal organs of white rats following various doses of ionizing radiation on the brain area, Trans. Inst. Higher Nervous Activity, Pathophysiology Series, Izd. Akad. Nauk SSSR Moscow, 1958, 4:252–260 (1958) (Russian).

    Google Scholar 

  189. Y. L. Yamamoto, L. E. Feinendeger, and V. P. Bond, Effect of radiation on the RNA metabolism of the central nervous system, Radiat. Res. 21:36–65 (1964).

    PubMed  CAS  Google Scholar 

  190. E. C. Pollard, Degradation of ribonucleic acid in dilute solution by ionizing radiation, Nature 210:1393–1395 (1966).

    PubMed  CAS  Google Scholar 

  191. D. M. Climent and W. G. Overend, Examination of the effect of γ-rays on deoxyribonucleic acids, Arch. Bioch. Biophy. 122: 563–568 (1967).

    Google Scholar 

  192. R. A. Cox, W. G. Overend, A. R. Peacoke, and S. Wilson, The action of γ -rays on sodium deoxyribonucleate in solution, Proc. Royal Soc. (London) B. 149:511–513 (1958).

    CAS  Google Scholar 

  193. M. W. Warshaw and J. Tinoco, Jr., Absorption and optical rotatory dispersion of six dinucleoside phosphates, J. Mol. Biol. 13:54–64 (1965).

    PubMed  CAS  Google Scholar 

  194. H. de Voe and J. Tinoco Jr., The stability of helical polynucleotides: base contributions, J. Mol. Biol. 4:500 (1962).

    Google Scholar 

  195. G. Scholes and M. Simic, Radiolysis of aqueous solutions of DNA and related substances; reaction of hydrogen atoms, Biochem. Biophys. Acta 166:255–258 (1968).

    PubMed  CAS  Google Scholar 

  196. B. B. Singh and M. G. Ormerod, Primary radical formation in irradiated protein, Nature 206:1314–1315 (1965).

    PubMed  CAS  Google Scholar 

  197. A. D. Lenherr and A. Charlesbay, Energy transfer in nucleoproteins, Int. J. Rad. Biol. 12:51–60(1967).

    CAS  Google Scholar 

  198. C. J. Dean, M. G. Ormerod, R. W. Serianini, and P. Alexander, DNA strand breakage in cells irradiated with X-rays, Nature 222:1042–1045 (1969).

    PubMed  CAS  Google Scholar 

  199. E. R. Walwick and R. K. Main, Stability of a deoxyribonucleic acid-synthesizing system to X-radiation, Biochim. Biophys. Acta 55:225–227 (1962).

    PubMed  CAS  Google Scholar 

  200. J. Merits and J. Cain, Rapid loss of labelled DNA from rat brain due to radiation damage, Biochim. Biophys. Acta 174:315–321 (1969).

    PubMed  CAS  Google Scholar 

  201. B. Pullman and A. Pullman, The electronic structure of the purine-pyrimidine pairs of DNA, Biochim. Biophys. Acta 36:343–350 (1959).

    PubMed  CAS  Google Scholar 

  202. B. Pullman and A. Pullman, Quantum Biochemistry, Intersc. Publ., New York (1963).

    Google Scholar 

  203. B. Pullman and A. Pullman, in Comparative Effects of Radiation (M. Burton, J. S. Kirby Smith, and J. L. Magee, eds.) pp. 105–123, John Wiley & Sons, New York (1960).

    Google Scholar 

  204. B. Pullman, in Molecular Biophysics (B. Pullman and H. Weisbluth, eds.), Academic Press, New York (1965).

    Google Scholar 

  205. B. Pullman, Quantum-mechanical calculations of biological structures and mechanisms, Ann. N.Y. Acad. Sci. 158:Art. 1:1–19 (1969).

    Google Scholar 

  206. A. Szent-Györgyi, Introduction to a Submolecular Biology, Academic Press, New York (1960).

    Google Scholar 

  207. A. Szent-Györgyi, On the possible role of quantum phenomena in normal and abnormal mental function in ultrastructure and metabolism of the nervous system, Res. Publ. Ass. Nerv. Ment. Dis. 40:325–336 (1962).

    Google Scholar 

  208. J. Duchesne, Biological Effects of Ionizing Radiation at the Molecular Level, International Atomic Energy Agency, Proc. Series, Brno Symposium, Vienna (1962).

    Google Scholar 

  209. J. Duchesne and A. van de Vorst, Origine de la radioresistance des acids nucléiques en phase solide, Bull. Acad. Roy. Belg. (Classe Sciences) 51:778–809 (1965).

    CAS  Google Scholar 

  210. C. Alexander, Jr. and W. Gordy, Electron spin resonance of an irradiated single crystal of guanine-hydrochloride-dihydrate, Proc. Nat. Acad. Sci. 58:1279–1285 (1967).

    PubMed  CAS  Google Scholar 

  211. W. Gordy, Free radicals from biological purines and pyrimidines, Ann. N.Y. Acad. Sci. 158 Art. 1:100–123 (1969).

    Google Scholar 

  212. A. Müller, The formation of radicals in nucleic acids, nucleoproteins and their constituents by ionizing radiations, Prog. Bioph. Mol. Biol. 17:99–147 (1967).

    Google Scholar 

  213. J. K. Setlow, in Current Topics in Radiation Research (M. Ebert and A. Howard, eds.) pp. 195–248, North-Holland, Amsterdam (1966).

    Google Scholar 

  214. M. I. Gregersen, Ch. Pallavicini, and S. Chien, Studies on the chemical composition of the central nervous system in relation to the effects of X-irradiation and of disturbances in water and salt balance. I. Chemical composition of various specific areas and structures of the brain in the dog and the monkey. Radiat. Res. 17:209–225 (1962).

    PubMed  CAS  Google Scholar 

  215. M. I. Gregersin, Ch. Pallavicine, and S. Chien, II. Effects of X-irradiation on the chemical composition of brain tissue in dogs. Radiat. Res. 17:226–233 (1962).

    Google Scholar 

  216. S. Chien, Ch. Pallavicini, L. J. Cizek, and M. I. Gregersen, III. Effects of disturbances in water and electrolyte balance on the chemical composition of brain tissue in dogs. Radiat. Res. 11:234–243 (1962).

    Google Scholar 

  217. G. B. Rowley and R. L. Dellenback, IV. Effects of X-irradiation on the chemical composition of rabbit brain, Radiat. Res. 17:244–252 (1962).

    PubMed  CAS  Google Scholar 

  218. T. Volcana, A. Vernadakis, and P. S. Timiras, Electrolyte content of the cerebral cortex in developing rats after prenatal X-irradiation, Experientia 22:608–609 (1966).

    Google Scholar 

  219. E. D. Willis, The effect or irradiation on sub-cellular components metal-ion transport in mitochondria, Int. J. Rad. Biol. 11:517–529 (1966).

    Google Scholar 

  220. R. Valderas and E. Egana, Experimental criterion to study the relation of internal 0-irradiation and biochemical effects in the CNS, Nuclear Hematology, June (1966).

    Google Scholar 

  221. M. Lefort, in Actions chimiques et biologiques des Radiations (M. Haissinky, ed.), Masson et Cie, Paris (1955).

    Google Scholar 

  222. H. E. Aebi, Detection and fixation of radiation-produced peroxide by enzymes, Radiat. Res. Suppl. 3:130–162 (1963).

    Google Scholar 

  223. E. Egana and M. I. Velarde, in Comparative Neurochemistry (D. Richter, ed.) pp. 275–278, Pergamon Press, Oxford (1964).

    Google Scholar 

  224. E. Egafia. Catalase effect on the respiration of normal and beta-internal irradiated rat CNS, Book of abstracts, Third International Congress of Radiât. Res., Cortina d’Ampezzo, Italy, June/July (1966).

    Google Scholar 

  225. R. N. Feinstein, J. T. Braun, and J. Howard, Acatalasemic and hypocatalasemic mouse mutant, II. Mutational variations in blood and solid tissue catalases, Arch. Biochem. Bioph. 120:165–169 (1967).

    CAS  Google Scholar 

  226. G. M. Gallagner and S. H. Buttery, Biochemistry of sheep tissues, enzyme systems of liver, brain, and kidney, Biochem J. 72:575–582 (1959).

    Google Scholar 

  227. H. J. Adler, Catalase, hydrogen peroxide and ionizing radiation, Radiat. Res. Suppl. 3:110–129(1963).

    CAS  Google Scholar 

  228. R. N. Feinstein, Attempts at protection of mice against ionizing radiation by exogenous catalase, Atompraxis 6:205–207 (1960).

    CAS  Google Scholar 

  229. H. Le Van and W. S. Moos, Possible effects of radiation-produced hydrogen peroxide on post-irradiation aversion in mice, Experientia 23:749–751 (1967).

    PubMed  Google Scholar 

  230. H. Le Van, W. S. Moos and D. L. Hebron, Direct and indirect effect on X-irradia-tion on conditioned avoidance behavior, Med. Exp. 18:161–168 (1968).

    Google Scholar 

  231. D. D. Morris and R. N. Feinstein, Mechanism of mouse awareness of X-radiation, catalase and hydrogen peroxide required for detection of X-rays by mice, Nature 222:688–689(1969).

    PubMed  CAS  Google Scholar 

  232. E. Egana, ACh content of the brain and the C.S.F. during the states of rest and of optical nerve excitation, Ann. Acad. Biol. 1:183–191 (1937) (Spanish).

    Google Scholar 

  233. P. B. Bradley, Synaptic transmission in the central nervous system and its relevance for drug action, Int. Rev. Neurobiol. 11:1–56 (1968).

    PubMed  CAS  Google Scholar 

  234. V. P. Whittaker, The isolation and characterization of acetylcholine-containing particles from brain, Biochem. J. 72:694–706 (1959).

    PubMed  CAS  Google Scholar 

  235. V. P. Whittaker and M. N. Sheridan, The morphology and acetylcholine content of cerebral synaptic vesicles, J. Neurochem. 12:363–372 (1965).

    PubMed  CAS  Google Scholar 

  236. V. P. Whittaker, in Mechanisms of Release of Biogenic Amines (U. S. von Euler, S. Rosell, and B. Uvnäs, eds.) Vol. 5, pp. 147–164, Wenner-Gren International Symposium Series, Pergamon Press, Oxford (1966).

    Google Scholar 

  237. L. W. Chakrin and V. P. Whittaker, The subcellular distribution of N-Me-H-acetylcholine synthesized by brain in vivo. Biochem. J. 113:97–107 (1969).

    PubMed  CAS  Google Scholar 

  238. V. P. Whittaker, in Handbook of Neurochemistry (Abel Lajtha, ed.) Vol. 2, Chapter 14, pp. 327–364, Plenum Press, New York (1969).

    Google Scholar 

  239. E. de Robertis, L. Salganicoff, L. M. Zieher, and G. Rodrigues de Lores Arnaiz, Acetylcholine and cholinacetylase content of synaptic vesicles, Science 140:300–301 (1963).

    CAS  Google Scholar 

  240. E. de Robertis, G. Rodriguez de Lores Arnaiz, L. Salganicoff, A. Pellegrino de Iraldi, and L. M. Zieher, Isolation of synaptic vesicles and structural organization of the acetylcholine system within brain nerve endings, J. Neurochem. 10:225–235 (1963).

    Google Scholar 

  241. G. Rodriguez de Lores Arnaiz, M. Alberici, and E. de Robcrtis, Gangliosides and acetylcholinesterase in isolated membranes of the rat brain cortex, Biochim. Biophys. Acta 135:33–43 (1967).

    Google Scholar 

  242. E. de Robertis and G. Rodriguez de Lores Arnaiz (A. Lajtha, ed.), Vol. 2, Chapter 15, pp. 365–392, Plenum Press, New York (1969).

    Google Scholar 

  243. A. Silver, Cholinesterases of the central nervous system with especial reference to the cerebellum, Int. Rev. Neurobiol. 10:58–109 (1967).

    Google Scholar 

  244. Ye. N. Petrovnina, Impairment of acetylcholine metabolism in the brain of white rats following polonium injury, Byull. Radiats. Med. 1:52 (1958) (Russian).

    Google Scholar 

  245. E. Egafia, Beta-internal irradiation and cholineacetylase activity of encephalon, Radiat. Res. 12:432 (1966) (abstract).

    Google Scholar 

  246. G. J. Maletta and P. S. Timiras, Acetyl- and Butyrylcholinesterase activity of selected brain areas in developing rats after neonatal X-irradiation, J. Neurochem, 13:75–84(1966).

    PubMed  CAS  Google Scholar 

  247. G. J. Maletta, A. Vernadakis, and P. S. Timiras, Acetylcholinesterase activity and protein content of brain and spinal cord in developing rats after prenatal X-irradiation, J. Neurochem. 14:647–652 (1967).

    PubMed  CAS  Google Scholar 

  248. E. T. Browning and M. P. Schulman, 14C-Acetylcholine synthesis by cortex slices of rat brain, J. Neurochem. 15:1391–1405 (1968).

    PubMed  CAS  Google Scholar 

  249. D. J. Palaic and Z. Supek, Liberation of brain 5-hydroxytryptamine and noradrenaline by X-ray treatment in the newborn and adult rats, J. Neurochem. 13:705–709(1966).

    PubMed  CAS  Google Scholar 

  250. K. N. Prasad and M. H. van Woert, Dopamine protects mice against whole body irradiation. Science 155:470–472 (1967).

    PubMed  CAS  Google Scholar 

  251. J. L. Gray, E. J. Moulder, J. T. Tew, and H. Lensen, Protective effects of pitressin and of epinephrine against total body X-irradiation, Proc. Soc. Exp. Biol. Med. 79:384–387(1952).

    PubMed  CAS  Google Scholar 

  252. E. Roberts and S. Frankel, y-aminobutyric acid in brain, Fed. Proc. 9:219 (1950) (abstract).

    Google Scholar 

  253. E. Roberts and E. Eidelberg, Metabolic and neurophysiological roles of γ-amino-butyric acid, Int. Rev. Neurobiol. 2:279–332 (1960).

    PubMed  CAS  Google Scholar 

  254. E. Roberts, in Molecular Basis of Some Aspects of Mental Activity (O. Walaas, ed.) Vol. 1, Academic Press, New York (1966).

    Google Scholar 

  255. E. Roberts and K. Kuriyama, Biochemical-physiological correlations in studies of the γ-aminobutyric acid, Brain Res. 8:1–35 (1968).

    PubMed  CAS  Google Scholar 

  256. K. Kuriyama, E. Roberts, and Johan Vos, Some characteristics of binding of γ-aminobutyric acid and acetylcholine to a synaptic vesicle fraction from mouse brain, Brain Res. 9:231–252 (1969).

    Google Scholar 

  257. N. Seiler and M. Wiechman, Zum Vorkommen der Gamma-amino-buttersäure und der Gamma-amino beta-hydroxy-buttersäure in tierischen Gewebe, Hoppe-Seyler’s Z. Physiol. Chem. 350:1493–1500 (1969).

    PubMed  CAS  Google Scholar 

  258. E. Egafia, unpublished data.

    Google Scholar 

  259. G. M. McKahnn and D. B. Tower, Gamma-amino butyric acid: a substrate for oxidative metabolism of cerebral cortex, Am. J. Physiol. 196:36–38 (1959).

    Google Scholar 

  260. Y. Tsukada, Y. Nagata, and G. Takagaki, Glucose metabolism and amino-acid in brain slices, J. Biochem. (Tokyo) 45:979–984 (1957).

    Google Scholar 

  261. E. Egafia, Two types of metabolic influences of the central nervous system, Second Latin American Congress of Neurology, Symposium on Metabolic Aspects and Function of the Nervous System, pp. 373–386, University of Chile Press, Santiago, Nov. (1960) (Spanish).

    Google Scholar 

  262. M. Jovanovic and N. Svecenski, Effect of high dosage of 60Co-gamma rays on gamma-amino butyric and glutamic acid content in brain tissue of mice, Strahlentherapie 125:588–590 (1964).

    PubMed  CAS  Google Scholar 

  263. H. Jovanovic and N. Svecenski, Effect of high doses of 60Co gamma rays on the glutamic/gamma-aminobutyric acid ratio in brain tissue of mice, Strahlentherapie 129:446–447 (1966).

    PubMed  CAS  Google Scholar 

  264. M. Jovanovič and A. Cordic, Transformation of labelled glutamic acid in the brain tissue of irradiated mouse, Strahlentherapie 134:533–535 (1967).

    PubMed  Google Scholar 

  265. E. Egaña, unpublished data.

    Google Scholar 

  266. B. H. Ershoff and E. M. Gal, Effects of radiation on tissue serotonin levels in the rat, Proc. Soc. Exp. Biol. Med. 108:160–162 (1961).

    PubMed  CAS  Google Scholar 

  267. J. Renson and P. Fischer, Libération de 5-hydroxytryptamine par le rayonnement-X, Arch. Int. Physiol 67:142–144 (1958).

    Google Scholar 

  268. L. Speck, Effects of massive X-irradiation on rat electroencephalogram and brain serotonin, J. Neurochem. 9:573–574 (1962).

    PubMed  CAS  Google Scholar 

  269. M. Randic, Z. Supek, and Z. Lovasen, in Effects of Ionizing Radiation on the Nervous System, International Atomic Energy Agency, Proceedings Series, Vienna Symposium, pp. 263–264, Vienna (1962).

    Google Scholar 

  270. M. Randic and Z. Supek, Influence of high doses of X-irradiation on 5-hydroxytryptamine in the brain of rats, Int. J. Rad. Biol. 4:637–638 (1962).

    PubMed  CAS  Google Scholar 

  271. Dj. Palaic, M. Randic, and Z. Supek, X-irradiation and 5-hydroxytryptamine in the brain of rats and mice, Int. J. Rad. Biol 6:241–246 (1963).

    PubMed  CAS  Google Scholar 

  272. Dj. Palaic and Z. Supek, Liberation of 5-hydroxytryptamine in the rat brain after X-irradiation, Int. J. Rad. Biol. 9:601–603 (1965).

    CAS  Google Scholar 

  273. Dj. Palaic and Z. Supek, Drug-induced changes of the metabolism of 5-hydroxytryptamine in the brain of X-ray treated rat, J. Neurochem. 12:329–333 (1965).

    PubMed  CAS  Google Scholar 

  274. J. R. Lott and J. F. Hines, 5-OH- tryptamine content in rat brain tissue X-irradiated in vitro, Texas J. Sci. 20:91–94 (1968).

    Google Scholar 

  275. N. Komesu and T. J. Haley, Lack of effect of X-irradiation on brain 5-hydroxytryptamine concentration, Proc. West Pharmacol. Society 11:77–80 (1968).

    CAS  Google Scholar 

  276. G. A. Chernov and M. O. Raushenbakhn, The study of the role of serotonin (5-hydroxytryptamine) in the pathogenesis of acute radiation sickness. II. Changes in the serotonin content in the intestine and brains of guinea-pigs and rats in acute radiation sickness, Prob. Gemat. Pereliv Krovi 5:3–7 (1960) (Russian).

    CAS  Google Scholar 

  277. E. Egafia and M. I. Velarde, Effects of β-internal (32P)-irradiation on the 5-HT content of CNS levels, Experientia 23:526–527 (1967).

    Google Scholar 

  278. E. Egafia and M. I. Velarde, in Progress in Nuclear Hematology and Allied Fields (E. Szirmai, ed.) pp. 149–157, Medical Section, The Institution of Nucl. Engin. London (1967).

    Google Scholar 

  279. A. Szent-Györgyi, Charge transfer and electronic mobility, Proc. Nat. Acad. Sci. 58:2012–2014(1967).

    PubMed  Google Scholar 

  280. A. Szent-Györgyi, Intermodular electron transfer may play a major role in biological regulation defense and cancer, Science 161:988–990 (1968).

    PubMed  Google Scholar 

  281. W. E. Cohn and C. E. Carter, The separation of adenosine polyphosphate by ion exchange and paper chromatography, J. Am. Chem. Soc. 72:4273–4275 (1950).

    CAS  Google Scholar 

  282. E. F. McFarren, Buffered filter paper chromatography of d-amino-acids. Anal. Chem. 23:168–174(1951).

    CAS  Google Scholar 

  283. J. R. Vane, A sensitive method for the assay of 5-hydroxytryptamine, Biol. J. Pharm. Chemother. 12:344–349 (1957).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Egaña, E. (1971). Effects of Ionizing Radiation. In: Lajtha, A. (eds) Alterations of Chemical Equilibrium in the Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7175-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7175-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7177-3

  • Online ISBN: 978-1-4615-7175-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics