Skip to main content

Moisture Migration and Ice Recrystallization in Frozen Foods

  • Chapter
Quality in Frozen Food

Abstract

Moisture migration is the principal physical change occurring in frozen foods and has major effects on the chemical and biochemical properties of frozen foods. It manifests itself in several forms: moisture loss by sublimation, moisture absorption and redistribution in foods or food components, recrystallization of ice, and drip loss during thawing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Añón, M.C. and Calvelo, A. 1980. Freezing rate effects on the drip losses of frozen beef. Meat Sci. 4:1–14.

    Article  Google Scholar 

  • Bevilacqua, A.E. and Zaritzky, N.E. 1982. Ice recrystallization in frozen beef. J. Food Sci. 47:1410–1414.

    Article  Google Scholar 

  • Buyong, N. and Fennema, O. 1988. Amount and size of ice crystals in frozen samples as influenced by hydrocolloids. J. Dairy Sci. 71:2630–2639.

    Article  Google Scholar 

  • Califano, A.N. and Calvelo, A. 1981. Weight loss prediction during meat chilling. Meat Sci. 5:5–15.

    Article  Google Scholar 

  • Chiriffe, J. 1984. Fundamentals of the drying mechanism during air dehydration of foods. In Advances in Drying, vol. 2. (Mujumbar, A.S., ed.) p. 73, Hemisphere, New York.

    Google Scholar 

  • Cleland, A.C. and Earle, R.L. 1982. Freezing time prediction for foods—a simplified procedure. Int. J. Refrig. 5:134–140.

    Article  Google Scholar 

  • Crigler, J.C. and Dawson, L.E. 1968. Cell disruption in broiler breast muscle related to freezing time. J. Food Sci. 33:248.

    Article  Google Scholar 

  • Cutting, C.L. and Malton, R. 1974. Evaporative losses in the commercial freezing and storage of meat. Meat Res. Inst. Symp. No. 3, Bristol, England.

    Google Scholar 

  • Davey, C.L. and Gilbert, K.V 1976. Thaw contracture and the disappearance of andenosinetriphosphate in frozen lamb. J. Sci. Food Agric. 27:1085–1092.

    Article  CAS  Google Scholar 

  • Everington, D.W. 1988. The special problem of freezing ice cream. In Food Freezing: Today and Tomorrow. (Bald, W.B., ed.) pp. 133–142, Springer-Verlag, New York.

    Google Scholar 

  • Fennema, O. 1981. Water activity at subfreezing temperatures. In Water Activity: Influences on Food Quality. (Rockland, L.B. and Stewart, G.F., eds.) pp. 713–733, Academic Press, New York.

    Google Scholar 

  • Fennema, O. 1993. Frozen foods: challenges for the future. Food Australia 45:374–380.

    Google Scholar 

  • Fennema, O. 1996. Water and Ice. In Food Chemistry, 3d ed. (Fennema, O., ed.) pp. 17–94, Marcel Dekker, New York.

    Google Scholar 

  • Fennema, O., Donhowe, I.G., and Kester, JJ. 1993. Edible films: barriers to moisture migration in frozen foods. Food Aust. 45:521–525.

    Google Scholar 

  • Gonzales-Sanguinetti, S., Añón, M.C., and Calvelo, A. 1985. Effect of thawing rate on the exudate production of frozen beef. J. Food Sci. 50:607–700, 706.

    Google Scholar 

  • Harper, E.K. and Shoemaker, CF. 1983. Effect of locust bean gum and selected sweetening agents on ice recrystallization rates. J. Food Sci. 48:1801–1803, 1806.

    Article  Google Scholar 

  • Hung, Y.C. and Thompson, D.R. 1983. Freezing time for slab-shape foodstuff by an improved analytical method. J. Food Sci. 48:555–560.

    Article  Google Scholar 

  • Jul, M. 1984. The Quality of Frozen Foods, p. 31. Academic Press, New York.

    Google Scholar 

  • Kaess, G. 1961. Freezer burn as a limiting factor in the storage of animal tissue. Food Technol. 15:122–128.

    Google Scholar 

  • Katz, E.E. and Labuza, T.P. 1981. Effect of water activity on the sensory crispness and mechanical deformation of snack food products. J. Food Sci. 46:403–409.

    Article  Google Scholar 

  • King, C.J. 1968. Rate of moisture sorption and desorption in porous, dried foodstufffs. Food Technol. 22(4):165–171.

    Google Scholar 

  • Kingery, W.D., Bowen, H.K., and Uhlmann, D.R. 1975. Introduction to Ceramics, 2d ed. p. 452, John Wiley, New York.

    Google Scholar 

  • Love, R.M. 1955. The expressible fluid of fish fillet. I. Nucleic acid as an index of cell damage in fillets frozen from both sides. J. Sci. Food Agric. 6:30.

    Article  CAS  Google Scholar 

  • Luna, J.A. and Chavez, M.S. 1992. Mathematical model for water diffusion during brining of hard and semi-hard cheese. J. Food Sci. 57:55–58.

    Article  Google Scholar 

  • Martino, M.N. and Zaritzky, N.E. 1988. Ice crystal size modification during frozen beef storage. J. Food Sci. 53:1631–1637.

    Article  Google Scholar 

  • Martino, M.N. and Zaritzky, N.E. 1989. Ice recrystallization in a model system and in frozen muscle tissue. Cryobiology 26:138–148.

    Article  CAS  Google Scholar 

  • Penny, I.F. 1975. Use of a centrifuging method to measure the drip of pork Longissimus dorsi slices before and after thawing. J. Sci. Food Agric. 26:1593–1602.

    Article  Google Scholar 

  • Pham, Q.T. 1986. Simplified equation for predicting the freezing time of foodstuffs. J. Food Technol. 21:209–219.

    Article  Google Scholar 

  • Pham, Q.T. 1987a. Moisture transfer due to temperature changes or fluctuations. J. Food Eng. 6:33–50.

    Google Scholar 

  • Pham, Q.T. 1987b. Calculation of bound water in frozen foods. J. Food Sci. 52:210–212.

    Google Scholar 

  • Pham, Q.T., Durbin, J.R., and Willix, J. 1982. Survey of weight loss from lamb in cold storage. Int. J. Refrig. 5:337–342.

    Article  Google Scholar 

  • Pham, Q.T. and Willix, J. 1984. A model for food desiccation in frozen storage. J. Food Sci. 49:1275–81, 1294.

    Article  Google Scholar 

  • Pham, Q.T. and Willix, J. 1985. Weight loss from lamb in frozen storage: effect of environmental factors. Int. J. Refrig. 8:231–235.

    Article  Google Scholar 

  • Plank, R. 1941. Beitrage zur Berichnung und Bewertung der Gefriergeschwindigkeit von Lebensmitteln. Beih. Z. ges Kalte-Ind. 3(10):1–16.

    Google Scholar 

  • Radford, R.D. 1976. Water transport in meat. Int. Inst. Refrig. Bull. Annex 1976(1):315–552.

    Google Scholar 

  • Radford, R.D., Herbert, L.S., and Lovett, D.A. 1976. Chilling of meat—a mathematical model for heat and mass transfer. Int. Inst. Refrig. Bull. Annex 1976(1):323–30.

    Google Scholar 

  • Rutov, D. 1955. The diminishing of weight losses in frozen meat during storage. Proc. Int. Cong. Refrig., 2:4,153-4,160.

    Google Scholar 

  • Schwartzberg, H.G. 1976. Effective heat capacities for the freezing and thawing of foods. J. Food Sci. 41:152–156.

    Article  Google Scholar 

  • Slade, L. and Levine, H. 1991. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30:115–360.

    Article  CAS  Google Scholar 

  • Smith, C.E. and Schwartzberg, H.G. 1985. Ice crystal size changes during ripening in freeze concentration. Biotechnol. Prog. 1:111–120.

    Article  CAS  Google Scholar 

  • Spiess, W.E.L. 1979. Impact of freezing rates on product quality of deep frozen foods. In Food Process Engineering 1979. (Proceedings of the Second International Congress on Engineering and Food, Helsinki, vol. 1) (Linko, P. and Larinkari, I, eds.) pp. 689–694.

    Google Scholar 

  • Storey R.M. and Graham, J. 1981. Mechanism and measurement of weight loss from frozen fish in cold storage. Proc. Inst. Refrig. 78:28–35.

    Google Scholar 

  • Sulc, S. 1974. Continuous freezing of liquids with liquid nitrogen. Proc. Fourth Int. Congr. Food Sci. Technol. 5(a):56–58.

    Google Scholar 

  • Sy, S.H. and Fennema, O. 1971. Rates of recrystallization in beef liver tissue. Proc. Thirteenth Int. Congr. Refrig., 3:199–204.

    Google Scholar 

  • Voyle, C.A. 1974. Structural and histological changes associated with the freezing of meat. In Meat Research Institute, Symposium 3. pp. 6.1–6.6, Meat Research Institute, Langford.

    Google Scholar 

  • Warren, G.J., Hague, CM., Corotto, L.V., and Mueller, G.M. 1993. Properties of engineered antifreeze particles. FEBS Lett. 321(2/3):116–120.

    Article  CAS  Google Scholar 

  • Williams, M.L., Landel, R.F., and Ferry, J.D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77:3701–3707.

    Article  CAS  Google Scholar 

  • Winger, R.J. 1984. Storage and eating-related quality of NZ frozen lamb: a compendium of irrepressible longevity. In Thermal Processing and Quality of Foods. (Zeuthen, P. et al., eds.), pp. 541–552, Elsevier, London.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pham, Q.T., Mawson, R.F. (1997). Moisture Migration and Ice Recrystallization in Frozen Foods. In: Erickson, M.C., Hung, YC. (eds) Quality in Frozen Food. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5975-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5975-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7738-2

  • Online ISBN: 978-1-4615-5975-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics