Skip to main content

The hrp-Encoded Protein Export Systems of Pseudomonas syringae and Other Plant Pathogenic Bacteria and Their Role in Pathogenicity

  • Chapter
Book cover Plant-Microbe Interactions

Abstract

Plants commonly interact with potentially pathogenic bacteria during their life cycle. Pathogenic bacteria are common epiphytes on plant surfaces and can grow saprophytically without causing disease symptoms.1-3 It is only after a pathogen successfully colonizes the parenchyma or vascular tissue of a susceptible host that disease occurs and symptoms develop. Although some plant pathogenic bacteria have large host ranges and can cause disease in representatives of several taxonomic families of plants, most plant pathogenic bacteria are specialists. For example, a strain of Pseudomonas syringae or Xanthomonas campestris may be capable of colonizing tissue of a relatively small subset of closely related plants. Operationally this has led to the assembly of strains into taxonomic groupings called pathovars.4 Each of these pathovars is defined by the ability to cause disease in a characteristic host plant species. At least 40 distinct pathovars of P. syringae have been described.’ Similarly over 100 pathovars of X. campestris have been reported.’ In some cases only a few cultivars or ecotypes of a single plant species are susceptible hosts for a strain of these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kluepfel, D., D. Tonkyn, S. Dobson and T. Lamb. 1994. Microbial ecology of the rhizosphere. In Biotechnology and Plant Protection: Bacterial Pathogenesis and Disease Resistance, eds. D. D. Bills, S. D. Kung, S. W. Hutcheson, D. Staney, C. J. Baker, R. Owens, D. Fischoff, and D. Shah, pp. 11–28. World Scientific Publishing Co., Singapore.

    Google Scholar 

  2. Lindow, S. E. 1994. Epiphytic fitness determinants in bacteria. In Biotechnology and Plant Protection: Bacterial Pathogenesis and Disease Resistance, eds. D. D. Bills, S. D. Kung, S. W. Hutcheson, D. Staney, C. J. Baker, R. Owens, D. Fischoff, and D. Shah, pp. 29–42. Vol. World Scientific Publishing Co., Singapore.

    Google Scholar 

  3. Upper, C. D. and S. S. Hirano. 1994. The role of Pseudomonas syringae in the ecology of the phyllosphere. In Biotechnology and Plant Protection: Bacterial Pathogenesis and Disease Resistance, eds. D. D. Bills, S. D. Kung, S. W. Hutcheson, D. Staney, C. J. Baker, R. Owens, D. Fischoff, and D. Shah, pp. 1–10. Vol. World Scientific Publishing Co., Singapore.

    Google Scholar 

  4. Dye, D. W., J. F. Bradbury, M. Goto, A. C. Hayward, R. A. Lelliott, and M. N. Schroth. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathology 59:153–168.

    Google Scholar 

  5. Pallaroni, N. I. 1984. Pseudomonaceae. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, eds. N. R. Krieg, and J. G. Holt, pp. 141–210. Williams & Wilkins, Baltimore.

    Google Scholar 

  6. Bradbury, J. F. 1984. Xanthomonas Dowson 1939. In Bergey’s Manual of Systematic Bacteriology, Vol. 1, eds. N. R. Krieg, and J. G. Holt, pp. 199–211. Williams & Wilkins, Baltimore.

    Google Scholar 

  7. Staskawicz, B. J., E. M. Ausubel, B. J. Baker, J. G. Ellis, and J. D. G. Jones. 1995. Molecular genetics of plant disease resistance. Science 268:661–667.

    Article  PubMed  CAS  Google Scholar 

  8. Greenberg, J. T. 1996. Programmed cell death: A way of life for plants. Proc. Nat. Acad. Sci. USA 93:12094–12097.

    Article  PubMed  CAS  Google Scholar 

  9. Jones, A. M. and J. L. Dangl. 1996. Logjam at the Styx: programmed cell death in plants. Trends Plant Sci. 1:114–119.

    Article  Google Scholar 

  10. Mittler, R. and E. Lam. 1996. Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol. 4:10–15.

    Article  PubMed  CAS  Google Scholar 

  11. Turner, J. G. and A. Novacky. 1974. The quantitative relation between plant and bacterial cells involved in the hypersensitive reaction. Phytopathology 64:885–890.

    Article  Google Scholar 

  12. Goodman, R. N. and A. J. Novacky. 1994. The Hypersensitive Reaction of Plant to Pathogens. A Resistance Phenomenon. APS Press, St. Paul, Minn.

    Google Scholar 

  13. Willis, D. K., J. J. Rich, and E. M. Hrabak. 1991. The hrp genes of phytopathogenic bacteria. Mol. Plant-Microbe Interact. 4:132–138.

    Article  CAS  Google Scholar 

  14. Dangl, J. L. 1994. The enigmatic avirulence genes of phytopathogenic bacteria. In Bacterial Pathogenesis of Plants and Animals, Vol. 192, ed. J. L. Dangl, pp. 99–118. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  15. VanGijsegem, E, C. Gough, C. Zischek, E. Niqueux, M. Ariat, S. Genin, P. Barberis, S. German, P. Castello, and C. Boucher. 1995. The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Mol. Microbiol. 15:1095–1114.

    Google Scholar 

  16. VanGijsegem, F., S. Genin, and C. Boucher. 1993. Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol. 1:175–180.

    Article  CAS  Google Scholar 

  17. Bonas, U. 1994. hrp genes of phytopathogenic bacteria. In Bacterial Pathogenesis of Plants and Animals, Vol. 192, ed. J. L. Dangl, pp. 79–98. Springer-Verlag, Berlin.

    Google Scholar 

  18. Anderson, D. M. and D. Mills. 1985. The use of transposon mutagenesis in the isolation of nutritional and virulence mutants in two pathovars of Pseudomonas syringae. Phytopathology 75:104–108.

    Article  CAS  Google Scholar 

  19. Lindgren, P. B., R. C. Peet, and N. J. Panopoulos. 1986. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J. Bacteriol. 168:512–522.

    PubMed  CAS  Google Scholar 

  20. Lindgren, P. B., N. J. Panopoulos, B. J. Staskawicz, and D. Dahlbeck. 1988. Genes required for pathogenicity and hypersensitivity are conserved and interchangable among pathovars of Pseudomonas syringae. Mol. Gen. Genet. 21:499–506.

    Article  Google Scholar 

  21. Rahme, L. G., M. N. Mindrinos, and N. J. Panopoulos. 1991. Genetic and transcriptional organization of the hrp cluster of Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 173:575–586.

    CAS  Google Scholar 

  22. Huang, H. C., S. W. Hutcheson, and A. Collmer. 1991. Characterization of the hrp cluster from Pseudomonas syringae pv. syringae 61 and TnphoA tagging of exported or membrane-spanning Hrp proteins. Mol. Plant-Microbe Interact. 4:469–476.

    Article  CAS  Google Scholar 

  23. Boucher, C. A., P. A. Barbers, A. Trigalet, and D. A. Demery. 1985. Transposon mutagenesis of Pseudomonas solanacearum Isolation of Tn5-induced avirulent mutants. J. Gen. Microbiol. 131:2449–2457.

    CAS  Google Scholar 

  24. Boucher, C., F. VanGijsegem, P. Barberis, M. Arlat and C. Zischek. 1987. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J. Bacteriol. 169:5626–5632.

    PubMed  CAS  Google Scholar 

  25. Bonas, U., R. Schulte, S. Fenselau, G. V. Minsavage, B. J. Staskawicz, and R. E. Stall. 1991. Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol. Plant Microbe Interact. 4:81–88.

    Article  CAS  Google Scholar 

  26. Arlat, M., C. L. Gough, C. Boucher, and M. J. Daniels. 1991. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 4:593–601.

    Article  PubMed  CAS  Google Scholar 

  27. Waney, V. R., M. T. Kingsley, and D. W. Gabriel. 1991. Xanthomonas campestris pv. translucens genes determining host-specific virulence and general virulence on cereals identified by Tn5-gusA insertion mutagenesis. Mol. Plant-Microbe Interact. 4:623–627.

    Article  CAS  Google Scholar 

  28. Steinberger, E. M. and S. V. Beer. 1988. Creation and complementation of pathogenicity mutants of Erwinia amylovora. Mol. Plant Microbe Interact. 1:135–144.

    Article  Google Scholar 

  29. Barry, M. A., M. H. Guinebretiere, B. Marcias, A. Coissac, J. P. Paulin, and J. Laurent. 1990. Cloning of a large gene cluster involved in Erwinia amylovora CFBP1430 virulence. Mol. Microbiol. 4:777–787.

    Article  Google Scholar 

  30. Coplin, D. L., R. D. Frederick, D. R. Majerczak, and L. D. Tuttle. 1992. Characterization of a gene cluster that specifies pathogenicity in Erwinia stewartii. Mol. Plant-Microbe Interact. 5:81–88.

    Article  CAS  Google Scholar 

  31. Bauer, D. W., A. J. Bogdanove, S. V. Beer, and A. Collmer. 1994. Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Mol. Plant-Microbe Interact. 7:573–581.

    Article  PubMed  CAS  Google Scholar 

  32. Laby, R. J. and S. V. Beer. 1992. Hybridization and functional complementation of the hrp gene cluster from Erwinia amylovora strain Ea321 with DNA of other bacteria. Mol. Plant-Microbe Interact. 5:412–419.

    Article  CAS  Google Scholar 

  33. Cui, Y., L. Madi, A. Mukherjee, C. K. Dumenyo, and A. K. Chatterjee. 1996. The RsmA-mutants of Erwinia carotovora subsp. carotovora strain Ecc71 overexpress hrpN ECc and elicit a hypersensitive reaction-like response in tobacco leaves. Mol. Plant-Microbe Interact. 9:565–573.

    Article  PubMed  CAS  Google Scholar 

  34. Collmer, A. and D. W. Bauer. 1994. Erwinia chrysanthemi and Pseudomonas syringae plant pathogens trafficking in extracellular virulence proteins. In Bacterial Pathogenesis of Plants and Animals, Vol. 192, ed. J. Dangl, pp. 43–78. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  35. Huynh, T., D. Dahlbeck, and B. J. Staskawicz. 1989. Bacterial blight of soybean: Regulation of a pathogen gene determining host cultivar specificity. Science 245:1374–1377.

    Article  PubMed  CAS  Google Scholar 

  36. Huang, H. C., R. Schuurink, T. P. Denny, M. M. Atkinson, C. J. Baker, I. Yucel, S. W. Hutcheson, and A. Collmer. 1988. Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco. J. Bacteriol. 170:4748–4756.

    PubMed  CAS  Google Scholar 

  37. Beer, S. V., D. W. Bauer, X. H. Jiang, R. J. Laby, B. J. Sneath, Z.-M. Wei, D. A. Wilcox and C. H. Zumoff. 1991. The hrp gene cluster of Erwinia amylovora. In Advances in Molecular Genetics of Plant-Microbe Interactions, Vol. 1, eds. H. Hennecke, and D. P. S. Verma pp. 53–60. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  38. Hwang, I., S. M. Lim and P. D. Shaw. 1992. Cloning and characterization of pathogenicity genes from Xanthomonas campestris pv. glycines. J. Bacteriol. 174: 1923–1931.

    CAS  Google Scholar 

  39. Gough, C. L., S. Genin, C. Zischek, and C. A. Boucher. 1992. hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. Mol. Plant-Microbe Interact. 5:384–389.

    Article  PubMed  CAS  Google Scholar 

  40. Gough, C. L., S. Genin, V. Lopes, and C. A. Boucher. 1993. Homology between the HrpO protein of Pseudomonas solanacearum and bacterial proteins implicated in a signal peptide-independent secretion mechanism. Mol. Gen. Genet. 239:378–392.

    Article  PubMed  CAS  Google Scholar 

  41. Fenselau, S., I. Balbo, and U. Bonas. 1992. Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals. Mol. Plant-Microbe Interact. 5:390–396.

    Article  PubMed  CAS  Google Scholar 

  42. Fenselau, S. and U. Bonas. 1995. Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa and Fli secretion systems. Mol. Plant-Microbe Interact. 8:845–859.

    Article  PubMed  CAS  Google Scholar 

  43. Genin, S., C. L. Gough, C. Zischek, and C. A. Boucher. 1992. Evidence that the hrpB gene encodes a positive regulator for pathogenicity genes of Pseudomonas solanacearum. Mol. Microbiol. 6:3065–3076.

    Article  PubMed  CAS  Google Scholar 

  44. Kamder, H. V., S. Kamoun, and C. I. Kado. 1993. Restoration of pathogenicity of avirulent Xanthomonas oryzae pv. oryzae and X. campestris pathovars by reciprocal complementation with the hrpXo and hrpXc genes and identification of HrpX function by sequence analysis. J. Bacteriol. 175:2017–2025.

    Google Scholar 

  45. Wengelnik, K. and U. Bonas. 1996. HrpXv, an AraC-type regulator, activates expression of five of six loci in the hrp cluster Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 178:3462–3469.

    CAS  Google Scholar 

  46. Bogdanove, A., Z.-M. Wei, L. Zhao, and S. V. Beer. 1996. Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J. Bacteriol. 178:1720–1730.

    PubMed  CAS  Google Scholar 

  47. Heu, S. and S. W. Hutcheson. 1993. Nucleotide sequence and properties of the hrmA locus associated with the P. syringae pv. syringae 61 hrp gene cluster. Mol. Plant Microbe Interact. 6:553–564.

    Article  PubMed  CAS  Google Scholar 

  48. Xiao, Y., S. Heu, J. Yi, Y. Lu, and S. W. Hutcheson. 1994. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol. 176:1025–1036.

    PubMed  CAS  Google Scholar 

  49. Huang, H. C., Y. Xiao, R.-H. Lin, Y. Lu, S. W. Hutcheson, and A. Collmer. 1993. Characterization of the Pseudomonas syringae pv. syringae 61 hrpJ and hrpl genes: homology of HrpI to a superfamily of proteins associated with protein translocation. Mol. Plant-Microbe Interact. 6:515–520.

    Article  PubMed  CAS  Google Scholar 

  50. Huang, H. C., R. H. Lin, C. J. Chang, A. Collmer, and W. L. Deng. 1995. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpin secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant-Microbe Interact. 8:733–746.

    Article  PubMed  CAS  Google Scholar 

  51. Huang, H. C., S. Y. He, D. W. Bauer, and A. Collmer. 1992. The Pseudomonas syringae pv. syringae 61 hrpH product: an envelope protein required for elicitation of the hypersensitive response in plants. J. Bacteriol. 174:6878–6885.

    PubMed  CAS  Google Scholar 

  52. He, S. Y., H. C. Huang, and A. Collmer. 1993. Pseudomonas syringae pv. syringae Harpinpss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266.

    Article  PubMed  CAS  Google Scholar 

  53. Xiao, Y. and S. W. Hutcheson. 1994. A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol. 176:3089–3091.

    PubMed  CAS  Google Scholar 

  54. Bogdanove, A. J., S. V. Beer, U. Bonas, C. A. Boucher, A. Collmer, D. L. Coplin, G. R. Cornelis, H. C. Huang, S. W. Hutcheson, N. J. Panopoulos, and F. VanGijsegem. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20:681–683.

    Article  PubMed  CAS  Google Scholar 

  55. Jarvis, K. G., J. A. Giron, A. E. Jerse, T. K. McDaniel, M. S. Donnenberg, and J. B. Kaper. 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc. Nat. Acad. Sci. USA 92:7996–8000.

    Article  PubMed  CAS  Google Scholar 

  56. Galan, J. E. 1996. Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 20:263–271.

    Article  PubMed  CAS  Google Scholar 

  57. Lidell, M. and S. W. Hutcheson. 1994. Characterization of the hrpf and U operons of Pseudomonas syringae pv. syringae Pss61: similarity with components of enteric bacteria involved in flagellar biogenesis and demonstration of their role in harpinps, translocation. Mol. Plant-Microbe Interact. 7:488–497.

    Article  PubMed  CAS  Google Scholar 

  58. Macnab, R. M. 1996. Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology, Vol. 1, ed. F. C. Neidhardt, pp. 123–145. ASM Press, Washington, D.C.

    Google Scholar 

  59. Blair, D. F. 1995. How bacteria sense and swim. Ann. Rev. Microbiol. 49:489–522.

    Article  CAS  Google Scholar 

  60. Shapiro, L. 1995. The bacterial flagellum: from genetic network to complex architecture. Cell 80:525–527.

    Article  PubMed  CAS  Google Scholar 

  61. Salmond, G. P. C. and P. J. Reeves. 1993. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem. Sci. 18:7–12.

    Article  PubMed  CAS  Google Scholar 

  62. Menard, R., C. Dehio, and P. J. Sansonetti. 1996. Bacterial entry into epithelial cells: the paradigm of Shigella. Trends Microbiol. 4:220–225.

    Article  CAS  Google Scholar 

  63. Wei, Z.-M. and S. V. Beer. 1993. HrpI of Erwinia amylovora functions in secretion of harpin and is member of a new protein family. J. Bacteriol. 175:7958–7967.

    PubMed  CAS  Google Scholar 

  64. Plano, G. V., S. S. Barye, and S. C. Straley. 1991. LcrD, a membrane-bound regulator of the Yersinia pestis low calcium response. J. Bacteriol. 173:729–733.

    Google Scholar 

  65. Minamino, T., T. Iino, and K. Kutsukake. 1994. Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. J. Bacteriol. 176: 7630–7637.

    PubMed  CAS  Google Scholar 

  66. Plano, G. V. and S. C. Straley. 1993. Multiple effects of lcrD mutations in Yersinia pestis. J. Bacteriol. 175:3536–3545.

    CAS  Google Scholar 

  67. Ginocchio, C. and J. E. Galan. 1995. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infection and Immunity 63: 729–732.

    PubMed  CAS  Google Scholar 

  68. Bergman, T., K. Erickson, E. Galyov, C. Persson, and H. Wolf-Watz. 1994. The lcrB (yscN/U) gene cluster of Yersinia pseudotuberculosis is involved in Yop secretion and shows high homology to the spa gene clusters of Shigella flexneri and Salmonella typhimurium. J. Bacteriol. 176:2619–2626.

    CAS  Google Scholar 

  69. Woestyn, S., A. Allaoui, P. Wattiau, and G. R. Cornelis. 1994. YscN, the putative energizer of the Yersinia Yop secretion machinery. J. Bacteriol. 176:1561–1569.

    PubMed  CAS  Google Scholar 

  70. Vogler, A. P., M. Homma, V. M. Irikura, and R. M. Macnab. 1991. Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of Flil to F0F1, vacuolar and archaebacterial ATPase subunits. J. Bacteriol. 173: 3564–3572.

    PubMed  CAS  Google Scholar 

  71. Eichelberg, K., C. Ginocchio, and J. E. Galan. 1994. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC ho-mology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176: 4501–4510.

    PubMed  CAS  Google Scholar 

  72. Dreyfus, G., A. W. Williams, I. Kawagishi, and R. M. Macnab. 1993. Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens. J. Bacteriol. 175:3131–3138.

    PubMed  CAS  Google Scholar 

  73. Allaoui, A., S. Woestyn, C. Sluiters, and G. R. Cornelis. 1994. YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J. Bacteriol. 176:4534–4542.

    PubMed  CAS  Google Scholar 

  74. Fields, K. A., G. V. Plano, and S. Straley. 1994. A low Cat+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J. Bacteriol. 176:569–579.

    PubMed  CAS  Google Scholar 

  75. Malakooti, J., B. Ely, and P. Matsumura. 1994. Molecular characterization, nucleotide sequence and expression of the fliO, flip, fliQ and fliR genes of Escherichia coli. J. Bacteriol. 176:189–197.

    PubMed  CAS  Google Scholar 

  76. Carpenter, P. B. and G. W. Ordal. 1993. Bacillus subtilis FlhA: a flagellar protein related to a new family of signal transducing receptors. Mol. Microbiol. 7:735–743.

    Article  PubMed  CAS  Google Scholar 

  77. Malakooti, J., Y. Komeda, and P. Matsumura. 1989. DNA sequence analysis, gene product identification, and localization of flagellar motor components of Escherichia coli. J. Bacteriol. 171:2728–2734.

    PubMed  CAS  Google Scholar 

  78. Kihara, M., M. Homma, K. Kutsukabe, and R. M. Macnab. 1989. Flagellar switch of Salmonella typhimurium gene sequences and deduced protein sequences. J. Bacteriol. 171:3247–3257.

    PubMed  CAS  Google Scholar 

  79. Kutsukake, K., T. Minamino, and T. Yokoseki. 1994. Isolation and characterization of F1iK-independent flagellation mutants of Salmonella typhimurium. J. Bacteriol. 176:7625–7629.

    PubMed  CAS  Google Scholar 

  80. Michiels, T., J.-C. Vanooteghem, C. Lambert de Rouvroit, B. China, A. Gustin, P. Boudry, and G. R. Cornelis. 1991. Analysis of vir C, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J. Bacteriol. 173:4994–5009.

    PubMed  CAS  Google Scholar 

  81. Russel, M. 1994. Phage assembly: a paradigm for bacterial virulence factor export. Science 265:612–614.

    Article  PubMed  CAS  Google Scholar 

  82. Von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acid Res. 14:4683–4690.

    Article  PubMed  CAS  Google Scholar 

  83. Pugsley, A. P. 1989. Protein Targeting. Academic Press, New York.

    Google Scholar 

  84. d’Enfert, C., I. Reyss, C. Wandersman, and A. P. Pugsley. 1989. Protein secretion by gram-negative bacteria: characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. J. Biol. Chem. 264:17462–17468.

    PubMed  Google Scholar 

  85. Lindeberg, M. and A. Collmer. 1992. Analysis of eight out genes in a cluster required for pectic enzyme secretion by Erwinia chrysanthemi sequence comparison with secretion genes from gram-negative bacteria. J. Bacteriol. 174: 7385–7397.

    PubMed  CAS  Google Scholar 

  86. Dums, F., J. M. Dow and M. J. Daniels. 1991. Structural characterization of protein secretion genes of the bacterial phytopathogen Xanthomonas campestris pathovar campestris: relatedness to secretion systems of other gram-negative bacteria. Mol. Gen. Genet. 229:357–364.

    Article  PubMed  CAS  Google Scholar 

  87. . Hobbs, M. and J. S. Mattick. 1993. Common components in the assembly of type 4 fimbrae, DNA transfer systems, filamentous phage and protein secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10:233-243.

    Article  PubMed  CAS  Google Scholar 

  88. Kazmierczak, B. I., D. L. Miedke, and P. Model. 1994. pIV, a filamentous phage protein that mediates phage export across the bacterial cell envelope, forms a multi-mer. J. Mol. Biol. 238:187–198.

    Article  PubMed  CAS  Google Scholar 

  89. Russel, M. 1993. Protein-protein interactions during filamentous phage assembly. J. Mol. Biol. 231:689–697.

    Article  PubMed  CAS  Google Scholar 

  90. Pugsley, A. P. 1993. The complete general secretory pathway in gram negative bacteria. Microbiol. Rev. 57:50–108.

    PubMed  CAS  Google Scholar 

  91. Preston, G., H. C. Huang, S. Y. He, and A. Collmer. 1995. The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact. 8:717–732.

    Article  PubMed  CAS  Google Scholar 

  92. Wu, H. C. 1996. Biosynthesis of lipoprotein. In Escherichia coif and Salmonella: Cellular and Molecular Biology, Vol. 1, ed. F. C. Niedhardt, pp. 1005–1014. ASM Press, Washington, D.C.

    Google Scholar 

  93. Allaoui, A., P. J. Sansonetti, and C. Parsot. 1992. MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologus to YscJ, a secretion factor of the Yersinia Yop proteins. J. Bacteriol. 174:7661–7669.

    PubMed  CAS  Google Scholar 

  94. Jones, C. J., M. Homma, and R. M. Macnab. 1989. L-, P-, and M-ring proteins of the flagellar basal body of Salmonella typhimurium gene sequences and deduced protein structures. J. Bacteriol. 171:3890–3900.

    PubMed  CAS  Google Scholar 

  95. Cornelis, G. R. 1994. Yersinia pathogenicity factors. In Bacterial Pathogenesis in Plant and Animals: Molecular and Cellular Mechanisms,Vol. 192ed. J. L. Danglpp. 243–263. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  96. Fellay, R., L. G. Rahme, M. N. Mindrinos, R. D. Frederick, A. Pisi, and N. J. Panopoulos. 1991. Genes and signals controlling the Pseudomonas syringae pv. phaseolicola-plant interaction. In Advances in Molecular Genetics of Plant-Microbe Interactions,Vol. 1, ed. H. Hennecke and D. P. S. Verma, pp. 45–52. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  97. . Grimm, C., W. Aufsatz, and N. J. Panopoulos. 1995. The hrpRS locus of Pseudomonas syringae pv. phaseolicola constitutes a complex regulatory unit. Mol. Microbiol. 15:155-165.

    Article  PubMed  CAS  Google Scholar 

  98. Hutcheson, S. W., S. Heu, S. Jin, M. C. Lidell, M. U. Pirhonen, and D. L. Rowley. 1996. Function and regulation of Pseudomonas syringae hrp genes. In Pseudomonas: Molecular Biology and Biotechnology,ed. T. Nakazawa, K. Furukawa, S. Harayama, and S. Silver, pp. 512–521. Vol. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  99. Grimm, C. and N. J. Panopoulos. 1989. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several prokaryotic regulatory proteins. J. Bacteriol. 171:5031–5038.

    PubMed  CAS  Google Scholar 

  100. Wei, Z. M. and S. V. Beer. 1995. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J. Bacteriol. 177:6201–6210.

    PubMed  CAS  Google Scholar 

  101. Lonetto, M. A., K. L. Brown, K. E. Rudd, and M. J. Bittner. 1994. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase Q factors involved in the regulation of extracytoplasmic functions. Proc. Nat. Acad. Sci. USA 91:7573–7577.

    Article  PubMed  CAS  Google Scholar 

  102. Niepold, E. D. and S. J. Huber. 1988. Surface antigens of Pseudomonas syringae pv. syringae are associated with pathogenicity. Physiol. Mol. Plant Pathol. 33 459–471.

    Article  Google Scholar 

  103. Wei, Z.-M., R. J. Laby, C. H. Zumoff, D. W. Bauer, S. H. He, A. Collmer, and S. V. Beer. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85–88.

    CAS  Google Scholar 

  104. Alfano, J. R., D. W. Bauer, T. M. Milos, and A. Collmer. 1995. Mutational analysis of the role of the Pseudomonas syringae pv. syringae hrpZ in elicitation of the hypersensitive response in tobacco. Phytopathology 85:1158.

    Google Scholar 

  105. Roine, E., E. L. Nurmiaho-Lassila, N. Kalkkinen, S. Y. He, and M. Romantschuk. 1996. Characterization of induced extracellular filamentous structures of Pseudomonas syringae pv. tomato DC3000. In Abstract Book 8th International Congress on Molecular Plant-Microbe Interactions, University of Tennessee Knoxville, Tenn.

    Google Scholar 

  106. Arlat, M., E. Van Gijsegem, J. C. Huet, J. C. Pernollet, and C. A. Bouncher. 1994. PopAl, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. European Mol. Biol. Org. J. 13:543–553.

    CAS  Google Scholar 

  107. Mukhopadhyay, P., J. Williams, and D. Mills. 1988. Molecular analysis of a pathogenicity locus in Pseudomonas syringae pv. syringae. J. Bacteriol. 170:5479–5488.

    CAS  Google Scholar 

  108. Loebens, I., L. Debarbieux, A. Boin, J. M. Lacroix, and J.-P. Bohin. 1993. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity in Pseudomonas syringae. Mol. Microbiol. 10:329–340.

    Article  Google Scholar 

  109. Kennedy, E. P. 1996. Membrane-derived oligosaccharides (periplasmic beta-Dglucans) of Escherichia coli. In Escherichia coli and Salmonella: Cellular and Molecular Biology, Vol. 1, ed. E. C. Niedhardt, pp. 1064–1071. ASM Press, Washington, D.C.

    Google Scholar 

  110. Li, T.-H., S. A. Benson, and S. W. Hutcheson. 1992. Phenotypic expression of the Pseudomonas syringae pv. syringae 61 hrp/hrm gene cluster in Escherichia coli requires a functional porin. J. Bacteriol. 174:1742–1749.

    PubMed  CAS  Google Scholar 

  111. Harshey, R. M. and A. Toguchi. 1996. Spinning tails: homologies among bacterial flagellar systems. Trends Microbiology 4:226–231.

    Article  CAS  Google Scholar 

  112. Namba, K., I. Yamashita, and F. Vonderviszt. 1989. Structure of the core and central channel of bacterial flagella. Nature (London) 342:648–654.

    Article  CAS  Google Scholar 

  113. Ueno, T., K. Oosawa, and S. I. Aizawa. 1992. M ring, S ring and proximal rod of the flagellai basal body of Salmonella typhimurium are composed of subunits of a single protein, FIiF. J. Mol. Biol. 227:672–677.

    Article  PubMed  CAS  Google Scholar 

  114. Morgan, D. G., C. Owen, L. A. Melanson, and D. J. DeRosier. 1995. The 11 A structure of bacterial flagellar filaments: packing of the alpha-helixes. J. Mol. Biol. 249:88–110.

    Article  PubMed  CAS  Google Scholar 

  115. Mimori, Y., I. Yamashita, K. Murata, Y. Fujiyoshi, K. Yonekura, C. Toyoshima, and K. Namba. 1995. The structure of the R-type straight flagellar filament of Salmonella at 9A resolution by electron cryomicroscopy. J. Mol. Biol. 249:69–87.

    Article  PubMed  CAS  Google Scholar 

  116. Aizawa, S.-I. 1996. Flagellai assembly in Salmonella typhimurium. Mol. Microbiol. 19:1–5.

    Article  PubMed  CAS  Google Scholar 

  117. Kubori, T., N. Shimamoto, S. Yamaguchi, K. Namba, and S. I. Aizawa. 1992. Morphological pathway of flagellar assembly in Salmonella typhimurium. J. Mol. Biol. 226:433–446.

    Article  PubMed  CAS  Google Scholar 

  118. Suzuki, T., T. lino, T. Horiguchi, and S. Yamaguchi. 1978. Incomplete flagellai structures in nonflagellate mutants of Salmonella typhimurium. J. Bacteriol. 133:904–915.

    PubMed  CAS  Google Scholar 

  119. Hughes, K. T., K. L. Gillen, M. J. Semon, and J. E. Karlinsky. 1993. Sensing structural intermediates in bacterial flagellai assembly by export of a negative regulator. Science 262:1277–1280.

    Article  PubMed  CAS  Google Scholar 

  120. Kutsukake, K. 1994. Excretion of the anti-sigma factor through the flagellar structure couples flagellar gene expression with flagellai assembly in Salmonella typhimurium. Mol. Gen. Genet. 243:605–612.

    PubMed  CAS  Google Scholar 

  121. Kutsukake, K. and T. Iino. 1994. Role of the F1iA-F1gM regulatory system on the transcriptional control of the flagellar regulon and flagellai formation in Salmonella typhimurium. J. Bacteriol. 176:3598–3605.

    CAS  Google Scholar 

  122. Kuwajima, G., I. Kawagishi, M. Homma, J.-I. Asaka, E. Kondo, and R. M. Macnab. 1989. Export of an N-terminal fragment of Escherichia coli flagellin by a flagellum-specific pathway. Proc. Nat. Acad. Sci. USA 86:4953–4957.

    Article  PubMed  CAS  Google Scholar 

  123. Homma, M., K. Kutsukake, M. Hasebe, T. Iino, and R. M. Macnab. 1990. F1gB, F1gC, F1gF and F1gG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 211:465–477.

    Article  PubMed  CAS  Google Scholar 

  124. Kornacker, M. G. and A. Newton. 1994. Information essential for cell-cycledependent secretion of the 592-residue Caulobacter hook protein is confined to a 21-amino acid sequence near the N-terminus. Mol. Microbiol. 14:73–85.

    Article  PubMed  CAS  Google Scholar 

  125. Forsberg, A., R. Rosqvist, and H. Wolf-Watz. 1993. Regulation and polarized transfer of the Yersinia outer proteins (Yops) involved in antiphagocytosis. Trends Microbiol.2.:14–19.

    Article  Google Scholar 

  126. Haddix, P. L. and S. Straley. 1992. The structure and regulation of the Yersinia pestis yscBCDEF operon. J. Bacteriol. 74:4820–4828.

    Google Scholar 

  127. Straley, S. C., E. Skrzypek, G. V. Plano, and J. B. Bliska. 1993. Yops of Yersinia spp. pathogenic for humans. Infection and Immunity 61:3105–3110.

    PubMed  CAS  Google Scholar 

  128. Rosqvist, R., A. Forsberg, and H. Wolf-Watz. 1991. Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infection and Immunity 59:4562–4569.

    PubMed  CAS  Google Scholar 

  129. Guan, K. and J. E. Dixon. 1990. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249:553–556.

    Article  CAS  Google Scholar 

  130. Zhang, Z.-Y., J. C. Clemens, H. L. Schubert, J. A. Stuckey, M. W. F. Fischer, D. M. Hume, M. A. Saper, and J. E. Dixon. 1992. Expression, purification, and physiochemical characterization of a recombinant Yersinia protein tyrosine phosphatase. J. Biol. Chem. 267:23759–23766.

    PubMed  CAS  Google Scholar 

  131. Galyov, E. E., S. Hakansson, and H. Wolf-Watz. 1994. Characterization of the operon encoding the YpkA Ser/Thr protein kinase and the YopJ protein of Yersinia pseudotuberculosis. J. Bacteriol. 176:4543–4548.

    CAS  Google Scholar 

  132. Cornelis, G. R., C. Sluiters, C. Lambert de Rouvroit, and T. Michaels. 1989. Homology between VirF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J. Bacteriol. 171: 254–262.

    PubMed  CAS  Google Scholar 

  133. Rosqvist, R., K. E. Magnusson, and H. Wolf-Watz. 1994. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. European Mol. Biol. Organization J. 13:964–972.

    CAS  Google Scholar 

  134. Persson, C., R. Nordfelth, A. Holmstrom, S. Hakansson, R. Rosqvist, and H. WolfWatz. 1995. Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism in the target cell. Mol. Microbiol. 18:135–150.

    Article  PubMed  CAS  Google Scholar 

  135. Hakansson, S., E. E. Galyov, R. Rosqvist, and H. Wolf-Watz. 1996. The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Mol. Microbiol. 20:593–603.

    Article  PubMed  CAS  Google Scholar 

  136. Sory, M.-P. and G. R. Cornelis. 1994. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14:583–594.

    Article  PubMed  CAS  Google Scholar 

  137. Pettersson, J., R. Nordfelth, E. Dubinina, T. Bergman, M. Gustafsson, K. E. Magnusson, and H. Wolf-Watz. 1996. Modulation of virulence factor expression by pathogen target cell contact. Science 273:1231–1233.

    Article  PubMed  CAS  Google Scholar 

  138. Michiels, T. and G. R. Cornelis. 1991. Secretion of hybrid proteins by the Yersinia Yop export system. J. Bacteriol. 173:1677–1685.

    PubMed  CAS  Google Scholar 

  139. Sory, M.-P., A. Boland, I. Lambermont, and G. R. Cornelis. 1995. Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc. Nat. Acad. Sci. USA 92:11990–12002.

    Article  Google Scholar 

  140. Wattiau, P., S. Woestyn, and G. R. Cornelis. 1996. Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol. 20:255–262.

    Article  PubMed  CAS  Google Scholar 

  141. Keen, N. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Ann. Rev. Genet. 24:447–463.

    Article  PubMed  CAS  Google Scholar 

  142. Flor, H. H. 1971. Current status of the gene-for-gene concept. Ann. Rev. Phytopathol. 9:275–296.

    Article  Google Scholar 

  143. Kearney, B. and B. J. Staskawicz. 1990. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature (London) 346:385–386.

    Article  CAS  Google Scholar 

  144. Lorang, J. M., H. Shen, D. Kobayashi, D. Cooksey, and N. T. Keen. 1994. avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol. Plant-Microbe Interact. 7:508–515.

    Article  CAS  Google Scholar 

  145. Staskawicz, B. J., D. Dahlbeck, and N. T. Keen. 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc. Nat. Acad. Sci. USA 81:6024–6028.

    Article  PubMed  CAS  Google Scholar 

  146. Staskawicz, B. J., D. Dahlbeck, N. Keen, and C. Napoli. 1987. Molecular characterization of cloned avirulence genes from race 0 and 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169:5789–5794.

    CAS  Google Scholar 

  147. Napoli, C. and B. J. Staskawicz. 1987. Molecular characterization and nucleic acid sequence of an avirulence gene from race 6 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169:572–578.

    CAS  Google Scholar 

  148. Tamaki, S., D. Dahlbeck, B. J. Staskawicz, and N. T. Keen. 1988. Characterization and expression of two avirulence genes cloned from Pseudomonas syringae pv. glycinea. J. Bacteriol. 170:4846–4854.

    CAS  Google Scholar 

  149. Keen, N. T. and R. I. Buzzell. 1991. New resistance genes in soybean against Pseudomonas syringae pv. glycinea evidence that one of them interacts with a bacterial elicitor. Theoret. Appl. Genet. 81:133–138.

    Article  CAS  Google Scholar 

  150. Gabriel, D. W., M. T. Kingsley, Y. Yang, J. Chen, and P. Roberts. 1994. Host-specific virulence genes of Xanthomonas. In Molecular Mechanisms of Bacterial Virulence, ed. C. I. Kado and J. H. Crosa, pp. 141–158. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  151. Carney, B. F. and T. P. Denny. 1990. A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level. J. Bacteriol. 172:4836–4843.

    PubMed  CAS  Google Scholar 

  152. Whalen, M., R. E. Stall, and B. J. Staskawicz. 1988. Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc. Nat. Acad. Sci. USA 85: 6743–6747.

    Article  PubMed  CAS  Google Scholar 

  153. Kobayashi, D. Y., S. J. Tamaki, and N. T. Keen. 1989. Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc. Nat. Acad. Sci. USA 86:157–161.

    Article  PubMed  CAS  Google Scholar 

  154. Kobayashi, D. Y., S. J. Tamaki, and N. T. Keen. 1990. Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol. Plant-Microbe Interact. 3:94–102.

    Article  CAS  Google Scholar 

  155. Lorang, J. M. and N. T. Keen. 1995. Characterization of avrE from Pseudomonas syringae pv. tomato a hrp-linked avirulence locus consisting of at least two transcriptional units. Mol. Plant-Microbe Interact. 8:49–57.

    Article  PubMed  CAS  Google Scholar 

  156. Dangl, J. L., C. Ritter, M. J. Gibbon, L. A. J. Muir, J. R. Wood, S. Goss, J. Mansfield, J. D. Taylor, and A. Vivian. 1992. Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell 4:1359–1369.

    PubMed  CAS  Google Scholar 

  157. Salmeron, J. M., S. J. Barker, E M. Carland, A. Y. Mehta, and B. J. Staskawicz. 1994. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6:511–520.

    PubMed  CAS  Google Scholar 

  158. Bisgrove, S. R., M. T. Simonich, N. M. Smith, A. Sattler, and R. W. Innes. 1994. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933.

    PubMed  CAS  Google Scholar 

  159. Pirhonen, M. U., M. C. Lidell, D. Powley, S. W. Lee, S. Silverstone, Y. Liang, N. T. Keen, and S. W. Hutcheson. 1996. Phenotypic expression of Pseudomonas syringae avr genes in E. coli is linked to the activities of the hrp-encoded secretion system. Mol. Plant-Microbe Interact. 9:252–260.

    Article  PubMed  CAS  Google Scholar 

  160. Fillingham, A. J., J. Wood, J. R. Bevan, J. R. Crute, J. W. Mansfield, J. D. Taylor, and A. Vivian. 1992. Avirulence genes from Pseudomonas syringae pathovars phaseolicola and pisi confer specificity towards both host and non-host species. Physiol. Mol. Plant Pathol. 40:1–15.

    Article  Google Scholar 

  161. Ronald, P. C., J. Salmeron, F. M. Carland, and B. J. Staskawicz. 1992. Cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J. Bacteriol. 174:1604–1611.

    PubMed  CAS  Google Scholar 

  162. Swamp, S., Y. Yang, M. T. Kingsley and D. W. Gabriel. 1992. A Xanthomonas citri pathogenicity gene, pthA,pleiotropically encodes gratuitous avirulence on non-hosts. Mol. Plant-Microbe Interact. 5:204–213.

    Article  Google Scholar 

  163. Innes, R. W. 1995. Plant-parasite interactions: has the gene-for-gene model become outdated? Trends Microbiol. 3:483–485.

    Article  PubMed  CAS  Google Scholar 

  164. Keen, N. T. 1992. The molecular biology of disease resistance. Plant Mol. Biol. 19:109–122.

    Article  PubMed  CAS  Google Scholar 

  165. Long, S. R. and B. J. Staskawicz. 1993. Prokaryotic plant pathogens. Cell 73:921–935.

    Article  PubMed  CAS  Google Scholar 

  166. Gabriel, D. W. and B. G. Rolfe. 1990. Working models of specific recognition in plant-microbe interactions. Ann. Rev. Plant Physiol. 28:365–391.

    CAS  Google Scholar 

  167. Keen, N. T., T. Tsurushima, S. Midlands, J. Sims, S.-W. Lee, S. Hutcheson, M. Atkinson, Y. Okinaka, N. Yamaoka, Y. Takeuchi, and M. Yoshikawa. 1996. The syringolide elicitors specified by avirulence gene D and their specific perception by Rpg4 soybean cells. In Molecular Aspects of Pathogenicity and Resistance: Requirement for Signal Transduction,eds. D. Mills, H. Kunoh, N. Keen, and S. Mayama, pp. 139–148. American Phytopathological Society, St. Paul, Minn.

    Google Scholar 

  168. Tamaki, S. J., D. Y. Kobayashi, and N. T. Keen. 1991. Sequence domains required for the activity of avirulence genes avrB and avrC from Pseudomonas syringae pv. glycinea. J. Bacteriology 173:301–307.

    CAS  Google Scholar 

  169. Bonas, U., R. E. Stall, and B. Straskawicz. 1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol. Gen. Genet. 218:127–136.

    Article  CAS  Google Scholar 

  170. Knoop, V., B. J. Staskawicz, and U. Bonas. 1991. The expression of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria is not under the control of hrp genes and is independent of plant factors. J. Bacteriol. 173:7142–7150.

    PubMed  CAS  Google Scholar 

  171. Yang, Y. and D. W. Gabriel. 1995. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals Mol. Plant-Microbe Interact. 8:627–631.

    Article  CAS  Google Scholar 

  172. Gabriel, D. W., Q. Yuan, Y. Yang, and P. K. Chakrabarty. 1996. Role of nuclear localizing signal sequences in three disease phenotypes determined by the Xanthomonas avr/pth gene family. In Biology of Plant-Microbe Interactions,eds. G. Stacey, B. Mullin, and P. M. Gresshoff, pp. 197–202. International Society for Molecular Plant-Microbe Interactions, St. Paul, Minn.

    Google Scholar 

  173. Bonas, U., E. Huguet, L. Noël, M. Pierre, O. Rossier, K. Wengelnik, and G. Van den Ackerveken. 1996. In Biology of Plant-Microbe Interactions, eds. G. Stacey, B. Mullin and P. M. Gresshoff, pp. 203–208. International Society for Molecular Plant-Microbe Interactions, St. Paul, Minn

    Google Scholar 

  174. Dangl, J. L. 1995. Piece de Resistance: Novel classes of plant disease resistance genes. Cell 80:363–366.

    Article  PubMed  CAS  Google Scholar 

  175. Mindrinos, M., E Katagiri, G.-L. Yu, and F. M. Ausubel. 1994. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099.

    Google Scholar 

  176. Bent, A., B. Kunkel, D. Dahlbeck, K. Brown, R. Schmidt, J. Giraudat, J. Leung, and B. J. Staskawicz. 1994. RPS2 of Arabidopsis thaliana a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860.

    Article  PubMed  CAS  Google Scholar 

  177. Grant, M. R., L. Godiard, E. Straube, T. Ashfield, J. Lewald, A. Sattlier, R. W. Innes, and J. L. Dangl. 1995. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:1543.

    Article  Google Scholar 

  178. Martin, G. B., S. H. Brommonschenkel, J. Chunwongse, A. Frary, M. W. Ganal, R. Spivey, T. Wu, E. D. Earle, and S. D. Tanksley. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436.

    Article  PubMed  CAS  Google Scholar 

  179. Salmeron, J. M. and B. J. Staskawicz. 1993. Molecular characterization and hrpdependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Mol. Gen. Genet. 239:6–10.

    CAS  Google Scholar 

  180. Shen, H. and N. T. Keen. 1993. Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J. Bacteriol. 175:5916–5924.

    CAS  Google Scholar 

  181. Innes, R. W., A. F. Bent, B. N. Kunkel, S. R. Bisgrove, and B. J. Staskawicz. 1993. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 175:4859–4869.

    PubMed  CAS  Google Scholar 

  182. Ritter, C. and J. L. Dangl. 1995. The avrRpml gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Mol. Plant Microbe Interact. 8:444–453.

    Article  PubMed  CAS  Google Scholar 

  183. Gopalan, S., D. W. Bauer, J. R. Alfano, A. O. Loniello, S. Y. He, and A. Collmer. 1996. Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8:1095–1105.

    PubMed  CAS  Google Scholar 

  184. Brown, I., J. Mansfield, I. Irlam, J. Conrads-Strauch, and U. Bonas. 1993. Ultra-structure of interactions between Xanthomonas campestris pv. vesicatoria and pepper, including immunocytochemical localization of extracellular polysaccharides and the AvrBs3 protein. Mol. Plant-Microbe Interact. 6:376–386.

    Article  CAS  Google Scholar 

  185. Young, S. A., F. R White, C. M. Hopkins, and J. E. Leach. 1994. AVRXa10 protein is in the cytoplasm of Xanthomonas oryzae. pv. orzyae. Mol. Plant-Microbe Interact. 7:799–804.

    Article  CAS  Google Scholar 

  186. Hutcheson, S. W., S. Jin, M. C. Lidell, and Z. Fu. 1996. Pseudomonas syringae hrp genes: Regulation and role in avirulence phenotypes. In Biology of Plant-Microbe Interactions, eds. G. Stacey, B. Mullin and P. M. Gresshoff, pp. 153–158. International Society for Molecular Plant-Microbe Interactions, St. Paul, Minn.

    Google Scholar 

  187. Tobias, C., J. Salmeron, G. Oldroyd, C. Rommens, S. Scofield, and B. Staskawicz. 1996. Genetic interactions specifying disease resistance in the bacterial speck disease of tomato. In Biology of Plant-Microbe Interactions, eds. G. Stacey, B. Mullin and P. M. Gresshoff, pp. 71–76. International Society for Molecular Plant-Microbe Interactions, St. Paul, Minn.

    Google Scholar 

  188. Urban, L. A., J. L. Sherwood, J. A. M. Rezende, and U. Melcher. 1990. Examination of mechanisms of cross protection with non-transgenic plants. In Recognition and Response in Plant-Virus Interactions, Vol. H41, ed. R. S. S. Fraser, pp. 415–426. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  189. Tang, X., R. Frederick, J. Zhou, D. Halterman, Y. Jia, and G. B. Martin. 1996. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274:2060–2062.

    Article  PubMed  CAS  Google Scholar 

  190. Deisenhofer, J. and B. Kobe. 1994. The leucine-rich repeat: a versatile binding motif. Trends Biochem. Sci. 19:415–421.

    Article  PubMed  Google Scholar 

  191. Swarup, S., R. DeFeyter, R. H. Brlansky, and D. W. Gabriel. 1991. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to form cankerlike lesions on citrus. Phytopathology 81:802–809.

    Article  Google Scholar 

  192. Brown, I., J. Mansfield, and U. Bonas. 1995. hrp genes in Xanthomonas campestris pv. vesicatoria determine ability to suppress papilla deposition in pepper mesophyll cells. Mol. Plant-Microbe Interact. 8:825–836.

    Article  CAS  Google Scholar 

  193. Hultgren, S. J., C. H. Jones, and S. Normark. 1996. Bacterial adhesions and their assembly. In Escherichia coli and Salmonella,Volume 2. ed. F. C. Neidhardt, pp. 2730–2756. ASM Press, Washington, D.C.

    Google Scholar 

  194. Atkinson, M. M., J.-S. Huang, and C. G. Van Dyke. 1981. Adsorption of pseudomonads to tobacco cell walls and its significance to bacterium-host interactions. Physiol. Plant Pathol. 18:1–5.

    Google Scholar 

  195. Hutcheson, S. W. 1988. Interaction of Pseudomonas syringae with tobacco suspension culture cells. Studies on elicitor production. In Third International Working Group on Pseudomonas syringae pathovars. Lisbon, Portugal.

    Google Scholar 

  196. Rahme, L. G., M. N. Mindronos, and N. J. Panopoulos. 1992. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 174:3499–3507.

    CAS  Google Scholar 

  197. Xiao, Y., Y. Lu, S. Heu, and S. W. Hutcheson. 1992. Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J. Bacteriol. 174:1734–1741.

    PubMed  CAS  Google Scholar 

  198. Wei, Z.-M., B. J. Sneath, and S. V. Beer. 1992. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J. Bacteriol. 174:1875–1882.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hutcheson, S.W. (1997). The hrp-Encoded Protein Export Systems of Pseudomonas syringae and Other Plant Pathogenic Bacteria and Their Role in Pathogenicity. In: Stacey, G., Keen, N.T. (eds) Plant-Microbe Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6019-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6019-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7758-0

  • Online ISBN: 978-1-4615-6019-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics