Skip to main content

The Integrated Control of Cell Proliferation and Cell Viability

  • Chapter
Cancer Genes

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 7))

  • 48 Accesses

Abstract

One of the major problems faced by multicellular organisms is the continuous suppression of outgrowth of somatic cells that acquire a growth advantage through mutation. In principle, any somatic cell that acquires a growth advantage should spontaneously outgrow its siblings, spread, invade and so form a tumour. Moreover, clonal expansion of the mutant cell necessarily increases number of targets for additional carcinogenic mutations that would foster tumour progression. Thus, cancer appears to be an inevitable consequence of natural selection within the soma—given enough mutations. In man, this “neoplasia problem” is further exacerbated by three factors: our substantial physical size, our longevity, and the self-renewing (i.e. proliferating) nature of many of our tissues. The larger an organism is, the greater the number of potential cellular targets for neoplastic mutations. Likewise, the longer an organism lives, the greater the chances of neoplasia occurring at some point in its life. Finally, many of our tissues (notably epithelial and haematopoietic) exhibit substantial proliferation throughout our lives so cells within them sustain a risk of de novo mutation throughout life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. M. and Cory, S. (1991). Transgenic models for haemopoietic malignancies. Biochim Biophys Acta., 1072, 9–31.

    PubMed  CAS  Google Scholar 

  • Amati, B., Brooks, M., Levy, N., Littlewood, T., Evan, G. and Land, H. (1993). Oncogenic activity of the c-Myc protein requires dimerisation with Max. Cell., 72, 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Amati, B., Dalton, S., Brooks, M., Littlewood, T., Evan, G. and Land, H. (1992). Transcriptional activation by cMyc oncoprotein in yeast requires interaction with Max. Nature., 359, 423–426.

    Article  PubMed  CAS  Google Scholar 

  • Amati, B., Littlewood, T., Evan, G. and Land, H. (1994). The c-Myc protein induces cell cycle progression and apoptosis through dimerisation with Max. EMBO J., 12, 5083–5087.

    Google Scholar 

  • Bello, F.C., Packham, G. and Cleveland, J. L. (1993). The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci U S A., 90, 7804–8.

    Article  Google Scholar 

  • Benvenisty, N., Leder, A., Kuo, A. and Leder, P. (1992). An embryonically expressed gene is a target for c-Myc regulation via the c-Myc-binding sequence. Gene Devel., 6, 2513–2523.

    Article  CAS  Google Scholar 

  • Bissonnette, R., Echeverri, F., Mahboubi, A. and Green, D. (1992). Apoptotic cell death induced by c-myc is inhibited by bel- 2. Nature., 359, 552–554.

    Article  PubMed  CAS  Google Scholar 

  • Boise, L., Gonzalez-Garcia, M., Postema, C., Ding, L., Lindsten, T., Turka, L., Mao, X., Nuñez, G. and Thompson, C. (1993). bcl-x, a bcl -2-related gene that functions as a dominant regulator of apoptotic cell death. Cell., 74, 597–608.

    Article  PubMed  CAS  Google Scholar 

  • Braselmann, S., Graninger, P. and Busslinger, M. (1993). A selective transcriptional induction system for mammal-ian cells based on Ga14-estrogen receptor fusion proteins. Proc Natl Acad Sci U S A., 90, 1657–61.

    Article  PubMed  CAS  Google Scholar 

  • Chittenden, T., Harrington, E., O’Connor, R., Evan, G. and Guild, B. (1995). Induction of apoptosis by the Bcl-2 homologue Bak. Nature., 374, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Coppola, J. A. and Cole, M. D. (1986). Constitutive c-mye oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature., 320, 760–763.

    Article  PubMed  CAS  Google Scholar 

  • Dedera, D., Waller, E., LeBrun, D., Sen-Majumdar, A., Stevens, M., Barsh, G. and Cleary, M. (1993). Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis and malignant lymphomas in transgenic mice. Cell., 74, 833–843.

    Article  PubMed  CAS  Google Scholar 

  • Denis, N., Blanc, S., Leibovitch, M. P., Nicolaiew, N., Dautry, F., Raymondjean, M., Kruh, J. and Kitzis, A. (1987). c-myc oncogene expression inhibits the initiation of myogenic differentiation. Exp. Cell Res., 172, 212–7.

    Article  PubMed  CAS  Google Scholar 

  • Dmitrovsky, E., Kuehl, W. M., Hollis, G. F., Kirsch, I. R., Bender, T. P. and Segal, S. (1986). Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature., 322, 748–750.

    Article  PubMed  CAS  Google Scholar 

  • Dyall, S. D. and Cory, S. (1988). Transformation of bone marrow cells from E mu-myc transgenic mice by Abelson murine leukemia virus and Harvey murine sarcoma virus. Oncogene Res., 2, 403–9.

    Google Scholar 

  • Eilers, M., Schirm, S. and Bishop, J. M. (1991). The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J., 10, 133–41.

    PubMed  CAS  Google Scholar 

  • Evan, G. and Littlewood, T. (1993). The role of c-myc in cell growth. Curr. Opin. Genet. & Dev., 3, 44–49.

    Article  CAS  Google Scholar 

  • Evan, G., Wyllie, A., Gilbert, C., Littlewood, T., Land, H., Brooks, M., Waters, C., Penn, L. and Hancock, D. (1992). Induction of apoptosis in fibroblasts by c-myc protein. Cell., 63, 119–125.

    Article  Google Scholar 

  • Fanidi, A., Harrington, E. and Evan, G. (1992). Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature., 359, 554–556.

    Article  PubMed  CAS  Google Scholar 

  • Farrow, S., White, J., Martinou, I., Raven, T., Pun, K.-T., Grinham, C., Martinou, J.-C. and Brown, R. (1995). Cloning of a novel bel-2 homologue by interaction with adnovirus E1B 19K. Nature., 374, 731–733.

    Article  PubMed  CAS  Google Scholar 

  • Fearon, E. R. and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell., 61, 759–67.

    Article  PubMed  CAS  Google Scholar 

  • Freytag, S. O. (1988). Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in GO/G1. Mol. Cell. Biol., 8, 1614–1624.

    PubMed  CAS  Google Scholar 

  • Freytag, S. O., Dang, C. V. and Lee, W. M. F. (1990). Definition of the activities and properties of c-myc required to inhibit cell differentiation. Cell Growth & Diff., 1, 339–343.

    CAS  Google Scholar 

  • Harrington, E., Fanidi, A., Bennett, M. and Evan, G. (1994a). Modulation of Myc-induced apoptosis by specific cytokines. EMBO J., 13, 3286–3295.

    CAS  Google Scholar 

  • Harrington, E., Fanidi, A. and Evan, G. (1994b). Oncogenes and cell death. Curr. Opin. Genet. Dev., 4, 120–129.

    Article  CAS  Google Scholar 

  • Hengartner, M. O., Ellis, R. E. and Horvitz, H. R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature., 356, 494–9.

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery, D. M., Zutter, M., Hickey, W., Nahm, M. and Korsmeyer, S. J. (1991). BCL2 protein is topographi- cally restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci U S A., 88, 6961–5.

    Article  PubMed  CAS  Google Scholar 

  • Howes, K., Ransom, L., Papermaster, D., Lasudry, J., Albert, D. and Windle, J. (1994). Apoptosis or retinoblastoma-alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes & Dev., 8, 1300–1310.

    Article  CAS  Google Scholar 

  • Kamesaki, S., Kamesaki, H., Jorgensen, T., Tanizawa, A., Pommier, Y. and Cossman, J. (1993). Bc1–2 protein inhibits etoposide-induced apoptosis through its effects on events subsequent to topoisomerase II-induced DNA strand breaks and their repair. Cancer Research., 53, 4251–4256.

    PubMed  CAS  Google Scholar 

  • Kato, G. J., Barrett. J., Villa, G. M. and Dang, C. V. (1990). An amino-terminal c-myc domain required for neo-plastic transformation activates transcription. Mol Cell Biol., 10, 5914–20.

    PubMed  CAS  Google Scholar 

  • Kiefer, M., Brauer, M., VC, P., Wu, J., Umansky, S., Tomei, L. and Barr, P. (1995). Modulation of apoptosis by the widely distributed Bc1–2 homologue Bak. Nature., 374, 736–739.

    Article  PubMed  CAS  Google Scholar 

  • Kozopas, K. M., Yang, T., Buchan, H. L., Zhou, P. and Craig, R. W. (1993). MCLI, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A., 90, 3516–20.

    Article  PubMed  CAS  Google Scholar 

  • Krajewski, S., Tanaka, S., Takayama, S., Schibler, M., W., F. and Jc., R. (1993). Investigation of the subcellulardistribution of the Bc1–2 oncoprotein-residence in the nuclear-envelope, endoplasmic-reticulum, and outer mitochondrial-membranes. Cancer Res., 53, 4701–14.

    PubMed  CAS  Google Scholar 

  • Kretzner, L., Blackwood, E. and Eisenman, R. (1992). Myc and Max possess distinct transcriptional activities. Nature., 359, 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Langdon, W. Y., Harris, A. W. and Cory, S. (1988). Growth of E mu-myc transgenic B-lymphoid cells in vitro and their evolution toward autonomy. Oncogene Res., 3, 271–9.

    PubMed  CAS  Google Scholar 

  • Lin, E., Orlofsky, A., Berger, M. and Prystowsky, M. (1993). Characterization of Al, a novel hemopoietic-specific early-response gene with sequence similarity to bc1- 2. J. Immunol., 151, 1979–1988.

    PubMed  CAS  Google Scholar 

  • Nakai, M., Takeda, A., Cleary, M. L. and Endo, T. (1993). The bc1- 2 protein is inserted into the outer-membrane but not into the inner membrane of rat-liver mitochondria in vitro. Biochem Biophys Res Comms., 196, 233–9.

    Article  CAS  Google Scholar 

  • Neiman, P. E., Thomas, S. J. and Loring, G. (1991). Induction of apoptosis during normal and neoplastic B-cell development in the bursa of Fabricius. Proc Natl Acad Sci U S A., 88, 5857–61.

    Article  PubMed  CAS  Google Scholar 

  • Oltvai, Z., Milliman, C. and Korsmeyer, S. (1993). Bc1–2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell., 74, 609–619.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, G. R., Luka, J., Petti, L., Sample, J., Birkenbach, M., Braun, D. and Kieff, E. (1987). Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology., 160, 151–61.

    Article  PubMed  CAS  Google Scholar 

  • Qin, X., Livingston, D., Kaelin, W. and Adams, P. (1994). Deregulated transcription factor e2f-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci U S A., 91, 10918–10922.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M., Barres, B., Burne, J., Coles, H., Ishizaki, Y. and Jacobson, M. (1993). Programmed cell death and the control of cell survival: lessons from the nervous system. Science., 262, 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Rao, L., Debbas, M., Sabbatini, P., Hockenberry, D., Korsmeyer, S. and White, E. (1992). The adenovirus EIA proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci U S A., 89, 7742–7746.

    Article  PubMed  CAS  Google Scholar 

  • Sarnow, P., Ho, Y., Williams, J. and Levine, A. (1982). Adenovirus Elb-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells. Cell., 28, 387–94.

    Article  PubMed  CAS  Google Scholar 

  • Smeyne, R., Vendrell, M., Hayward, M., Baker, S., Miao, G., Schilling, K., Robertson, L., Curran, T. and Morgan, J. (1993). Continuous c-fos expression precedes programmed cell-death in vivo. Nature., 363, 166–169.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, C. A. and Groudine, M. (1991). Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res., 56, 1–48.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D. L., Cory, S. and Adams, J. M. (1988). Bc1-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature., 335, 440–2.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A. J., Small, M. B. and Hay, N. (1993). Myc-mediated apoptosis is blocked by ectopic expression of bc1- 2. Mol Cell Biol., 13, 2432–2440.

    PubMed  CAS  Google Scholar 

  • White, E., Cipriani, R., Sabbatini, R and Denton, A. (1991). Adenovirus El B 19-kilodalton protein overcomes the cytotoxicity of El A proteins. J Virol., 65, 2968–78.

    PubMed  CAS  Google Scholar 

  • White, E., Sabbatini, R, Debbas, M., Wold, W., Kusher, D. and Gooding, L. (1992). The 19-kilodalton Adenovirus EIB transforming protein inhibits programmed cell death and prevents cytolysis by tumour necrosis factor a. Mol Cell Biol., 12, 2570–2580.

    PubMed  CAS  Google Scholar 

  • Wu, X. and Levine, A. J. (1994). p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A., 91, 3602–6.

    Article  PubMed  CAS  Google Scholar 

  • Yew, R R. and Berk, A. J. (1992). Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature., 357, 82–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evan, G.I., Harrington, E.H., McCarthy, N.J., Littlewood, T.D., Hancock, D.C. (1996). The Integrated Control of Cell Proliferation and Cell Viability. In: Mihich, E., Housman, D. (eds) Cancer Genes. Pezcoller Foundation Symposia, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5895-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5895-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7704-7

  • Online ISBN: 978-1-4615-5895-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics