
Genetic Programming and

Data Structures

William Benjamin Langdon

A dissertation submitted in partial ful�llment
of the requirements for the degree of

Doctor of Philosophy
of the

University of London�

Department of Computer Science
University College London

�� September ����

�

Abstract

This thesis investigates the evolution and use of abstract data types within Genetic Pro�
gramming �GP	
 In genetic programming the principles of natural evolution ��tness based
selection and recombination	 acts on program code to automatically generate computer
programs
 The research in this thesis is motivated by the observation from software engi�
neering that data abstraction �e
g
 via abstract data types	 is essential in programs created
by human programmers
 We investigate whether abstract data types can be similarly ben�
e�cial to the automatic production of programs using GP

GP can automatically �evolve� programs which solve non�trivial problems but few
experiments have been reported where the evolved programs explicitly manipulate memory
and yet memory is an essential component of most computer programs
 So far work on
evolving programs that explicitly use memory has principally used either problem speci�c
memory models or a simple indexed memory model consisting of a single global shared
array
 Whilst the latter is potentially su
cient to allow any computation to evolve� it
is unstructured and allows complex interaction between parts of programs which weaken
their modularity
 In software engineering this is addressed by controlled use of memory
using scoping rules and abstract data types� such as stacks� queues and �les

This thesis makes �ve main contributions� ��	 Proving that abstract data types �stacks�
queues and lists	 can be evolved using genetic programming
 ��	 Demonstrating GP can
evolve general programs which recognise a Dyck context free language� evaluate Reverse
Polish expressions and GP with an appropriate memory structure can solve the nested
brackets problem which had previously been solved using a hybrid GP
 ��	 In these three
cases �Dyck� expression evaluation and nested brackets	 an appropriate data structure
is proved to be bene�cial compared to indexed memory
 ��	 Investigations of real world
electrical network maintenance scheduling problems demonstrate that Genetic Algorithms
can �nd low cost viable solutions to such problems
 ��	 A taxonomy of GP is presented�
including a critical review of experiments with evolving memory
 These contributions
support our thesis that data abstraction can be bene�cial to automatic program generation
via arti�cial evolution

�

�

Acknowledgements

The work behind this thesis was primarily funded by the EPSRC via a PhD quota award
and The National Grid Company plc
 via a CASE award

I would like to thank my supervisors �M
 Levene and P
 C
 Treleaven	� Tom Westerdale�
and Mauro Manela for their critisims and ideas� UCL Computer Science department for
not minding too much me using their machines and Andy Singleton for the initial version
of GP�QUICK on which much of my code was implemented

My thanks to John Macqueen and Maurice Dunnett who introduced me to the NGC
maintenance planning problem
 Mike Calviou� Ursula Bryan� Daniel Waterhouse� Arthur
Ekwue and Helen Cappocci for much practical assistance such as �tness functions� in�
stalling SDRS�� fast DC load�ow code and reviewing various draft papers �often to un�
reasonably short deadlines	
 To Laura Dekker for assistance with setting up QGAME

Lee Altenberg �of University of Hawai�i	 for directing me to the work of George Price
�of UCL	 and helpful comments and suggestions on this work

I would like to thank the following Howard Oakley� Suran Goonatilake� Lee Spector�
Maarten Keijzer� Thomas Haynes� Frederic Gruau� Peter Angeline and various anony�
mous reviewers who all helped me by reviewing my work and making suggestions for its
improvement and supplying references to existing work

I would like to thank Julia Schnabel for reading and constructively criticising the many
drafts of this thesis

And thanks to Dave Lawrence �of Digital Equipment Corp
	 for inspiring conversation
in Richard Head�s �Houston	

�

�

Contents

� Introduction ��

�
� What is Genetic Programming� ��

�
� Goals of this work ��
�
� Contribution of this Work ��

�
� Plan of Thesis ��

� Genetic Programming ��

�
� Background to this Thesis ��

�
�
� Previous work on Evolving Memory in GP � � � � � � � � � � � � � � ��
�
�
� Simultaneous Work ��

�
� General GP Concepts ��

�
�
� Basic Steps ��
�
�
� Choosing Terminals ��	 and Functions ��	 � � � � � � � � � � � � � � � ��

�
�
� Fitness Function ��	 ��

�
�
� Control Parameters ��	 ��
�
�
� Termination Criterion ��	 ��

�
�
� Automatically De�ned Functions ��	 � � � � � � � � � � � � � � � � � � ��

�
� Further GP Concepts ��
�
�
� Tournament Selection ��

�
�
� Steady State Populations ��

�
�
� Indexed memory ��
�
�
� Scalar Memory ��

�
�
� Multi�tree programs ��

�
�
� Directed Crossover ��
�
�
� Demes ��

�
�
� Pareto Optimality ��

� Evolving a Stack ��

�
� Problem Statement ��
�
�
� Example Use of a Stack ��

�
�
� Evolving a Stack ��

�
� Architecture ��
�
� Choice of Primitives ��

�
�
� Indexed Memory ��

�
�
� Register ��
�
� Fitness Function ��

�
�
� Test Case ��

�
� Parameters ��

�
� Results ��
�
�
� E�ort Required to Find a General Stack � � � � � � � � � � � � � � � � ��

�
�
� Evolution of Program Size ��

�

�

�
� Summary ��

� Evolving a Queue 	�
�
� Problem Statement ��
�
� Architecture ��
�
� Choice of Primitives ��

�
�
� Indexed Memory ��
�
�
� Registers ��

�
� Fitness Functions ��
�
�
� Test Case ��

�
� Parameters ��
�
�
� Population size ��
�
�
� Maximum Program Size ��

�
� Automatically De�ned Functions ��
�
� Evolved Solutions � Caterpillar ��

�
� Evolved Programs � Shu�er ��
�
� Circular Bu�er � Given Modulus Increment � � � � � � � � � � � � � � � � � � ���
�
�� Circular Bu�er � Evolving Modulus Increment � � � � � � � � � � � � � � � � ���

�
��
� Pareto Fitness ���
�
��
� Demic Populations ���
�
��
� Good Engineering Practice ���

�
��
� Pass by Reference ���
�
��
� Results ���

�
�� Discussion� Building Blocks and Introns ���
�
�� Summary ���

� Evolving a List ���
�
� Problem Statement ���
�
� Architecture ���

�
� Automatically De�ned Functions ���
�
� Choice of Primitives ���

�
�
� Iteration ���
�
�
� Syntax Restrictions ���

�
� Fitness Function ���
�
�
� Pareto Optimality and Niches ���

�
�
� Fitness Test Case ���
�
�
� CPU and Memory Penalties ���
�
�
� Locating Errors with Fitness Testing � � � � � � � � � � � � � � � � � � ���

�
� Directed Crossover ���
�
� Parameters ���
�
� Results ���
�
� Software Maintenance ���

�
�
� Results ���
�
�� Discussion ���
�
�� Conclusions ���

 Problems Solved Using Data Structures ���
�
� Balanced Bracket Problem ���

�
�
� Problem Statement ���

�
�
� Architecture ���
�
�
� Choice of Primitives ���
�
�
� Fitness Function ���

�

�
�
� Parameters ���

�
�
� Results ���

�
� Dyck Language ���

�
�
� Problem Statement ���

�
�
� Architecture ���

�
�
� Terminals� Functions and Parameters � � � � � � � � � � � � � � � � � ���

�
�
� Fitness Function ���

�
�
� Results ���

�
� Evaluating Reverse Polish Expressions ���

�
�
� Problem Statement ���

�
�
� Architecture ���

�
�
� Terminals� Functions and Parameters � � � � � � � � � � � � � � � � � ���

�
�
� Fitness Function ���

�
�
� Results ���

�
� Work by Others on Solving Problems with Memory � � � � � � � � � � � � � � ���

�
�
� Scalars ���

�
�
� One Indexed Memory ���

�
�
� Case Base ���

�
�
� Strongly Typed Genetic Programming � � � � � � � � � � � � � � � � � ���

�
�
� Graph Data Structures ���

�
�
� Linked List Data Structure ���

�
�
� Tree Structured Memory for Temporal Data Processing � � � � � � � ���

�
�
� PADO ���

�
� Summary ���

� Evolution of GP Populations ���

�
� Price�s Selection and Covariance Theorem ���

�
�
� Proof of Price�s Theorem ���

�
�
� Proof of Price�s Theorem with Asexual Reproduction � � � � � � � � ���

�
�
� Price�s Theorem for Genetic Algorithms � � � � � � � � � � � � � � � � ���

�
�
� Applicability of Price�s Theorem to GAs and GPs � � � � � � � � � � ���

�
�
� Application of Price�s Theorem to the GP Stack Problem � � � � � � ���

�
� Fisher�s Fundamental Theorem of Natural Selection � � � � � � � � � � � � � ���

�
� Evolution of Stack Problem Populations ���

�
�
� Discussion ���

�
� Loss of Variety ���

�
�
� Loss of Variety in Stack Populations � � � � � � � � � � � � � � � � � � ���

�
�
� Evolution of Variety in a Steady State GA � � � � � � � � � � � � � � � ���

�
�
� Measurements of GP Crossover�s E�ect on Variety � � � � � � � � � � ���

�
� Measurements of GP Crossover�s E�ects ���

�
� Discussion ���

�
� Summary ���

	 Conclusions ���

�
� Recommendations ���

�
� Future work ���

A Number of Fitness Evaluations Required �
�

��

B Genetic Programming � Computers using �Natural Selection
 to gener�
ate programs �
�

B
� Introduction ���

B
� Genetic Algorithms ���

B
�
� Search Techniques ���

B
�
� Automatic Program Generation ���

B
�
� GA Representation and Execution ���

B
� Genetic Programming ���

B
�
� History ���

B
�
� Basic Choices ���

B
�
� Example ���

B
�
� Taxonomy ���

B
� GP Research ���

B
�
� Program Representation ���

B
�
� Fitness Measure ���

B
�
� Control Parameters ���

B
�
� Termination Criterion ���

B
�
� Architecture ���

B
�
� GP Mutation ���

B
�
� GA Techniques used in GP ���

B
�
� GP Development Tools ���

B
� GP Applications ���

B
�
� Prediction and Classi�cation ���

B
�
� Image and Signal Processing ���

B
�
� Optimisation ���

B
�
� Trading ���

B
�
� Robots ���

B
�
� Arti�cial Life ���

B
�
� Artistic ���

B
� Conclusions ���

B
� Glossary ���

C Scheduling Planned Maintenance of the National Grid ���

C
� Approximating Replacement Generation Costs � � � � � � � � � � � � � � � � ���

C
� The Fitness Function ���

C
�
� Maintenance Bene�ts ���

C
�
� Over Loading Costs ���

C
�
� Avoiding Isolating Nodes or Splitting the Network � � � � � � � � � � ���

C
�
� Combined Fitness Measure ���

C
� The Four Node Demonstration Network ���

C
�
� Determining which Generators to Use � � � � � � � � � � � � � � � � � ���

C
�
� Determining Fitness Function Parameters K and S � � � � � � � � � � ���

C
� The Chromosome ���

C
� Greedy Optimizers ���

C
�
� Heuristic � � One Week� One Line ���

C
�
� Heuristic � � Minimum Power Flow � � � � � � � � � � � � � � � � � � ���

C
�
� Heuristic � � Minimum Line Cost ���

C
�
� Heuristic � � Minimum Increase in Line Cost � � � � � � � � � � � � � ���

C
� Using QGAME ���

C
� Discussion ���

C
� Conclusions ���

��

D Scheduling Maintenance of the South Wales Network ���
D
� The South Wales Region of the UK Electricity Network � � � � � � � � � � � ���
D
� The Fitness Function ���
D
� Solving the South Wales Problem with GAs � � � � � � � � � � � � � � � � � � ���

D
�
� South Wales Problem without Contingencies � � � � � � � � � � � � � ���
D
�
� South Wales Problem with Contingencies � � � � � � � � � � � � � � � ���

D
� Genetic Programming Solution ���
D
�
� Architecture ���
D
�
� Choice of Primitives ���
D
�
� Mutation ���
D
�
� Constructing the Initial Population ���
D
�
� Fitness Function ���
D
�
� Results ���

D
� Other GP Approaches ���
D
� Discussion ���
D
� Conclusions ���

E Implementation ���
E
� GP�QUICK ���
E
� Coding Changes to GP�QUICK��
� ���
E
� Default Parameters ���
E
� Network Running ���
E
� Reusing Ancestors Fitness Information ���
E
� Caches ���
E
� Compressing the Check Point File ���
E
� Code ���

��

List of Figures

�
� Genetic Programming Crossover ��

�
� Genetic Programming Cycle ��

�
� One Individual � One Program� Five Operations � Five Trees � � � � � � � � ��

�
� Crossover in One Tree at a time ��

�
� Selecting Parents and Individual to be Replaced in a Demic Population � � ��

�
� In a square deme containing D grid points� ��� points lie within �
�

q
D
� of

the center ��

�
� In a rectangular population of M individuals� aspect ratio R and P indi�

viduals per grid point� each individual is within �
�

q
MR
P of any other � � � � ��

�
� Two Dimensional Example of Pareto Optimality and the Pareto Front � � � ��

�
� Number of di�erent non dominated �tness values in a list population �Chap�
ter �	 with and without a comparison set �no niche sharing� not elitist�
pop�������� no demes	 ��

�
� Evolution of the Pareto front �successful run of queue problem� cf
 Sec�
tion �
��	 ��

�
� Evolution of the Pareto front �typical run of queue problem� cf
 Section �
��	 ��

�
� Push�down Stack ��

�
� Solving a Maze Problem Using a Stack ��

�
� Each individual within the population is a trial implementation of the whole
of stack and so implements each of the �ve operations that a stack supports
�makenull� top� pop� push and empty	
 Each operation is programmed by
its own tree
 The complete individual is composed of one tree for each
operation making a total of �ve trees
 ��

�
� Evolved Stack ��

�
� Simpli�ed Stack ��

�
� Evolved Stack ��

�
� Simpli�ed Stack ��

�
� Evolved Stack ��

�
� Simpli�ed Stack ��

�
�� Evolved Stack ��

�
�� Simpli�ed Stack ��

�
�� Distribution of maximum �tness found by �� runs of the stack problem � � ��

�
�� Evolution of �tness in a typical stack run
 ��

�
�� Evolution of �tness� means of �� stack runs
 The four solutions to the stack
problem are also shown
 ��

�
�� Evolution of program size in a typical stack run
 � � � � � � � � � � � � � � � ��

�
�� Evolution of program size� means of �� stack runs
 The lengths of the four
solutions to the stack problem are also shown
 � � � � � � � � � � � � � � � � ��

��

��

�
�� Fitness v
 Program Size� Typical stack run
 �To improve presentation only
extrema and ��� of the data are plotted	
 ��

�
�� Fitness v
 Program Size� Stack �
 �To improve presentation only extrema
and ��� of the data are plotted	
 ��

�
� Circular Implementation of queues
 �Cells containing data are shaded	 � � � ��

�
� Execution of �caterpillar� program
 Labels in bold indicate current values�
dotted show previous values
 Shaded cells hold queue
 The heavy arrow
indicates the general movement of the caterpillar as data items are added
to the queue
 As items are removed from the head of the queue it moves to
the right� i
e
 it acts like the tail of a caterpillar
 � � � � � � � � � � � � � � � ��

�
� �Caterpillar� Program ��

�
� Tangent function used to generate distribution of test data values from
F tan��x	
 Where x is a uniform random number and F is a scaling coe
�
cient
 ��

�
� Execution of �Shu�er� program
 Note data are always dequeued from cell
� but may be enqueued into any cell � � � � �
 � � � � � � � � � � � � � � � � � � ��

�
� �Shu�er� Program ���

�
� Simpli�ed �Shu�er� Program ���

�
� Execution of �Modulus Increment� program
 Data are enqueued in front of
cell indicated by aux� and dequeued from cell in front of that indicated by
aux�
 Labels in bold indicate current values� dotted show previous values
 ���

�
� �Modulus Increment� Program ���

�
�� Simpli�ed �Modulus Increment� Program ���

�
�� Evolution of adf� cycle length in two runs of the Queue problem �when
evolving modulus increment	
 The successful run produced Queue �
 �Graphs
plot mean cycle length of the �� of population with the longest cycles	
 � ���

�
�� Number of individuals in the population whose adf� has a cycle length of
�� or more in two runs of the Queue problem �when evolving modulus
increment	
 Successful run produced Queue �
 � � � � � � � � � � � � � � � � ���

�
�� Spread of individuals whose adf� has a cycle length � �� near end of suc�
cessful run ��	 of Queue problem �when evolving modulus increment	
 � � � ���

�
�� Spread of individuals whose adf� has a cycle length � �� near to where
successful Queue ��	 individual evolved
 ���

�
�� Execution of Queue program �
 Data are enqueued in cell indicated by
aux�
 Data is dequeued from the cell indicated by aux� by �rst copying
them to cell zero
 �Cell zero is overwritten as the data values are extracted
from it	
 Labels in bold indicate current values� dotted show previous values
���

�
�� Evolved Queue Program ���

�
�� Simpli�ed Queue Program ���

�
�� Execution of Queue program �
 Whilst also a circular queue implemen�
tation� in this case adf� increases it�s argument by two and arranges on
over�ow to use the cells it previously skipped �numbers on the arrows indi�
cate order cells are used in	
 Cell zero is only used once� but other cells are
re�used
 ���

�
�� Evolved Queue Program � �adf� follows	 ���

�
�� Evolved Queue �� adf� ���

�
�� Simpli�ed Queue Program ���

�
�� Execution of near perfect queue program ��	 �can you spot the bug�	
 Data
are enqueued to the cell in front of the one indicated by aux� and dequeued
from the one in front of that indicated by aux�
 Shaded cells contain data
 ���

��

�
�� Near perfect Queue Program ��	 �adf� follows	 � � � � � � � � � � � � � � � � ���

�
�� Near perfect queue program ��	� adf� ���

�
�� Simpli�ed Queue Program ��	 ���

�
�� Evolution of the number of �tness tests passed in a typical run of the Queue
problem �when evolving modulus increment	
 � � � � � � � � � � � � � � � � � ���

�
�� Evolution of the number of �tness tests passed
 Means of �� Queue runs
�evolving modulus increment	
 The discovery of the six programs which
pass all the �tness tests is also plotted
 ���

�
�� Evolution of program size in a typical run of the Queue problem �when
evolving modulus increment	
 ���

�
�� Evolution of program size
 Means of �� Queue runs �evolving modulus
increment	
 The sizes of the six programs which pass all the �tness tests
and when they were found are also plotted
 � � � � � � � � � � � � � � � � � � ���

�
� ADF Calling Hierarchy Available to Solve the List Problem � � � � � � � � � ���

�
� Evolution of the number of �tness niches occupied with and without com�
parison with the rest of the population �� indicates run without comparison
set	
 Typical list runs �starting from identical initial populations	
 All plots�
except the maximum number of tests passed� are plotted on a log scale
 � � ���

�
� Evolution of the number of primitives executed during �tness testing on the
List problem� means of �� runs
 Error bars indicate one standard deviation
either side of the population mean
 The fastest solutions evolved during
the two successful runs and the population mean of the threshold above
which the CPU penalty is applied are also shown
 The minimum number of
instructions are executed by relatively unsuccessful programs as these are
run on few tests
 ���

�
� Evolution of the Maximum Score in the Population for Each List Operation�
Typical Run ���

�
� Evolution of the Maximum Score in the Population for Each List Operation�
Means of �� Runs ���

�
� First Evolved Solution to List Problem ���

�
� Simpli�ed Pseudo Code Equivalent to First Evolved Solution to List Problem���

�
� Evolution of program size� means of �� runs
 Error bars indicate one stan�
dard deviation either side of the population mean
 The shortest solutions
evolved during the two successful runs are also shown
 �Program size limited
to ���
	 ���

�
� Evolution of the frequency of rare primitives �i
e
 terminals and functions
where the number of them in the population falls below ��� of its original
value
 NB the many case where primitives did not fall dramatically or
increased in number are not shown	
 This graph plots the ratio of the
number of them in the population to the number of them in the initial
population for a typical run
 The nine primitives which are lost completely
from the population are shown as solid lines� the others are shown as dotted
lines
 ���

�
� Solution to Bracket Problem ���

�
� Solution to Bracket Problem �Simpli�ed	 ���

��

�
� Evolution of the number of primitives executed during �tness testing on
the Dyck problem� means of � runs using demes
 Error bars indicate one
standard deviation either side of the population mean
 The fastest solutions
evolved in each run are also plotted
 The minimum number of instructions
are executed by relatively unsuccessful programs as these are run on few
tests
 ���

�
� First Solution to the Dyck Problem
 Evolved after ��
� Generations � � � � ���

�
� One of the Fastest Solutions to the Dyck Problem evolved after �� Generations���

�
� Evolution of the number of primitives executed during �tness testing on the
calculator problem� means of �� runs
 �Average data is not plotted after
generation �� as several runs run out of time by this point
	 Error bars
indicate one standard deviation either side of the population mean
 The
fastest solutions evolved during the six successful runs and the population
mean of the threshold above which the CPU penalty is applied are also
shown
 The minimum number of instructions are executed by relatively
unsuccessful programs as these are run on few tests
 � � � � � � � � � � � � � ���

�
� First Solution to the RPN Problem
 Evolved after ��
� generations ������
instructions to complete test case	 ���

�
� One of the Fastest Solutions to the RPN Problem evolved after �� genera�
tions ����� instructions to complete test case	 � � � � � � � � � � � � � � � � � ���

�
� Evolution of the number of the terminal ��� in the makenull tree plus
predicted change and actual change in next generation� in typical stack
���	 run
 ���

�
� Covariance of Primitive frequency and
�
Ri
N

�� � �Ri��

N

��
v
 change in fre�

quency in next generation� in typical stack ���	 run
 Data collected every
generation equivalent
 ���

�
� Covariance of Primitive frequency and
�
Ri
N

�� � �Ri��

N

��
v
 change in fre�

quency in next generation� in typical stack ���	 run
 Only data near the
origin shown
 ���

�
� Covariance of Primitive frequency and
�
Ri
N

�� � �Ri��

N

��
v
 change in fre�

quency in next generation� in successful stack ��	 run
 Data collected every
generation equivalent
 ���

�
� Covariance of Primitive frequency and
�
Ri
N

�� � �Ri��

N

��
v
 change in fre�

quency in next generation� in successful stack ��	 run
 Data near origin
 � ���

�
� Rate of producing o�spring v

�
Ri
N

�� � �Ri��

N

��
in typical stack ���	 run

Data collected every generation equivalent
 � � � � � � � � � � � � � � � � � � ���

�
� Evolution of Fitness in a typical stack run ���	 � � � � � � � � � � � � � � � � ���

�
� Evolution of the covariance of primitive frequency and
�
Ri
N

��� �Ri��

N

��
for

the �rst critical primitive �or critical pair	 to become extinct
 Six typical
stack runs
 ���

�
� Evolution of the covariance of primitive frequency and
�
Ri
N

��� �Ri��

N

��
for

critical primitives
 Successful stack � run
 ���

�
�� Evolution of number of primitives in the population for �rst critical primi�
tive �or critical pair	 to become extinct
 Six typical stack runs
 � � � � � � � ���

�
�� Evolution of number of primitives in the population for critical primitives

Successful stack � run
 ���

�
�� Number of di�erent individuals in stack populations and proportion of sub�
sequent duplicates produced by crossover in stack selected runs
 � � � � � � ���

��

�
�� Detail of above ���

�
�� Change in number of di�erent individuals in stack populations
 � � � � � � � ���

�
�� Detail of above ���

�
�� Number of duplicate individuals in stack populations that were produced
by reproduction in selected runs
 ���

�
�� Number of di�erent individuals in stack populations and change in maxi�
mum �tness in a typical stack run ���	
 ���

�
�� Variety predicted by quadratic crossover model and actual variety in se�
lected stack runs
 ���

�
�� Proportion of crossovers that yield o�spring identical to one or other par�
ents� typical stack ���	 run �Also shows proportion where the two parents
are identical	
 ���

�
�� Evolution of �Terminal Concentration	� in each operation tree� for six typ�
ical stack runs and run ���	
 ���

�
�� Proportion of crossovers where a terminal is inserted for six typical stack
runs and run ���	 �averaged across all �ve trees within each individual	
 � ���

�
�� All crossovers that produced o�spring �tter than both parents� typical stack
run ���	
 ���

�
�� All crossovers that produced o�spring �tter than both parents� successful
run ���	
 ���

�
�� Proportion of crossovers that produced o�spring �tter than both parents�
worse than both or neither
 Six typical stack runs
 � � � � � � � � � � � � � � ���

�
�� Fitness of parents selected for crossover in typical stack ���	 run
 �Extrema
and �� of data for �rst parent only are plotted	
 � � � � � � � � � � � � � � � ���

B
� Mum� �tness
������ �x� x ���

B
� Dad� �tness
������ x
x

x�x�
� x ���

B
� Correct Program� �tness �
�� x � x� � x ���

B
� x� �solid	� test points �dots	� values returned by mum ��x�x� dashed	 and
dad � x

x

x�x�
� x� small dashed	 ���

B
� Genetic Algorithms � Mutation ���

B
� Genetic Algorithms � Crossover ���

B
� The Genetic Algorithm Cycle ���

B
� Search Techniques ���

B
� Genetic Programming Crossover ���

B
�� Genetic Programming Cycle ���

B
�� Mum� �tness
������ �x� x ���

B
�� Dad� �tness
������ x
x

x�x�
� x ���

B
�� Correct Program� x � x� � x ���

B
�� x� �solid	� test points �dots	� values returned by mum ��x�x� dashed	 and
dad � x

x

x�x�
� x� small dashed	 ���

C
� Four node network ���

C
� Hybrid GA and �greedy optimizer� ���

C
� Example order �dotted	 in which lines are considered by a �greedy optimizer����

C
� Cumulative frequency v
 line costs �one week� one line	 � � � � � � � � � � � � ���

C
� Cumulative frequency v
 �tness �minimum power �ow	 � � � � � � � � � � � � ���

C
� Cumulative frequency v
 �tness �minimum line cost	 � � � � � � � � � � � � � ���

C
� Cumulative frequency v
 �tness �minimum increase in line cost	 � � � � � � � ���

C
� Cumulative frequency v
 �tness �greedy optimizers	 � � � � � � � � � � � � � � ���

��

C
� Cumulative frequency v
 �tness �no line maintained more than once	 � � � ���
C
�� Cumulative frequency v
 �tness �no line maintained more than once	 � � � ���

D
� South Wales Region High Voltage Network � � � � � � � � � � � � � � � � � � ���
D
� Predicted Demand in South Wales Region ���
D
� Predicted Generation in South Wales Region � � � � � � � � � � � � � � � � � ���
D
� Seed � � Minimum Power �ow Heuristic
 Length ���� Cost of schedule ����
�����
D
� Seed � � Minimum Increase in Cost Heuristic
 Length ���� Cost of schedule

����
�� ���
D
� Evolution of GP Produced Schedule Costs ���
D
� Evolved Heuristic
 Length ���� Cost of schedule ���
���� CPU ������� � � � ���

List of Tables

�
� Pseudo Code De�nition of the Five Stack Operations � � � � � � � � � � � � � ��

�
� Tableau for Evolving a Stack ��

�
� Number of each the �ve stack operations in the four test sequences which
form the �tness test case for the stack problem
 � � � � � � � � � � � � � � � ��

�
� Number of each the �ve stack operations used in the �tness test case at
each depth in the stack
 ��

�
� Data values pushed onto the stack in each of the four test sequences which
form the �tness test case for the stack problem
 � � � � � � � � � � � � � � � � ��

�
� Pseudo Code De�nition of the Five Queue Operations � � � � � � � � � � � � ��

�
� Implementation of �Protected� Modulus Function � � � � � � � � � � � � � � ��

�
� Implementation of Modulo Increment Terminals � � � � � � � � � � � � � � � � ��

�
� Tableau for Evolving a Queue� Caterpillar solution found � � � � � � � � � � ��

�
� Tableau for Evolving a Queue� Shu�er solution found � � � � � � � � � � � � ��

�
� Number of each the �ve queue operations used in the �tness test case for
each length of queue
 �Test case used in experiments where �Modulus In�
crement� was provided and where it was evolved	
 � � � � � � � � � � � � � � ���

�
� Tableau for Evolving a Queue� Given Modulus Increment Primitives � � � � ���

�
� Changes between Shu�er experiment and evolving a queue given MIncn � � ���

�
� Range of data values enqueued �F � �
�	 when evolving �Modulus Increment����

�
�� Tableau for Evolving a Queue� Circular bu�er solution found � � � � � � � � ���

�
�� Changes between experiments evolving a queue given MIncn and evolving it ���

�
�� Di�erences Between Stack and Final Queue Experiment � � � � � � � � � � � ���

�
� De�nitions of the Ten List Operations ���

�
� Summary of the Properties of List Operations and ADFs � � � � � � � � � � ���

�
� Tableau for Evolving a List ���

�
� Actions Performed by Terminals and Functions � � � � � � � � � � � � � � � � ���

�
� Tableau for Balanced Bracket Problem ���

�
� Number of correctly nested and incorrectly nested bracket test sentences of
each length used in the nested bracket test case
 Longer incorrect sentences
were chosen at random from all the possible incorrect sentences of the same
length
 ���

�
� Tableau for Dyck Language Problem ���

�
� Number of correctly and incorrectly nested test sentences in the Dyck lan�
guage test case
 The incorrect test sentences are divided into those with the
correct number of each type of bracket but which are in the wrong order
�referred to as �balanced�	 and others �referred to as �random�	
 Longer
sentences were chosen at random
 The right hand side of the table gives
the number in each category actually used in the Dyck test case� i
e
 after
removing duplicates
 ���

��

��

�
� Tableau for Reverse Polish Notation �RPN	 Expression Evaluation Problem ���
�
� Length of reverse polish expressions at each point where answers are checked

in the �tness test case
 ���
�
� Number of times each tree occurs in reverse polish expression �RPN	 test

case and the score it has when the whole test case is passed
 � � � � � � � � ���
�
� Number of symbols �i
e
 operators or numbers	 used in the RPN test case

for each level of expression nesting
 �Depth of nesting calculated after the
symbol has been processed	
 ���

�
� Actions Performed by Terminals and Functions � � � � � � � � � � � � � � � � ���

�
� Least squares regression coe
cients of covariance of primitive frequency

and
�
Ri
N

��� �Ri��

N

��
with change in frequency in the next generation for a

typical ���	 stack run
 ���
�
� Primitives Essential to the Operation of Evolved Stack Programs � � � � � � ���
�
� Stack Primitives Essential to All Evolved Solutions � � � � � � � � � � � � � � ���
�
� Change in Variety After Creating an Individual by Crossover � � � � � � � � ���
�
� Number of crossovers of each height of subtree inserted in a typical stack run

���	 and number of these crossovers which produced a non�unique o�spring
 ���
�
� Chance of o�spring being identical to parents when crossing two identical

full binary trees ���
�
� Chance of selecting a terminal as a crossover fragment in a full binary tree � ���
�
� Number of clones produced by changing a terminal in run ���	 of the stack

problem ���
�
� No
 of Successful Crossovers� in Typical and Successful Stack Runs � � � � � ���

A
� Number of trial programs that must be generated to solve problems �with � ��� assurance	
and the corresponding total number of program executions � � � � � � � � � ���

B
� Automatic Programming using Stochastic Search � � � � � � � � � � � � � � ���
B
� Taxonomy of Genetic Programming ���
B
� Exotic GA Techniques Applied to Genetic Programming � � � � � � � � � � � ���
B
� Some Public Domain Genetic Programming Implementations � � � � � � � � ���
B
� Some other Genetic Programming Implementations � � � � � � � � � � � � � � ���

C
� Nominal line ratings �MW	 and impedances � � � � � � � � � � � � � � � � � � ���
C
� Predicted demand and generator price� capacity and availability � � � � � � � ���
C
� Merit order generator loading �MW	 ���
C
� Possible chromosomes for the maintenance scheduling problem � � � � � � � ���
C
� Best schedule produced by one week� one line heuristic � � � � � � � � � � � � ���
C
� Best schedule produced by minimum power �ow heuristic � � � � � � � � � � ���
C
� Best schedule produced by minimum line cost heuristic � � � � � � � � � � � � ���
C
� Worst schedule produced by minimum power �ow heuristic � � � � � � � � � ���
C
� Best schedule �produced by minimum increase in line cost heuristic	 � � � � ���
C
�� Worst schedule produced by minimum increase in line cost heuristic � � � � ���
C
�� QGAME genetic algorithm parameters ���
C
�� Computational complexity of �tness function � � � � � � � � � � � � � � � � � ���

D
� Network Primitives ���
D
� South Wales Problem ���

E
� Default GP�QUICK Parameters ���

Chapter �

Introduction

In both natural evolution and human endeavour� complex problems are solved by assem�

bling solutions to parts of the problem into a complete solution
 Whilst this is highly suc�

cessful� it requires limited interaction between components
 The building block hypothesis

 Goldberg� ����! states the same is true for arti�cial evolution
 While doubts concerning

the building block hypothesis have been expressed in general �e
g
 Beyer� ����!	 and for

genetic programming �GP	 in particular O�Reilly and Oppacher� ����!� if complex so�

lutions are to be evolved then it must be possible to assemble complete solutions from

program fragments which solve parts of the problem
 Where program components have

complex interactions progress is more di
cult� since improvement in one aspect will a�ect

many others in an unpredictable and so usually negative way
 Global memory allows such

complex interactions
 In software engineering complex interactions via global memory can

be tackled by controlling programmers use of memory with scoping rules and abstract

data types� such as stack� queues� �les etc

The thesis is that data structures can be used within the automatic production of com�

puter programs via arti�cial evolution and that appropriate data structures are bene�cial

��� What is Genetic Programming�

Genetic programming Koza� ����! is a technique which enables computers to solve prob�

lems without being explicitly programmed
 It works by using genetic algorithms to auto�

matically generate computer programs

Genetic algorithms �GAs	 were devised by John Holland Holland� ����! as a way of

harnessing the power of Darwinian natural evolution for use within computers
 Natural

evolution has seen the development of complex organisms �e
g
 plants and animals	 from

simpler single celled life forms
 Holland�s GAs are simple models of the essentials of natural

evolution and inheritance

��

��

The growth of plants and animals from seeds or eggs is primarily controlled by the

genes they inherited from their parents
 The genes are stored on one or more strands of

DNA
 In asexual reproduction the DNA is a copy of the parent�s DNA� possibly with some

random changes� known as mutations
 In sexual reproduction� DNA from both parents is

inherited by the new individual
 Often about half of each parent�s DNA is copied to the

child where it joins with DNA copied from the other parent
 The child�s DNA is usually

di�erent from that in either parent

Natural evolution arises as only the �ttest individuals survive to reproduce and so pass

on their DNA to subsequent generations
 That is DNA which produces �tter individuals

is likely to increase in proportion in the population
 As the DNA within the population

changes� the species as a whole changes� i
e
 it evolves as a result of selective survival of

the individuals of which it is composed

Genetic algorithms contain a �population� of trial solutions to a problem� typically

each individual in the population is modelled by a string representing its DNA
 This

population is �evolved� by repeatedly selecting the ��tter� solutions and producing new

solutions from them �cf
 �survival of the �ttest�	
 The new solutions replace existing

solutions in the population
 New individuals are created either asexually �i
e
 copying the

string� possibly with random mutations	 or sexually �i
e
 creating a new string from parts

of two parent strings	
 The power of GAs �to �nd optimal or near optimal solutions	

is being demonstrated for an increasing range of applications� �nancial� imaging� VLSI

circuit layout� gas pipeline control and production scheduling Davis� ����!

In genetic programming �GP	 the individuals in the population are computer programs

To ease the process of creating new programs from two parent programs� the programs

are written as trees
 New programs are produced by removing branches from one tree and

inserting them into another
 This simple process� known as crossover� ensures that the

new program is also a tree and so is also syntactically valid �see Figure �
�	
 Thus genetic

programming is fundamentally di�erent from simply shu�ing lines of Fortran or machine

code

The sequence of operations in genetic programming is given in Figure �
�
 It is fun�

damentally the same as other genetic algorithms
 While mutation can be used in GP� see

Section B
�
�� often it is not
 For example it is only used in Appendix D in this thesis

GP has demonstrated its potential by evolving programs in a wide range of applica�

tions including text classi�cation or retrieval Masand� ����� Dunning and Davis� ����!�

performing optical character recognition Andre� ����c!� protein classi�cation Handley�

��

x x

+

x x

*

*

x

*

x x

x

Parents

Child

-

*

x x

+

+

x

*

+

+

xxx

Figure �
��
Genetic Programming Crossover�
x� � �x � �x� x		 crossed with �x� to produce �x� � x

Population
 of
 Programs

Test

Programs

x

-

x+

x

xx

x
*

*

-

x+

x *

x x

Create new Programs

Select Parents

in Proportion to

their Fitness

Figure �
�� Genetic Programming Cycle

��

����!� image processing Daida et al�� ����!� target identi�cation Tackett� ����!� elec�

tronic circuit design Koza et al�� ����b! and car monitoring for pollution control Hampo

et al�� ����!
 At present published applications in everyday use remain rare� however Oak�

ley�s Oakley� ����! use of evolved medical signal �lters and the BioX modelling system

 Bettenhausen et al�� ����! are practical applications

��� Goals of this work

There are three main goals of this work
 Firstly to show that data structures� other than

simple random access indexed memory� can be used within genetic programming
 Secondly

to show that appropriate data structures can be bene�cial when evolving programs and

�nally to show that appropriate data structures can be evolved as needed
 As we shall

see� the �rst two goals have been achieved
 While we shall show it is is possible to evolve

data structures on their own� and it is believed evolving them as needed is achievable

�Section �
�
� o�ers some support	 this has yet to be demonstrated

��� Contribution of this Work

This thesis makes �ve main contributions�

�
 Proving that abstract data types �stacks �Chapter �	� queues �Chapter �	 and lists

�Chapter �		 can be evolved using genetic programming

�
 Demonstrating� on a number of di�erent problems� an appropriate abstract data

type is bene�cial �Chapter �	

�
 Demonstrating GP can evolve general programs which recognise a Dyck context

free language �Section �
�	 and evaluate Reverse Polish Notation �RPN	 expressions

�Section �
�	

The nested bracket problem had previously been solved by hybrid arti�cal neural

networks and genetic programming approaches
 These previous solutions forced the

solution to use a stack
 In our approach �Section �
�	 the GP was free to use memory

and evolved a general solution to the nested bracket problem which did not use a

stack and was conceptually simplier

�
 A taxonomy of GP is presented �Appendix B	� including a critical review of experi�

ments with evolving memory �Section �
�	

��

�
 Investigations of real world electrical network maintenance scheduling problems �Ap�

pendices C and D	 demonstrate that Genetic Algorithms can �nd low cost viable

solutions to such problems

These contributions support our thesis that data abstraction can be bene�cial to au�

tomatic program generation via arti�cial evolution

��� Plan of Thesis

Following this introductory chapter� Chapter � describes in general terms the genetic

programming technique and then covers in some detail the speci�c techniques used in the

remainder of the thesis
 The next four chapters describe experiments

Chapter � describes in detail an experiment which shows it is possible to automati�

cally generate programs which implement general stack data structures for integers
 The

programs are evolved using genetic programming guided only by how well candidate solu�

tions perform
 NB no knowledge of the internal operation of the programs or comparison

with an ideal implementation is used
 The two trees per individual in the population

introduced by Koza� ����� Sections ��
� and ��
�! is extended to �ve trees� one per stack

operation
 Chapters � further extends it to ten trees plus shared automatically de�ned

functions �ADFs	
 Chapter � concludes by considering the size of the test case �in terms

of its information content in the Shannon and Weaver� ����! sense	 and the size of the

evolved programs
 The general solutions evolved are smaller than the test case� i
e
 they

have compressed the test case

Chapter � describes a series of experiments which show genetic programming can

similarly automatically evolve programs which implement a circular �First�In First�Out�

�FIFO	 queue
 Initially memory hungry general solutions evolved but later experiments

show that adding resource consumption as a component of the �tness function enables

memory e
cient solutions to be evolved
 The �nal set of experiments show FIFO queues

can be evolved from basic primitives but considerably more machine resources are required

Mechanisms are also introduced to constrain the GP search by requiring evolving functions

�ADFs	 to obey what a software engineer would consider sensible rules

In Chapter � the last data structure� an integer list� is evolved
 A list is a generalisation

of both a stack and a queue but more complex than either
 A controlled iteration loop

and syntax rules are introduced
 The evolution of the list proves to be the most machine

resource intensive of the successful experiments in this thesis
 Chapter � also describes

a model for the automatic maintenance of software produced by GP
 In one experiment

��

considerable saving of machine resources is shown

Chapter � is the crux of the thesis
 It shows in three cases GP can bene�cially use ap�

propriate data structures in comparison to using random access memory
 The three prob�

lems are the balanced bracket problem� a Dyck language �i
e
 balanced bracket problem

but with multiple types of brackets	 and evolving a reverse polish expression calculator

Chapter � stands back from the experiments and considers in some detail the dynamics

of GP populations using the runs from Chapter � as an example
 Chapter � starts by

considering the application of results from theoretical biology
 It concludes Price�s theorem

of selection and covariance can� in general� be applied to genetic algorithms and genetic

programming but the standard interpretation of Fisher�s fundamental theorem of natural

selection cannot
 The remainder of Chapter � investigates the reasons behind the small

proportion of successful runs in the stack problem
 It concludes the presence of easily found

�deceptive� partial solutions acts in many cases via �tness based selection to prevent the

discovery of complete solutions
 Partial solutions based upon use of memory are readily

disrupted by language primitives which act via side�e�ects on the same memory
 This

leads to selection acting against these primitives� which in most cases causes their complete

removal from the population
 However where complete solutions are found� they require

these primitives and thus in most runs complete solutions are prevented from evolving by

the loss of essential primitives from the population
 While the details of the mechanism are

speci�c to the stack problem� the problem of �deceptive� �tness functions and language

primitives with side�e�ects may be general

The stack populations are also at variance with published GP results which show

variety in GP populations is usually high �in contrast to bit string genetic algorithm

populations which often show convergence	
 With the stack populations in many cases

there are multiple identical copies within the population
 This is due to the discovery

of high �tness individuals early in the GP run which contain short trees
 With short

trees many crossover operations produce o�spring which are identical to their parents and

these tend to dominate the population so reducing variety
 This e�ect may be expected

in any GP population where high �tness solutions contain short trees but are fragile� in

that most of their o�spring have a lower �tness
 The presence of code within the trees

which does not a�ect the trees performance �variously called ��u��� �bloat� or �introns�	

may conceal this e�ect as trees need not be short and many o�spring may be functionally

identical to their parents �and so have the same �tness	 but not be genetically identical

Should these dominate the population then it will have high variety even though many

��

individuals within it are functionally the same

The concluding chapter� Chapter �� is followed by an extensive bibliography and then

appendices
 Appendix A tabulates the resources consumed in terms of number of trial

solutions processed by the previous experiments
 Appendix B contains an extensive survey

of genetic programming and glossary of terms �page ���	
 This is followed by Appendices C

and D� which details experiments using �rstly a permutation based genetic algorithm and

secondly genetic programming� to produce low cost schedules for preventive maintenance of

the high voltage electrical power transmission network in England and Wales �the National

Grid	
 The �nal appendix contains notes on the code implementation

��

Chapter �

Genetic Programming

In the �rst section ��
�	 of this chapter we position this thesis by brie�y surveying GP

�Appendix B contains a much fuller survey and an extensive bibliography is contained in

 Langdon� ����c!	
 Section �
� explains in detail general GP concepts which are used in

later chapters� while Section �
� describes more specialist techniques� some of which are in�

troduced into GP by this thesis
 In later chapters� where we �rst use one of these concepts�

we will refer back to the appropriate subsection within Section �
� or �
�
 Appendix B

also contains a glossary of terms �starting at page ���	

��� Background to this Thesis

On commencement of this work almost all GP work concentrated upon the evolution of

simple functions
 While Koza Koza� ����! had performed small demonstration experi�

ments on recursion� iteration and evolvable memory these areas �plus a fourth� evolving

programs containing primitives of more than one type	 were largely unexplored
 Even

today this remains largely true with research work concentrating upon the evolution of

functions� e
g
 for classi�cation� however there has been work in all four areas
 Progress

on memory and iteration or recursion �and probably on all four areas	 is required if ge�

netic programming is to be capable of evolving general �i
e
 Turing complete	 programs

However this thesis concentrates upon the issues surrounding the evolution of the use of

memory within GP

����� Previous work on Evolving Memory in GP

Some of Koza�s examples include limited storage which is used via side e�ects Koza� �����

Koza� ����!
 This is in contrast with Cramer�s work where a small number of global

integers within the evolving program form the framework for input and output but are

also available for storage Cramer� ����!

��

��

Teller was the �rst to show the evolution of general memory in GP
 In Teller� ����a!

evolving programs can freely use �� small integer storage cells via read and write primitives

The demonstration problem� a mobile robot simulation problem� was chosen because it

has not been solved �either by genetic or human programming	 without some form of

storage
 Teller�s read and write primitives have also been used by Andre Andre� ����b!

and Jannink� ����!
 More recent uses of Teller�s read and write primitive are described

in Section �
�

 Montana� ����! uses a similar approach in his Strongly Typed Genetic Programming

�STGP is described more fully in Section B
�
�	
 In STGP primitives SET�VAR�i and

GET�VAR�i are used to set and read a particular variable�s �i	 value
 The variable may

be of a compound type� e
g
 a vector

Teller�s primitives �if iteration or recursion are also included	 extend GP so that the

language used by evolving programs is Turing complete Teller� ����c!
 While in theory�

any computable function can be evolved using such a language� the lack of structure in

the memory model makes it seem inherently di
cult to produce solutions to complex

problems in practice
 This thesis is motivated by the observation that even if considerable

intelligence �in the form of people� either singularly or in teams	 is available to guide the

search for a program which solves a problem� then the search is easier and more likely

to be successful if the program�s use of memory is structured or controlled� rather than

if random or unconstrained access to all memory is allowed
 From this starting point we

investigate if the same is true for genetic programming� where the unintelligent search is

guided only by the �tness function
 The thrust of the rest of this thesis is to show that

this is indeed true

����� Simultaneous Work

Some con�rmation of the experimental results of Chapters � and � is provided by Bruce�

����� Bruce� ����!
 � Bruce� ����� page ���! says it �was developed independently and

without knowledge of Langdon�s work� and describes Langdon� ����b! as �independent of

the work described in� his thesis Bruce� ����� page ���!
 The work which forms Chapters

� and � was �rst published as Langdon� ����c! and subsequently as Langdon� ����b!

Although Bruce casts his work in an object orientated light rather than in terms of

data structures there is much that is similar to this thesis
 The details of the data objects

in Bruce�s experiments on evolving stack and queue data objects are similar to the stack

and queue data structures in Chapters � and �
 They di�er principally by the inclusion

��

of a �Full�� object method and the lack of top or front operations
 Bruce also considers

the evolution of a �priority queue�
 While this has some similarities with the list data

structure evolved in Chapter � it is signi�cantly simpler with only �ve data methods rather

than the ten simultaneously evolved in Chapter �

The details of the genetic programming system Bruce uses are similar to those used

in Chapters �� � and �
 For example one tree per data method �making a total of �ve

trees per individual� see Section �
�
�	� separating pointers from main indexed memory

�cf
 Section �
�
�	� and use of tournament selection �cf
 Section �
�
�	 with a steady state

population �cf
 Section �
�
�	
 However a population size of ����� is used throughout

rather than increasing to ������ for the more di
cult problems

Bruce conducts six experiments per object type in which he investigates the impact of�

evolving the data methods one at a time rather than simultaneously� allowing the inspec�

tion of the internal operation of the programs and the impact of using strongly typed

genetic programming
 As might be expected� evolving one thing at a time� including a

comparison of evolved program behaviour with a prescribed ideal implementation in the

�tness function� and ensuring the evolved program is type correct� all make the GP�s task

easier
 If all three are avoided �as in our experiments	� which he labels experiments ��a��

then his GP was unable to evolve the data structure in �� runs
 �Typically the experiments

in Chapters � to � involve about �� independent runs	

��� General GP Concepts

����� Basic Steps

 Koza� ����! says there are six preliminary steps to solving a problem using genetic pro�

gramming
 These are choosing the terminals ��	� the functions ��	� the �tness function ��	�

the control parameters ��	� the termination criterion ��	 and determining the programs�

architecture ��	

In Koza�s terminology� the terminals ��	 and the functions ��	 are the components of

the programs
 In Figure �
� �page ��	 the junctions �or internal nodes	 in the tree are

formed from the functions �� � and �
 In Figure �
� the tree leafs �or end nodes or external

nodes	 are formed by the only terminal� x
 The connections between the terminals and

functions indicate the order in which operations are to be performed
 For example the

top left tree in Figure �
� shows a program which calculates �x � x	 � �x� �x� x		
 Note

how the brackets� which denote the order of evaluation� correspond to the structure of the

tree

��

The choice of components of the program �i
e
 terminals and functions	 and the �t�

ness function ��	 largely determine the space which genetic programming searches and

consequently how di
cult that search is and ultimately how successful it will be

The control parameters ��	 include the size of the population� the rate of crossover etc

The termination criterion ��	 is simply a rule for stopping the GP run
 Typically the rule

is to stop either on �nding a program which solves the problem or after a given number

of generations

In the �nal step the evolving programs� architecture ��	 is chosen
 In Koza�s work

this means de�ning the number of automatically de�ned functions �ADFs	� the number

of arguments they take� and which may call which and which may be called by the main

program �see Section �
�
�	
 More recent work Koza and Andre� ����a! has shown the

architecture itself can be evolved during a GP run
 The choices involved with multi�tree

program architectures �cf
 Section �
�
�	 are analogous to step ��	

����� Choosing Terminals ��� and Functions ���

The �rst requirement when deciding the terminals and functions that the evolved programs

will be composed from� is to ensure that they are capable of expressing the solution to the

problem
 Koza Koza� ����� page ��! calls this the su�ciency property
 Having ensured

it is possible to express the solution� the next task is far harder
 We want to choose them

so that it is likely that a solution will evolve

The terminals and functions form the language which represents the trial solutions

The genetic operators �crossover� mutation etc
	� ADFs� �tness function and selection

scheme combine to form a transmission function which transforms the population of in�

dividuals written in the representation language
 Over successive generations we want

the transmission function to evolve the population towards� and eventually to reach� an

acceptable solution
 Design of a successful �let alone optimal	 transmission functions is

not trivial
 Kinnear� Jr
� ����c� page ��! advises �always pick the most powerful and

useful seeming functions from the problem domain that you can think of�
 However it

would also seem wise to avoid complicated primitives� e
g
 with side�e�ects or that have

complicated special cases

Closure

Koza Koza� ����� page ��! de�nes closure as being satis�ed when each of the functions

is able to accept as its arguments any value or data type that might possibly be returned

��

by any function �including itself	 or be taken by any terminal
 If the terminals and

functions have this property then new o�spring trees can be created by crossover inserting

arbitrary subtrees at arbitrary points and the result will be both syntactically correct and

executable
 In traditional GAs� closure is not needed as the chromosome is not treated as

an executable program

Closure is often achieved by requiring all terminals� functions and function arguments

to be of the same type� e
g
 integers
 However special cases may also need to be considered

For example divide by zero is not normally de�ned� but if closure is to be satis�ed� a divide

function must still return a valid value even if the divisor is zero
 �In this thesis DIV

returns �� if its second argument is zero	
 In special cases� we could de�ne a particular

primitive to evaluate to a special value� such as �bad�� but then all functions would need

to be able to process �bad� values
 Functions which trap illegal argument values and

return valid answers are known as protected functions

An alternative to closure which allows GP to manipulate trees containing a mixture

of types is Strongly Typed Genetic Programming �STGP	� discussed in Section B
�
�

In the experiments in this thesis the terminals� functions� arguments and functions�

return values are all of the same type
 This is in keeping with almost all genetic pro�

gramming
 In most GP experiments there is an �obvious� way of achieving closure for

the particular problem
 However this may not be true for more complicated programs

Closure in�uences the choice of terminals and functions and so the problem representation

and thus problem di
culty
 Little work has been reported on this important aspect of

closure

����� Fitness Function ���

Ultimately the �tness function drives the evolution of the GP population
 It is vital

that the �tness function not only gives a high reward to the correct solution� but also it

preferentially rewards improved solutions throughout the GP run� from the creation of

the initial population to the discovery of the �nal solution
 To some extent preferential

rewarding is easier if the �tness function has a small grain size� so any small improvement

in solution is rewarded on average by some non�zero improvement in �tness

It is possible to design a combination of �tness function and representation that is de�

ceptive Goldberg� ����!
 That is� together they drive the population away from optimal

solutions� towards local optima� i
e
 towards programs of relatively high �tness that do not

solve the problem
 While �deception� has been studied in linear genetic algorithms Gold�

��

berg� ����� Whitley� ����� Grefenstette� ����� Goldberg et al�� ����! it does not appear to

have been generally recognised as a problem in genetic programming �exceptions are Tack�

ett� ����a� page ���! and Taylor� ����!	
 Unfortunately it has been encountered in several

experiments described in this thesis
 Where detailed analysis was performed �Chapter �	

the problem seems to have been associated with the choice of language primitives� i
e
 the

representation rather than the �tness function

In most cases determining the �tness of trial solutions consumes the vast proportion

of the GP�s run time and so the e
ciency of the �tness function is also important
 Run

time may become excessive if the evolved programs can use either iteration or recursion

In many cases the �tness function is based upon executing the evolved programs on one

or more prescribed test suites
 In principle the test suites can be devised in the same way

as those used when testing traditional manually produced programs
 So techniques such

as� regression testing� �special case� tests �such as data points at ends of legal ranges	� code

test coverage metrics and performance testing� might be used
 However it is recognised

that exhaustive testing of man made programs is impossible and there is always a risk�

no matter how clever the tester is� that a program which passes all its testing will still

contain errors
 In the case of evolving programs even more care is needed
 GP is guided

only by the �tness function and GP population are adept at exploiting de�ciencies in the

test suite
 The situation is made worse by the volume of testing that is being attempted

In most GPs� every new individual is run on the complete test suite
 I
e
 instead of running

a few hand built programs� thousands or even millions of programs are run
 Usually this

has the e�ect of requiring all testing to be automated and secondly� to ensure GP run

time remains feasible� the size of the test suite is severely restricted
 Kinnear� Jr
� ����c�

page �! describes some pit falls to avoid when creating the �tness function

Fixed Fitness Cases

Except in a few special cases� in the experiments presented in the following chapters�

the �tness of each individual within the population is determined when it is created by

running it against a �xed test case
 In Chapter � experiments were initially conducted

using random test sequences� however there were problems with this approach�

� The random nature made it di
cult to spot bugs

� It was di
cult to design random test cases which adequately tested the trial solu�

tions

��

� It was relatively easy to score well with some cases but harder with others
 This

caused the �tness of individuals to depend dramatically upon the tests being run

When these were changed� the �tness of programs which have already been tested

was not directly comparable with that of new programs

For these reasons all �tness testing has used �xed �tness test cases
 This is not to

denigrate work using variable test cases but this is a research topic in its own right and

so better not mixed with investigations into data structures

Dynamic Fitness Functions

Fixed test cases are widely used in GP� e
g
 Koza� ����� page ���!
 However advantages

have been claimed for dynamic �tness tests
 For example Hillis� ����� Angeline and

Pollack� ����� Jannink� ����� Siegel� ����!� Koza� ����� Chapter ��!� Tettamanzi� ����!

use co�evolution of the �tness function or competitive selection� while Beasley et al�� ����b!

suggest a technique for derating the �tness function in regions �near� known solutions

 Kinnear� Jr
� ����a! used a small number ���	 �xed set of tests
 However a second�

more exhaustive� sequence of tests ����	 is applied to the solutions produced by GP after

the GP run has completed to test the generality of the evolved solutions

Program Size as Part of Fitness

In many modelling problems� solutions which not only �t the data but which are short

�and therefore potentially easier to understand	 are required
 If unchecked� GP solutions

tend to grow in length and so it is common to include a �parsimony pressure� in the �tness

function to encourage the evolution of shorter solutions

 Kinnear� Jr
� ����b! claims advantages for adding a term inversely proportional to the

program�s length to its �tness
 This yields shorter and more general programs
 Others

 Zhang and M"uhlenbein� ����� Iba et al�� ����b! have used other techniques to include

program size or complexity penalties into a single scalar �tness function
 Interestingly

 Koza� ����� page ���! presents a counter example� �when parsimony �program size	 is

included in the �tness measure for this problem ���Multiplexor	� considerably more indi�

viduals must be processed in order to �nd a �����correct and parsimonious solution than

when parsimony is not considered
�

 Blickle� ����! compares four means of exerting parsimony pressure on discrete and

continuous symbolic regression problems
 He concludes that all four are capable of evolving

��

accurate and parsimonious regression formulae but that an adaptive parsimony �i
e
 based

on program length	 component of �tness worked best overall

Section �
�
� describes a means whereby multiple objectives can used in a �tness func�

tion without combining them into a single scalar value
 Experiments in Chapters � and �

include selection pressure to reduce program run time rather than size

����� Control Parameters ���

There are many control parameters� however the one of most interest is the population size

Whilst Goldberg et al�� ����! give a population sizing rule for certain genetic algorithms� it

would appear that most GP populations are smaller than their optimum being constrained

by the available machine resources Koza� ����� page ���! Kinnear� Jr
� ����c� page ��!

The default values for parameters used in the experiments in this thesis are given in

Section E
�
 Where non�default parameter values are used� the actual values are given in

tables with each experiment �for an example� see Table �
� on page ��	

����� Termination Criterion ���

The most common termination criterion is to stop the evolution of genetic programs when

either an exact or approximate solution is found or �� generations �or generation equiv�

alents� cf
 Section �
�
�	 is reached
 The motivation for this follows from the observation

that on many problems the GP seems to �run out of steam� before generation ��
 So that

continuing the GP run only marginally increases the chance of a solution being found

 Koza� ����� page ���! argues that in many cases it is more e�ective to run a GP several

times rather than increase the number of generations used by any one run

Most runs in this thesis terminate either when an individual passes the whole of the

�tness test case or the maximum number of individuals have been created
 �This is usually

either �� or ��� times the population size
 I
e
 �� or ��� generation equivalents	
 In a few

experiments� the GP does not stop once the whole test case has been solved but continues

until the limit on number of individuals is reached
 This allows the possibility of evolving

improved solutions �e
g
 faster or more general	 to be investigated

����	 Automatically De
ned Functions �	�

�An automatically de�ned function �ADF	 is a function �i
e
� subroutine� procedure� mod�

ule	 that is dynamically evolved during a run of genetic programming and which may be

called by a calling program �e
g
� a main program	 that is simultaneously being evolved�

 Koza� ����� page �!
 Koza and Rice introduced ADFs in order to tackle the scaling prob�

��

lem� i
e
 to help GP scale up to and solve more complex problems
 Koza� ����! contains

many examples where GP with ADFs solves problems faster than plain GP or is able to

solve bigger problems than plain GP
 ADFs are used in many of the experiments in this

thesis from Chapter � onwards

The ADFs used in this thesis are of the �rst type introduced by Koza� ����!� i
e
 they

have a �xed �rather than evolvable	 architecture and crossover only moves code between

the same ADFs or between main programs �result producing branches	
 That is� crossover

between di�erent ADFs and between ADFs and main programs is forbidden � Koza� ����!

calls this branch typing	
 Thus in terms of genetic operations and representations� ADFs

are identical to the multi�tree architecture to be described in Section �
�
�

In this thesis evolved program are executed by a high speed interpreter �GP�QUICK

 Singleton� ����!	
 The basic implementation of GP�QUICK was extended for this thesis

in several ways� in particular so that it supports ADFs
 It treats ADFs as �imperative

language	 function calls
 On encountering an ADF function� the interpreter evaluates the

ADF�s arguments �if any	 and passes these to the ADF as it starts interpreting the ADF

�This is the standard way ADFs handle arguments� Spector� ����! describes an alternative

��Automatically De�ned Macros�� ADMs	 in which the arguments are passed unevaluated

to the evolving module
 The ADM evaluates the arguments as it needs to	
 When the

interpreter has �nished interpreting the ADF� it returns the value it has calculated for the

ADF to the point it had reached when it called the ADF and continues execution from

that point
 This calling mechanism supports recursion but recursion is not used in this

thesis
 Details of the argument passing mechanism are given in Section �
�

While ADFs are the most popular means of providing evolvable functions� other mech�

anisms have also been proposed
 In the Module Acquisition �MA	 approach Angeline�

����! fragments of evolving programs are randomly chosen for inclusion in a library of

code
 The original program is modi�ed so as to replace the encapsulated code by a single

function call �to the original code� now in the library	
 Expansion of library function

calls to their components is also possible
 Once code has been encapsulated it cannot be

disrupted by crossover
 Kinnear� Jr
� ����a! contains a comparison of ADFs� MA and

GP on the �even���parity problem�
 �ADFs causing a signi�cant improvement and MA

having no apparent e�ect� Kinnear� Jr
� ����a� page ���!

The Adaptive Representation through Learning �ARL	 Rosca and Ballard� ����! has

some similarities with Angeline�s MA but uses information from the run time performance

of individual programs� comparisons between parents and o�spring and population statis�

��

tics to guide which code to encapsulate or remove from the library and when to do so

��� Further GP Concepts

����� Tournament Selection

In evolutionary algorithms there are many di�erent techniques in use for deciding which

individuals will reproduce� how many children they will have and which individuals will

die �i
e
 be removed from the population	
 The general characteristic is to reward better

solutions with more o�spring �and possibly also with longer life	
 However the question

of how much to reward good individuals is important
 If a single very good individual has

many children then the genetic diversity of the population may fall too much
 But if every

individual has about the same number of children then there is little selection pressure on

the population to evolve in the desired direction

Various �tness re�scaling schemes have been used to rescale �tness values� so that the

e�ective �tness of potential parents and so the number of children they are expected to

have is within some prescribed �reasonable� range
 For example� the rescaled �tness of

the best member of the population might be twice that of the worst
 Other schemes order

potential parents by their �tness and use their position or �rank� within the population to

determine how many children they will have
 This can produce a prescribed reproduction

pattern across the population� which is largely independent of the numerical �tness values

returned by the �tness function �all that is important is whether �tness scores are bigger

or smaller than others� not by how much	
 Arguably independence from numerical values

makes the �tness function easier to produce

The above schemes require information from the whole population
 With small� cen�

tralised �i
e
 not distributed	� generational populations� this is not too bad a problem

However with large or distributed or dynamic �i
e
 steady state� see next section	 popu�

lations� maintaining global �tness data for selection becomes more onerous
 Tournament

selection has become increasingly popular as it performs �albeit noisy	 rank selection

based selection using only local information
 As it does not use the whole population�

tournament selection does not require global population statistics

In tournament selection� a number of individuals �the tournament size	 are chosen at

random �with reselection	 from the breeding population
 These are compared with each

other and the best of them is chosen
 As the number of candidates in the tournament is

small� the comparisons are not expensive
 An element of noise is inherent in tournament

selection due to the random selection of candidates
 Many other selection schemes are

��

also stochastic �i
e
 contain an element of chance	� in which case the level of �noise� they

have on the selection process may be considered important
 Blickle and Thiele� ����!

compares features �including selection noise	 of various commonly used selection schemes

����� Steady State Populations

In a traditional GA Holland� ����!� evolution proceeds via a sequence of discrete gener�

ations
 These do not overlap
 An individual exists only in one generation� it can only

in�uence later generations through its children
 This is like many species of plants �and

animals	 which live only one year
 In the spring they germinate from seeds� grow during

the summer and produce their own seeds in the autumn
 These survive the winter by lying

dormant� but their parents die
 These new individuals start growing again in the next

spring
 Thus the species as a whole continues through many years but no one individual

lives longer than a year

In contrast many plants and animals live many years and there is no distinct boundary

between generations
 In steady state GAs Syswerda� ����� Syswerda� ����b! new children

are continually added to the population and can immediately be selected as parents for

new individuals
 Usually as each new individual is added to the population an existing

member of the population is removed from it
 This ensures the population remains at a

constant size

To ease comparisons between steady state and generational GAs� the term generation

equivalent is used
 It means the time taken to create as many new individuals as there are

in the population
 Thus a generation equivalent represents the same computational e�ort

�in terms of number of �tness evaluations	 as a single generation in a traditional GA with

the same sized population

Steady state populations are increasingly popular
 All the genetic programming ex�

periments in this thesis use steady state populations

����� Indexed memory

The indexed memory model used in this thesis is based upon Teller� ����a!
 The indexed

memory consists of �l�� memory cells �numbered �l � � � � l	� each of which holds a single

value
 Attempts to access memory outside the legal range either cause the program to be

aborted or the data being written to be discarded and a default value of zero returned

Details are given with each of the experiments
 In contrast� Teller avoids the address range

problem by reducing the address index modulo the size of the memory �which is addressed

� � � � m� �	
 In Teller� ����a! �� memory cells addressed � � � � �� are used

��

pop pushtopmakenull empty

Figure �
�� One Individual � One Program� Five Operations � Five Trees

Note� like other functions� write returns a value
 We follow Teller�s example and de�ne

it to return the original value held in the store it has just overwritten
 Many of the evolved

programs exploit this behaviour

Some experiments also use a swap function
 This takes two arguments which it treats

as addresses within index memory of two data values
 It swaps them� so they now occupy

the other address in indexed memory
 Table �
� �page ���	 de�nes swap in detail

����� Scalar Memory

In addition to indexed memory the experiments make use of one or more scalar memory

cells known as auxiliary variables
 Depending upon the experiment there are primitives

to set� read� increment and decrement them

����� Multi�tree programs

In Chapters � to � and Section �
� the evolved program must perform more than one

action
 This is represented by allocating an evolvable tree per action
 When the program

is used� e
g
 during its �tness testing� then the tree corresponding to the desired action is

called
 For example� when evolving a stack in Chapter � there are �ve di�erent operations

that a stack data structure must support
 Each of these is allocated its own evolvable

tree
 So each individual within the population is composed of �ve trees� see Figure �
�

This multiple tree architecture was chosen so that each tree contains code which has

evolved for a single purpose
 It was felt that this would ease the formation of �building

blocks� of useful functionality and enable crossover� or other genetic operations� to assem�

ble working implementations of the operations from them
 Similarly complete programs

could be formed whilst each of its trees improved

The genetic operations� reproduction� crossover and mutation are rede�ned to cope

with this multi�tree architecture
 While there are many di�erent ways of doing this Raik

and Durnota� ����!� we de�ne the genetic operations to act upon only one tree at a time

The other trees are unchanged and are copied directly from the �rst parent to the o�spring

��

Crossover

Figure �
�� Crossover in One Tree at a time

Genetic operations are limited to a single tree at a time in the expectation that this will

reduce the extent to which they disrupts �building blocks� of useful code
 Crossing like

trees with like trees is similar to the crossover operator with �branch typing� used by Koza

in most of his experiments involving ADFs in Koza� ����!

In the case of reproduction� the only action on the chosen tree is also to copy it� in

other words each new individual is created by copying all trees of the parent program

When crossing over� one type of tree is selected �at random� with equal probability�

e
g
 �#�	
 This tree in the o�spring is created by crossover between the tree in each parent

of the chosen type in the normal GP way Koza� ����!
 The new tree has the same root as

the �rst parent �see Figure �
�	
 Each mating produces a single o�spring� most of whose

genetic material comes from only one of its parents

In the �rst set of experiments in this thesis� all trees have identical primitives
 In later

experiments� each tree has its own set of primitives from which it may be composed� see

Section �
�

Should the o�spring program exceed the maximum allowed length� the roles of the two

parents are swapped� keeping the same crossover points
 Given that the parents are of

legal length� this ensures the o�spring will be legal

This use of multiple trees and entry points appears to have been �invented� several

times
 The �rst use of multiple trees is probably Koza� ����� Sections ��
� and ��
�!

where there are two distinct branches in the same program with di�erent terminal sets

Unlike the trees in Figure �
�� the branches are not equal
 One branch is subservient to

the other� in that it is always called before the start of the main branch� and so there is

only one entry point
 However the two branches used in Andre� ����b! are more equal�

with each having its own ADFs� while Taylor� ����! used three separate trees and also

allowed each an ADF
 Multi agent programs have also been evolved using this approach�

with a tree per agent Haynes et al�� ����a!
 While Reynolds� ����a! has a single agent�

��

the agent has two very di�erent behaviours
 In some experiments these are forced into

separate code branches
 Due to the high variation between runs and the use of mutation�

it is unclear if syntactically separating the behaviours is bene�cial on its own
 Bruce�s one

tree per data method has been described above in Section �
�
�

The CoacH system Raik and Durnota� ����! allows the user to specify multiple trees

within a single individual in the population
 �Each individual represents a team and each

tree corresponding to a team member within the team	
 This approach is slightly di�erent

in that it allows the user to specify how many trees participate in crossover and whether

crossover must be between trees �team members	 of the same type

����	 Directed Crossover

This section surveys approaches in which the standard random genetic operators have

been modi�ed to direct or bias the location within parent programs on which they act

However before we consider exotic techniques we shall explain the standard one

 Koza� ����� page ���! and most others �including this thesis	 use a crude aspect of

program syntax �based on di�erentiating between functions and terminals� i
e
 internal

nodes and leaf nodes	 to stochastically guide the location of crossover points
 Crossover

is biased to increase the proportion of times it moves subtrees headed by functions� as

these are larger than those headed by terminals �which contain a single leaf node	
 In

 Koza� ����! on average ��� of crossovers exchange functions
 In this thesis the propor�

tions are governed by the GP�QUICK parameter pUnRestrictWt� pUnRestrictWt governs

the proportion of crossover points that can be either terminals or functions compared to

those that must be functions
 In large binary trees �where the number of terminals is ap�

proximately equal to the number of functions	� the default value of pUnRestrictWt ����	

corresponds to ����� � ���	 � ����� � ��� of crossovers inserting trees larger than a

single terminal
 �Table �
� �page ���	 shows the actual value can be quite close to ��� in

practice	

 Angeline� ����a� page ��! argues �that no one constant value for leaf frequency is

optimal for every problem�
 While this seems likely to be true� we need to consider the part

mutation and other non�standard techniques play in his experiments
 Also determining

optimal values for any problem is expensive� therefore we have retained the GP�QUICK

default

The remainder of this section describes more sophisticated techniques for guiding GP

evolution
 While such approaches could be used with mutation� work has concentrated

��

upon the choice of crossover points
 We start with the work in this thesis and then

brie�y consider work by others
 Most experiments in this thesis use the standard choice

of crossover points described above
 However Chapters � and � contain techniques to

probabilistically bias the choice of crossover points
 Two methods are used� �rstly ensuring

o�spring obey various semantic �described in Section �
��
�	 or syntactic �Section �
�
�	

restrictions
 If these conditions are not met� the o�spring is aborted and a replacement

is generated by performing another crossover
 The second approach �Section �
�	 actively

drives the choice of crossover points using performance data gathered during �tness testing

of the parents

A number of papers show bene�ts in directing or biasing the operation of the crossover

or other genetic operators
 For example Whigham� ����a� Whigham� ����b! uses a gram�

mar to constrain the evolving trees but the grammar itself evolves based on the syntax of

previously successful programs �in fact the best of each generation	
 The grammar does

not become more constrictive but instead the rules within it are allocated a �tness which

biases �rather than controls	 the subsequent evolution of the population
 Whigham� �����

page ���! says �recently there has been increasing interest in using formal grammars to

represent bias in an evolutionary framework� and gives an overview of grammatically bi�

ased learning
 LOGENPRO Wong and Leung� ����! and Generic Genetic Programming

�GGP	 Wong and Leung� ����! are also based upon formal grammars� while Gruau� ����!

argues strongly that GP workers should be forthright in using program syntax to guide the

GP and shows improved GP performance by using an external grammar to de�ne more

tightly the syntax of the evolving programs

 D�haeseleer� ����! describes methods� based upon the syntax of the two parent pro�

grams� for biasing the choice of crossover locations so that code at similar physical locations

within programs is more likely to be exchanged
 The motivation is such code may be more

likely to be similar than random code and so changes introduced may be smaller and so

more likely to be bene�cial
 The assumption is that large changes are more random and

so� in a complex problem� more likely to be harmful

An approach to protect code from crossover is the use of genetic libraries � Angeline�

����! and Rosca and Ballard� ����!� described in Section �
�
�	
 The ETL group Iba

and de Garis� ����! is also active in this area� work on their COAST system is reported

in Hondo et al�� ����b! and summarised in Hondo et al�� ����a!
 Also �introns� are

suggested to protect code from crossover Nordin et al�� ����! but Andre and Teller�

����� page ��! concludes �that introns are probably damaging�� while the EPI system

��

 Wineberg and Oppacher� ����! relies upon them
 � Blickle� ����! reports explicit introns

may sometimes caused performance degradation on a boolean problem	
 Angeline� ����b!

advocates evolving the probability of crossover occurring at di�erent points in the program

along with the program itself
 He also suggests multiple crossovers to produce an o�spring

 Teller� ����b! includes a library of callable code plus the co�evolution of �smart� crossover

operators
 The evolving �smart� crossover operators are free to select crossover points as

they choose whilst they create o�spring for parents in the main population

 Blickle and Thiele� ����� Section �! claims improved performance by marking tree

edges when they are evaluated and ensuring crossover avoids unevaluated trees� however

the improvement is problem dependent
 In Blickle� ����! a deleting crossover operator

which removes unevaluated trees is shown to give more parsimonious solutions on a discrete

problem

The �soft brood� approach in Tackett� ����a! is di�erent� in that the genetic operator

itself is not biased� instead improved o�spring are produced by producing multiple o��

spring per parent pairing and using a �possibly simple	 �tness function to ensure only the

best are released into the population and so able to breed
 Crepeau� ����� Section �
�
�!

uses a similar technique
 It could also be argued that �tness functions which reward

parsimony �i
e
 short code	 are also biasing the genetic search process
 The phrase Mini�

mum Description Length �MDL	 is also used to describe this approach Iba et al�� ����b�

Zhang and M"uhlenbein� ����c!

There has been increasing interest Haynes et al�� ����b� Haynes et al�� ����� Bruce�

����! in the use of �type� information to guide the creation of the initial population and its

subsequent evolution via crossover since Strongly Typed Genetic Programming �STGP	

was introduced by Montana� ����� Montana� ����! �see Section B
�
�	
 While Montana�

����! argues the reduction in search space is important� a more convincing explanation

for the power of STGP is the use of type information to pick a better route through the

search space by keeping to the narrow path of type correct programs

����� Demes

Various means to divide GA populations into subpopulations have been reported in con�

ventional GAs Stender� ����� Collins� ����! and genetic programming Tackett� �����

Ryan� ����� D�haeseleer and Bluming� ����� Koza and Andre� ����b� Juille and Pollack�

����!
 Dividing the population limits the speed at which it converges and so may reduce

the impact of premature convergence �i
e
 when the population converges to a local opti�

��

mum rather than the global optimum	 and improve the quality of the solutions produced

�If the population is split� with very little genetic communication between its components�

the population need never converge	

Demes are used in various experiments in this thesis �notably in Chapters �� � and �	

In this work� where direct comparisons were made� the use of a structured population� i
e
 of

demes� always proved to be bene�cial in comparisons with simple non�demic� i
e
 panmictic

population
 However in some cases better results were obtained by using �tness niches

�see Section �
�
�	
 Where demes are used� the model described in this section is used

In this model �which is based upon Collins� ����!	 the whole population is treated as a

rectangular grid of squares with two individuals in each square
 Crossover can occur only

between near neighbours� i
e
 within �overlapping	 demes
 To avoid edge e�ects the grid

is bent into a torus� so that each edge of the rectangle touches the opposite one

In addition to crossover� reproduction is used
 As usual two tournaments are con�

ducted� the �rst chooses which individual �within the deme	 to replace� and the second

chooses which to copy

Before a selection tournament occurs� the candidates for selection must be chosen

Without demes individuals are selected at random from the entire population
 This leads

to the population being well mixed� which is known as a panmictic population
 When

demes are used� all members of the selection tournament come from the same deme�

i
e
 a small part of the population
 Figure �
� shows the sequence of selection events

This technique di�ers in detail from Collins� ����� Section �
�
�! in that there are two

individuals per grid square �rather than one	� reverse tournament selection �rather than

random	 is used to select the individual to be replaced and tournament candidates are

chosen with uniform probability from a square neighbourhood
 Collins� ����! uses a

random walk process to approximate a gaussian distribution centered about the individual

to be replaced

Demes have some similarities with cellular automata� in that �apart from its contents	

each deme is the same as every other deme
 Also the new population in a deme is related

to its current population and the populations of its neighbours
 This is similar to the

way the next state of a cell within a cellular automata is determined by its current state

and the states of its neighbours
 However there are important di�erences� the contents

of each deme is one or more programs� as the number of potential programs is huge� the

number of states a deme may be in is also enormous
 In a cellular automata usually

the number of states is small
 New programs are created stochastically� so given the

��

populations in a deme and its neighbours� the new population in the deme can be one

of a huge number of di�erent possibilities
 Each possible new population has in general

a di�erent probability� being given by the �tnesses of the individuals in the deme and

surrounding demes
 Classically cellular automata operate in parallel� while demes are

updated sequentially and stochastically

��

� ��� deme chosen at random� choose an�
other � candidates for replacement at ran�
dom from deme
 �The centre of the deme is
shown with bold edges and the four chosen
individuals are shown shaded	

� Select worst candidate for replacement

�The upper triangles represent individuals
which are being considered for deletion	

� Choose � candidates for �st parent from
new deme centered on the individual to be
replaced

� Choose �nd tournament group of � can�
didates for �nd parent from same deme

� Create new program by crossing over
tournament winners

 Replace loser from �rst tournament with
new program

Figure �
�� Selecting Parents and Individual to be Replaced in a Demic Population

��

Limiting Convergence

Using this deme structure a �t individual�s in�uence within the population is limited by

how fast it can move through the population
 The following analysis shows this depends

upon how much better it is than its neighbours

If a program is consistently better than its neighbours �and so too are its o�spring	�

then its in�uence �i
e
 its o�spring	 is expected to spread at a high rate across the popu�

lation �NB this means its number grows quadratically� rather than exponentially	
 Each

time it produces a new o�spring� the new o�spring will be about ���
p
D�� from its parent

�where there are D grid points in the deme� see Figure �
�	
 When considering how the

individuals spread we need only consider those at the edge
 When these reproduce only

about ��� of their o�spring will be outside the previously occupied area

In a rectangular population of size M with each grid point containing P individuals�

each deme is within ���
q

MR
P of every other �see Figure �
�	
 �R denotes the ratio of

the rectangle�s sides	
 The in�uence of a program that is consistently of above average

�tness can be expected to spread throughout the whole population in about �
���
p

MR
P

���
p
D��

�

�
p

�MR�DP time steps

D

D/4

D/8

D/2

M/P R

M/4 PR

M R/4 P

Figure �
�� In a square deme
containing D grid points� ���

points lie within �
�

q
D
� of the

center

Figure �
�� In a rectangular population of M individ�
uals� aspect ratio R and P individuals per grid point�

each individual is within �
�

q
MR
P of any other

The time taken to dominate the whole population is proportional to the program�s

reproduction rate� which in turn depends upon how much �tter it is than its neighbours

With tournament selection the �ttest individual in a deme will win every tournament

it is selected to be a candidate in
 In demes on the edge of the program�s in�uence�

i
e
 demes that don�t yet contain many descendants of the individual� their chance of

��

winning a selection tournament �of size t	 is approximately t bigger than that of the

average individual �see Section �
�
� page ���	
 With a crossover rate of pc there are on

average � � pc tournaments per o�spring created
 Thus the maximum reproduction rate

of an individual is about t�� � pc	�M
 However in GP� crossover is asymmetric� with

one parent usually contributing more genetic material than the other �see Figure �
�	

If we consider only those parents� the maximum reproduction rate is t�M
 Thus the

shortest time for a very �t individual to dominate the whole population is � �
t

p
�MR�DP

generation equivalents
 �If M � ��� ���� D � �� P � R � �� t � �� this is approximately

�� generation equivalents	

If a program is only slightly better than its neighbours� it can be expected to have

about one o�spring per generation equivalent
 This will be placed within the same deme

as its parent� but in a random direction from it
 Thus the original program�s in�uence

will di�use through the population using a �random walk�� with a step size of about

���
p
D�� �see Figure �
�	
 The absolute distance travelled by a random walk is expected

to be step size � p
no
 steps
 Thus the number of time steps required is �no
 of steps

required	 squared
 The number of generation equivalents it can be expected to take to

spread through the whole population is �MR
DP �If M � ��� ���� D � �� P � R � �� then

this is approximately ���� generation equivalents	

Where selection is from the whole population� the chance of a program being selected

to crossover with itself� is very small
 However when each random selection is equally

likely to be any member of a small ����	 deme� the chance of any program being selected

more than once is quite high
 Possibly the increased chance of crossover between the same

or similar programs may also be bene�cial

����
 Pareto Optimality

Existing GPs �and indeed genetic algorithms in general and other search techniques	 use

a scalar �tness function where each individual is given a single measure of its usefulness

An alternative� explored later in this thesis� is to use a multi�dimensional �tness measure

where each �tness dimension refers to a di�erent aspect of the trial solution

In several experiments in this thesis there is more than one task which the evolved

program is to perform
 For example when evolving a data structure there are multiple

operations that the data structure must support
 In the �rst experiments �Chapter �	 a

single �tness measure is produced by combining the performance of the individual opera�

tions
 Later work �particularly in Chapters �� � and Section �
�	 separates the performance

��

points

B

Non dominated
y

2

3

1

Pareto Front

Values
Fitness

Population
A

x
Figure �
�� Two Dimensional Example of Pareto Optimality and the Pareto Front

of each operation� each contributing a dimension to the overall multi�dimensional �tness

measure
 In some cases penalties for excessive CPU or memory usage also contribute a

dimension to the �tness
 �Since �tness testing often requires more than one operation to

be active� e
g
 when testing that operations work together� a total separation between �t�

ness dimensions is not possible
 Nevertheless a multi�objective �tness function does allow

some measure of which parts of the program are working well to be recorded	

Pareto optimality Goldberg� ����� page ���! o�ers a way of comparing individuals

within the population using multiple criteria without introducing an arbitrary means of

combining them into a single �tness
 Evidence for the e�ectiveness of Pareto Tournament

selection is given in Fonseca and Fleming� ����! and Louis and Rawlins� ����!
 Fonseca

and Fleming� ����! contains a review of multi�objective optimisation techniques used in�

conjunction with various evolutionary computing algorithms
 In a Pareto approach �tness

values are compared dimension by dimension
 If a �tness value is no worse than the other

in every dimension and better in at least one dimension then it is said to dominate the

other
 For example in Figure �
�� point � dominates B but does not dominate A

Pareto scoring means individuals which make an improvement on any part of the

problem tend to be preferred� whereas a scalar �tness will tend to require each improvement

to match or exceed any deterioration in all other parts of the problem
 Whether an

improvement is more important than a deterioration is given by scaling parameters within

the �tness function
 Consequently setting them is complex and must be done with care

To some extent Pareto �tness avoids this problem

With ��tness sharing� Goldberg� ����!� the �tness of individuals which are �close� to

each other is reduced in proportion to the number of individuals
 This creates a dispersive

pressure in the population� which counteracts the GAs tendency to converge on the best

��

0

50

100

150

200

250

300

350

400

450

0 200000 400000 600000 800000 1e+06

N
u
m
b
e
r

o
f

P
o
i
n
t
s

o
n

P
a
r
e
t
o

O
p
t
i
m
a
l

S
u
r
f
a
c
e

Number of Individuals Created

Comparison set 81
No Comparison set

Figure �
�� Number of di�erent non dominated �tness values in a list population �Chapter
�	 with and without a comparison set �no niche sharing� not elitist� pop�������� no demes	

�tness value in the population
 So the number of occupied niches remains high

An alternative approach is to impose a �xed number of niches
 Yang and Flock�

ton� ����! describes dynamic niches� containing clusters of individuals which move across

the representation space as the population evolves
 Hill climbing� via mutation� provides

e�ective local search within each niche
 However keeping track of such niches is computa�

tionally expensive page ���!

In the case of a multi�objective �tness measure there is also a tendency for the number

of niches to fall however �tness sharing can again be used to create a dispersive pressure

and keep the number of occupied niches high Horn et al�� ����!
 Horn et al�� ����!

suggests a method of �tness sharing based upon estimating an individual�s Pareto rank

by comparing it with a random sample of the whole population� known as the comparison

set
 �The implementation used in this thesis is described in the next subsection	

Figure �
� shows the evolution of the number of occupied points on the Pareto optimal

surface in two runs starting from the same initial population
 �The two runs were prelim�

inary experiments on the list problem� cf
 Chapter �	
 We see the use of a comparison set

leads to the retention of a large number of occupied niches� each of which is the best on

some combination of criteria
 However without it� the number of niches falls

 Oei et al�� ����! considered linear GAs with complete generational replacement and

state the �naive� use of tournament selection to spread a GA population across equally �t

��

niches will cause the population to behave chaotically
 They predict page �! the number

of niches� n� within a population of equally �t individuals will fall� being given by the

formula�

n �
�

�
n�

� �G
��M

��
�	

where n� is the initial number of niches� G number of generations and M is the popu�

lation size

It can be seen that Equation �
� does not �t the lower curve in Figure �
� well

The derivation of Equation �
� made several assumptions that don�t hold for Figure �
��

perhaps the most important is that the �tness niches are static� whereas in Figure �
�

each �tness value ceases to be a niche when a new solution which dominates is found

Nevertheless Figure �
� shows a general downward trend in the number of di�erent non�

dominated �tness values in the population �i
e
 niches	 after the initial high rate of �tness

improvement slows and the population becomes more stable
 The loss of variation with

time in �nite populations of equally �t individuals is also known as �genetic drift�

Both �tness sharing and demes encourage retention of genetic diversity
 Demes pro�

mote breeding of nearby individuals �which are likely to be genetically similar	 while �tness

sharing retains a large �tness variation in the population
 As the population has a large

�tness diversity� it may also have a large genetic diversity� so �tness sharing promotes

breeding between genetically diverse individuals

Fitness Sharing Pareto Tournament Selection

Pareto optimality can be readily combined with tournament selection
 In all the GP

experiments described in this thesis a small number ��	 of programs are compared and the

best �or worst	 is selected
 With scalar �tness this is done by comparing each program in

the tournament group with the current best
 If it is better� then it becomes the new best

With Pareto selection� we need to consider the case where neither program is better than

the other

With Pareto ranking� instead of maintaining a unique �best so far� individual in the

tournament� a list of �best so far� individuals is kept
 Each member of the tournament

group is compared with each member of the best so far list
 If it is better than a �best so

far� individual� that individual is removed from the list
 If it is worse� then it is discarded

If after comparing with the whole list� it has not been discarded� it is added to the list

��

After comparing all candidates� the winner is taken from the �best so far� list
 If there

is more than one individual in the list and �tness sharing is not being used then the

tournament winner is chosen at random from those in the list

To reduce the size of the �best so far� list and so the number of comparisons� if a

candidate has identical �tness to a member of the list� the candidate is discarded
 This

introduces a bias away from programs with identical scores� as it prevents them increasing

their chances of selection by appearing multiple times in the �best so far� list

Where a tournament group contains two� or more� non�dominated individuals �i
e
 the

�best so far� list contains more than one individual at the end of the tournament	 the

remainder of the population can be used to rank them
 Thus an individual which is

dominated by few others will be ranked higher than one dominated by many
 NB this

exerts a divergent selection pressure on the population as individuals are preferred if there

are few others that dominate them
 Following Horn et al�� ����! the pareto rank is

estimated by comparison with a sample of the population rather than all of it
 Typically�

in this thesis� a sample of up to �� individuals is used

Elitism

Using a conventional scalar �tness function and tournament selection a steady state pop�

ulation is elitist
 That is the best individual in the population is very unlikely to be lost

from the population
 This is because it is very unlikely to be selected for deletion
 This

could only happen if the best individual was selected to be every member of a deletion

tournament
 The chance of this is M�k �where M is the population size and k is the

kill tournament size	
 If there is always a unique best individual then the chance of ever

deleting it is � � �� �M�k	g where g is the number of individuals deleted
 Assuming

Mk � g then we can approximate this with gM�k
 If G is the number of generation

equivalents� then this becomes GM��k���
 With M � ��� ���� k � � and G � ���� the

chance of deleting the unique best member of the population is � �����
 If there are

multiple individuals with the highest �tness score then the chance of deleting any one of

them is much higher� but then there will be at least one more individual in the population

with the same high score

Where the population is separated into demes the chance of deleting the unique best

member of the population is much higher� however the best member will reproduce rapidly

and so is unlikely to remain unique for long
 The chance of selecting a deme containing the

best individual is ��M � No
 overlapping demes � D�M �due to the implementation of

��

overlapping demes� the number of individuals at each grid point need not be considered	

The chance of selecting the best individual to be a candidate in a selection tournament

is ��D but for it to be deleted� it needs to be the only candidate� i
e
 it needs to be

selected k times
 The chance of this is D�k
 Thus the chance the best individual will be

deleted by any one kill tournament is D�M �D�k � D��kM��
 �If M � ��� ���� D � ��

k � �� this is approximately ���� ����	
 If there is always a unique best in the population

�which need not always be the same individual	 the chance of it ever being lost from the

population is �����D��kM��	g � ��exp�g log���D��kM��		 � ��exp��gD��kM��	

� � � exp��G�Dk��	
 �If G � ���� D � �� k � �� this is approximately ����
 I
e
 in a

steady state demic population in the worst case �where there is always only one copy of

the best individual in the population	 there is a small chance of deleting the best member

of the population	

The combination of Pareto �tness and tournament selection is no longer elitist
 This is

because with the introduction of Pareto scoring there may be more than one� indeed many�

individuals within the population which are the �best�� in the sense that there is none

better
 The population will tend to converge to these �best� individuals� i
e
 their numbers

will grow
 It is possible for the whole of the tournament group to consist entirely of �best�

individuals in which case one of them must be selected for deletion
 With Pareto scoring�

these need not have identical scores� only scores that were not dominated by the deleted

program
 In this way programs which appear to have the best score so far can be lost

from the population
 Figure �
�� �page ���	 shows several cases where the program with

the highest total score �i
e
 the total number of tests passed	 is lost from the population�

resulting in a fall in the simple sum of �ve of the six �tness measures

Figures �
� and �
� show the advance of the �best in the population� Pareto front to

higher �tness as the population evolved �albeit projected onto just two dimensions	
 The

two populations come from runs of the queue problem �Section �
��	
 Note these graphs

only plot scores on two of the criteria �dequeue and front	� the other criteria account for

some concavities in the front

��

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70

d
e
q
u
e
u
e

front

Gen 10

Gen 20

Gen 30

Gen 40

Gen 50

End of run
Generation 10
Generation 20
Generation 30
Generation 40
Generation 50

End of run

Figure �
�� Evolution of the Pareto front �successful run of queue problem� cf
 Section �
��	

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70

d
e
q
u
e
u
e

front

Generation 10
Generation 20
Generation 30
Generation 40
Generation 50
Generation 60
Generation 70
Generation 80
Generation 90
Generation 100

Figure �
�� Evolution of the Pareto front �typical run of queue problem� cf
 Section �
��	

��

Chapter �

Evolving a Stack

The stack is one of the simplest and widest used abstract data types Aho and Ullman�

����� page ���!
 Uses include� evaluating arithmetic expressions� parsing computer lan�

guages and� in most computer languages� storing function arguments and local data as

programs are executed
 Since they are so widely used many digital computers include

explicit machine code support for one or more stacks
 This chapter shows that genetic

programming can automatically synthesise an integer stack from randomly addressable

memory when guided by a �tness function that considers only the outputs of the stack

and does not consider its implementation

��� Problem Statement

The operation of a stack is shown in Figure �
� while a slightly more formal de�nition is

given in Table �
�
 The stack can be thought of as like a pile of coins
 We can add new

coins to the top of the pile and remove coins from the top of the pile but we cannot access

coins within the pile except by �rst removing those above it

At �rst sight not being able to immediately access every part of the pile seems like a

Table �
�� Pseudo Code De�nition of the Five Stack Operations

Operation Code Comment

makenull sp �� maxlength � �� initialise stack

empty empty �� �sp � maxlength	� is stack empty or not�

top top �� stack sp!� top of the stack

pop pop �� stack sp!� return top of stack

sp �� sp � �� and remove it

push�x	 sp �� sp � �� place x on top of stack

stack sp! �� x�

��

��

Makenull Empty Top

1

2

3

4

5

6

7

8

9

maxlengthSP

1

2

3

4

5

6

7

8

9

maxlengthSP

1

2

3

4

5

6

7

8

9

maxlengthSP

Initialise stack to empty by
setting the stack pointer SP to
maxlength � �

If SP doesn�t point to valid
part of stack the stack is
empty
 In this example the
stack contains two items� so
Empty will return false

Read the top of the stack from
the cell pointed to by SP

Pop Push

1

2

3

4

5

6

7

8

9

maxlengthSP

DATA

1

2

3

4

5

6

7

8

9

maxlengthSP

DATA

Read the top of the stack from the cell
pointed to by SP then remove it by increasing
SP by one

Put a new data value on the top of the stack
by reducing SP by one and then writing the
new value into the cell it now points to

Figure �
�� Push�down Stack

��

disadvantage� as indeed it would be if we need access to all previously stored data� however

there are many problems where only data referring to the most recently encountered part

of the problem is needed however when we �nish processing that we need to return to a

previous part of the problem and continue using data we have already saved for it
 At this

point we discard the current data� remove it from the top of the pile and so have access

to the previous data
 Such problems may be recursive

����� Example Use of a Stack

A simple example where we need to store data but need access only to the most recent data

item is passing through a maze �without loops	
 Figure �
� contains an example maze
 To

pass through the maze e
ciently we need to remember which parts of the maze we have

already searched for the exit
 An e
cient strategy is rather than record every point in the

maze as we pass it� is to only record the points at which we had to make a decision whether

to take the right or left branch
 When we reach a dead end we return to the last decision

point and take the unexplored branch
 If we have explored both options we retrace our

steps to the decision point before the one we have just reached and continue from there

The right hand side of Figure �
� shows this exploration strategy as an inverted tree
 A

simple strategy in which� when confronted with a new branch� we always take the left

branch �rst is shown as a dotted line

We need only record information about the branch points we have partially explored

Once both options have been taken we can discard the information we have gathered

about that part of the maze and all the parts of the maze it leads to
 We know they don�t

lead to the exit� so we are no longer interested in them
 This means we need only keep

information about the branch points between are current position and the start of the

branching tree
 Thus the maximum amount of data we need to keep is given by the height

of the tree which could be very much less than the total size of the maze
 However to

take advantage of this saving in space we need a data structure which allows us to discard

information on fully explored branches� including all the data we have accumulated about

other branch points further down that branch

A stack data structure does this naturally
 As we reach a new branch point we push

data about in onto the stack �all we need to know is which branch we are going to take

next	
 Should this branch not lead to the exit� we return to the branch point� examine

the top of the stack and explore the other branch� and record that we are doing so on

the top of the stack
 If this too leads to a dead end we return to the branch point
 Now

��

0 1 2 3 4

0

1

2

3

44

3

2

1

0

Start

(2,0)

(4,1)

Exit

(0,1)

An example maze

(2,0)

Exit (0,0) (2,2)

Start

(4,1)

(3,2)

(0,1)

Tree representation for example
maze
The dotted line shows the path taken
by a left branch �rst strategy

left(2,0) left(2,0)

(4,1) right

left(2,0)
left(4,1)

1. 2. 3.

Contents of stack at each of the decision points on the left �rst strategy�

�
 At ����	 push left� to indicate we are exploring the left branch

�
 At ����	 push left again

�
 On reaching the dead end at ����	 we retrace our steps to ����	
 We now update the
top of the stack to right
 This indicates we are exploring the right branch and have
already explored the left branch� thus if we reach a dead end in the right branch
the top of the stack will indicate we have explored branch point ����	 fully and we
should return to ����	

Figure �
�� Solving a Maze Problem Using a Stack

when we examine the top of the stack
 It tells us we have fully explored this branch
 We

can discard all we have learnt about this branch by simply popping the top of the stack

We now return to the previous branch point
 Note that as we have popped the stack� the

top of the stack now contains data on the branch point we have just returned to
 This

is exactly the information we need to make our next decision$ So not only is a stack a

compact way of storing the data we need but it automatically structures the data in a

way which makes it easy to use

����� Evolving a Stack

Having shown an example where a stack helps us to solve a problem� we return to the task

of evolving a stack using genetic programming

��

It is anticipated that the �tness test cases would have to cover each part of the func�

tionality that is to be evolved
 Thus reducing the functionality can be expected to reduce

the complexity of the �tness testing
 This in turn reduces the CPU time to complete

�tness testing and makes it easier to devise the test cases
 Therefore the de�nition of a

stack given in Aho et al�� ����! was simpli�ed by removing the checks for stack under�ow

or over�ow
 These checks are not part of the essential operation of a stack� instead they

are included to make the system more robust by providing some �defensive programming�

which traps and safely handles some user or coding errors

The correctness of each trial solution is to be established using only the values returned

by the stack operations� i
e
 no account is taken as to how the memory is used
 In Aho et

al�� ����! only two �top and empty	 of the �ve operations return values
 It was felt that

not being able to directly check in any way the correctness of three of the operations was

possibly too much and so the de�nition of pop used requires it to return the current top

of the stack as well as removing it
 This common alternative de�nition Aho and Ullman�

����� page ���! allows at least some level of correctness of pop to be directly assessed

Note that the stack problem requires the GP to evolve �ve operations so together they

implement a stack
 That is� we are requiring the GP to simultaneously co�evolve �ve

operations

As with most programming problems� there are many possible implementations but as

the evolution proceeds we do not measure each trial solution�s conformance to an imposed

�correct� implementation
 We don�t impose a speci�c implementation
 Instead evolution�

guided only by how well the operations work together� must �nd an implementation which

each operation is compatible with

In any implementation of a stack there must be a limit on its size Aho and Ullman�

����� page ���!
 This is represented by maxlength in Figure �
� and Table �
�
 A limit of

ten integers is su
cient to demonstrate the idea
 In fact the programs evolved scale up to

stacks of any required depth

��� Architecture

The multi�tree architecture and multi�tree crossover described in Section �
�
� was chosen

as this allows each individual within the population to simultaneously implement trial so�

lutions to each of the �ve operations that form the complete stack program� see Figure �
�

��

pop pushtopmakenull empty

Figure �
�� Each individual within the population is a trial implementation of the whole
of stack and so implements each of the �ve operations that a stack supports �makenull�
top� pop� push and empty	
 Each operation is programmed by its own tree
 The complete
individual is composed of one tree for each operation making a total of �ve trees

Table �
�� Tableau for Evolving a Stack

Objective To evolve a pushdown stack

Architecture Five separate trees

Primitives �� �� �� �� max� arg�� aux� inc aux� dec aux� read� write� write Aux

Fitness Case � test sequences� each of �� tests �see Tables �
� to �
�	

Fitness Scaling �
� for each test passed

Selection Scalar tournament of �

Hits n#a

Wrapper �page ��	 makenull result ignored

top no wrapper

pop no wrapper

push result ignored

empty result � � 	 TRUE� otherwise FALSE

Parameters Population � ����� G����� program size �� ���

Success Predicate Fitness �� �����

��

��� Choice of Primitives

Primitives like those a human programmer might use� were chosen
 Firstly this ensures a

solution is possible� i
e
 a program which solves the problem can be written using only these

primitives
 �The need for the available primitives to be powerful enough so that a solution

to the problem can be express using them is called the su�ciency requirement Koza�

����� page ��!	
 Secondly as some constructs are useful to human programmers it was

expected that corresponding primitives might be useful to the GP
 For example primitives

were included that aid maintenance of a stack pointer� although their functionality could

in principle be evolved using combinations of the other primitives

The following primitives were available to the GP�

� arg�� the value to be pushed on to the stack
 When arg� is used by any of the

operations except push it has the value zero
 Evolving programs can read arg� but

they can not change it

� arithmetic operators � and �

� constants �� � and the maximum depth of the stack� max �which has the value ��	

� indexed memory functions read and write

� primitives to help maintain a stack pointer� aux� inc aux� dec aux and write Aux

�cf
 Section �
�
�	

�We use the name �write Aux� even though it has slightly odd capitalisation as

it is the actual name of the primitive used in the GP system
 Similarly we use the

actual names of all the other primitives
 All these names are case sensitive
 However

similar primitives are grouped together in the index� so names in the index need not

be identical to those in the main text	

It was decided to evolve a stack of integer values as integers are naturally compatible

with addressing operations required with indexed memory and the arithmetic required

with a stack and so all primitives can be of the same type �i
e
 ���bit signed integers	

This naturally meets the closure requirement �Section �
�
�	

No restrictions were placed upon which primitives could be used by which operation

That is the terminal and function sets were identical for each of the �ve trees
 Apart from

di�erences caused by primitives having di�erent numbers of arguments� each primitive

was equally likely to be used in the initial random population

��

����� Indexed Memory

�� integer memory cells �numbered ��� � � � ��	 were available �see Section �
�
� for a

discussion of indexed memory	
 This is more than su
cient for a stack of no more than

ten integers
 The symmetric addressing range allows evolving stacks to implement either a

push�up or a push�down strategy and avoids some bias towards one or other
 �As Figures

�
� to �
�� show solutions using both implementations were evolved
	

read�s and write�s �rst argument speci�es which of the �� cells to use
 If it yields an

illegal value �i
e
 outside the legal range ��� � � � ��	 �tness testing of the trial program is

aborted
 There are several other strategies that may be adopted�

�
 Reduce the range of integer values to just those that are legal memory addresses

This means changing the closure so that every function returns reduced integer

values
 In particular the arithmetic operators would have to ensure their output

remained within the reduced range
 This approach has been adopted by both Teller

 Teller� ����a� page ���! and Andre Andre� ����b!

�
 De�ne behaviour for read and write following an address error
 This could be to

coerce the address to be legal� e
g
 using modulus� or to discard the data to be

stored and provide a default value when reading

�
 Increase the range of legal memory addresses to the range of legal integers

�
 Allow more than one type in the evolving programs� ���bit integers for data values

and contents of memory cells and a restricted integer for memory addressing

One of the motivations for studying the evolution of data structures is to investigate

how GP can handle software engineering problems
 A frequent problem is range checking

or more particularly what happens when an index is used outside its valid range
 There�

fore options �
 and �
 were rejected �even with virtual memory �
 would not be feasible

with ���bit integers� but might be feasible with ���bit integers	
 In this chapter the unso�

phisticated option of stopping the program was used� however in later chapters option �

is investigated

Strongly typed GP Montana� ����! is a relatively immature �eld so option �
 was

rejected as it might have distracted from the primary interest � the evolution of data

structures

��

����� Register

In addition to the addressable memory a single auxiliary variable �aux� was provided

which� like each indexed memory cell� is capable of storing a single ���bit signed integer

The motivation for including it and the primitives that manipulate it was that it could be

used as a stack pointer� holding addresses to be used with the index memory
 However� as

with all the other primitives� the GP is not forced to use it in any particular way or even

use it at all

There are four associated primitives�

�
 aux� which evaluates to its current value

�
 inc aux� which increases the current value by one and returns the new value

�
 dec aux� which decreases the current value by one and returns the new value

�
 write Aux� which evaluates its argument and sets aux to this value
 It behaves

like write in that it returns the original value of aux rather than the new one�

cf
 Section �
�
�
 Later chapters use the simpler Set Aux functions� which return the

new value

��� Fitness Function

The �tness of each individual program is evaluated by calling its constituent operations

�i
e
 the trees� makenull� top� pop� push and empty	 in a series of test sequences and

comparing the result they return with the anticipated result
 If they are the same the

individual�s �tness score is incremented
 Calling the operation and the subsequent com�

parison is known as a �tness test
 NB all testing is black box� no information about the

program�s internal behaviour such as use of memory is used
 However programs which

read or write outside the available memory are heavily penalised because their testing

stops immediately
 They retain their current �tness score but are not tested further and

so can�t increase their �tness

The two operations makenull and push do not return an answer
 Since we don�t have a

�correct� implementation to measure them against� they can only be tested indirectly by

seeing if the other operations work correctly when called after them
 They are both scored

as if they had returned the correct result� which means each makenull or push operation

successfully completed �i
e
 without memory bound error	 increments the program�s score

��

This is useful because it means in general makenull and push operations which don�t

violate the memory bounds have better scores than those that do

The empty operation returns either true or false �cf
 Table �
�	 however� like the other

four operations� it is composed of signed integer functions and terminals and the evolved

code returns a signed integer
 Therefore their answer is converted to a boolean value

before �tness checks are performed � Koza� ����� page ���! calls the output interface code

a wrapper	
 The wrapper chosen splits the space of signed integers approximately in half�

with positive numbers being taken to mean true and the rest as false �see Table �
�
 We

follow Koza� ����� page ���! and summerise the key features of each GP problem in a

table with a format similar to Table �
�
 These are referred to as the tableau for the

problem	
 Although intended to be unbiased� because of the strong relationship between

a stack pointer and whether the stack is empty or not� it is possible this choice lead to

a bias in favour of stacks adopting a push�down strategy
 If a simple push�down stack

starts at zero then a non�empty stack will have a negative stack pointer
 Although more

push�down stacks than push�up stacks were evolved� the di�erence can be explained by

random �uctuation� i
e
 the di�erence is not statistically signi�cant

As was explained in Section �
�� the stack is de�ned to exclude error checks and so the

�tness test case was designed to avoid causing the logical errors that these checks would

trap
 I
e
 it never caused stack over �ow or under �ow� top is never called when the stack

should be empty and the stack is always initialised by makenull before any other operation

is used

All storage� i
e
 the indexed memory and aux� is initialized to zero before each test

sequence is started
 This ensures all potential inputs are in a known state before testing

begins� this means the test case may be re�run and the same result reached and also

prevents �leakage� of information from one member of the population to any other
 It was

felt initializing at the start of each test sequence� i
e
 a total of four times per program

tested� might help discriminate between programs early in the evolutionary process as this

gives imperfect programs three more tries to pass some of the tests from a clean background

state
 � Spector and Luke� ����! avoids re�initialising memory between �tness testing of

individuals and so information may pass between them apart from by inheritance
 Spector

and Luke� ����! call this �cultural� transmission of information
 They present examples

where it is bene�cial� but on page ���! they note that on some variations of their problems

cultural transmission is not bene�cial	

��

Table �
�� Number of each the �ve stack operations in the four test sequences which form
the �tness test case for the stack problem

Test Sequence makenull top pop push empty Totals

� � � �� �� � ��

� �� � � �� � ��

� � � � �� �� ��

� � �� � � � ��

Totals �� �� �� �� �� ���

Table �
�� Number of each the �ve stack operations used in the �tness test case at each
depth in the stack

Stack length makenull top pop push empty Totals

unde�ned � �

� �� �� �� ��

� � � �� �� � ��

� � � � � � ��

� � � � � ��

� � � � ��

���� �

Totals �� �� �� �� �� ���

����� Test Case

The �tness of each trial stack program was determined using the same �xed test case for

all trial programs� cf
 Section �
�
�
 The test case comprised four �xed test sequences each

of which called �� operations and checked the value returned
 The four test sequences

contain di�erent proportions of each of the �ve operations
 For example� the second test

sequence was designed to test makenull by containing a large number of makenull and

push calls �see Table �
�	

Although the stack was de�ned to operate with stacks of up to ten integers� as Table �
�

shows� it was not necessary for the �tness test case to cover the deeper stacks
 In fact the

�tness function tested only as far as depths of four items

The integer data values pushed onto the stack �i
e
 the values of arg�	 were generated

at random uniformly in the range ����� � � � ���
 The �� actual values used are given in

Table �
�

��

Table �
�� Data values pushed onto the stack in each of the four test sequences which form
the �tness test case for the stack problem

Test Values pushed No
 Push

Sequence calls

� ��� ��� ��� ���� ��� ��� ��� ��� ��� ���� ���� � ��� ���� ��

� ��� ���� ��� ���� ���� ���� ��� ���� ���� ��� ��� ��� ���� ��

� ��� ��� ��� ���� ���� ��� ��� ��� ��� ���� ���� ��� ��

� ��� ��� ��� ���� ���� ���� ���� ��� �

��� Parameters

The default values for parameters given in Section E
� were used except for� the population

size� the maximum program length and the length of each run ���� generation equivalents�

cf
 Table �
�	
 In these experiments a homogeneous population of ����� trial solutions was

chosen� which proved to be adequate

Each genetic program is stored in a �xed length pre�x#jump�table �cf
 Section E
�	

The �ve program trees �one for each operation	 are stored sequentially within the table

There are no restrictions on each tree�s size� however their combined lengths must sum to

no more than the size of the jump�table
 The jump�table �and so the maximum program

size	 was chosen to be ���
 This is �ve times the GP�QUICK �cf
 Section E
�	 default of

��� which itself is several times more than su
cient to code each of the �ve operations

Figures �
�� and �
�� show individual programs within the population were typically much

shorter than this and so its e�ects� in these experiments� can be neglected
 In �� of the

�� runs conducted� including all successful runs� this limit had no e�ect at all
 Of the

remaining ten runs� typically there was no e�ect until after generation ��
 Even in the

run with largest number of e�ected crossovers� there was no e�ect before generation ���

when a few crossovers per generation reached the limit
 This rose to a maximum of �� of

crossovers in generation ��

��� Results

With the above parameters four runs� in a group of ��� produced successful individuals

The �rst program� from each successful run� that passed all ��� �tness test cases is shown

in Figures �
� to �
��
 As was expected each successful program is a di�erent solution to

the problem of passing the test cases
 Although coded di�erently� the �rst three adopted

��

ADD

1 inc_aux

aux

write

makenull

SUB

write_Aux

1

0

top

read

write_Aux

aux

pop push

write

dec_aux arg1

empty

aux

Figure �
�� Evolved Stack �

write_Aux

1

top

read

aux

pop

Qrog2

read

aux

inc_aux

push

write

dec_aux arg1

empty

aux

makenull

Figure �
�� Simpli�ed Stack �

the same strategy of using aux as a stack pointer for a push�down stack with makenull

initialising aux to one
 The fourth also uses aux as a stack pointer but initialises it to

minus one and adopts a push�up strategy

In two respects the evolved solutions are better than might have been anticipated

Firstly� in all cases they not only pass all the �tness test cases but analysis of their code

shows they are general solutions to the problem de�ned in Section �
�
 That is they would

pass any set of tests that are consistent with the problem

Secondly� the de�nition in Section �
� speci�cally limited the operation of the stack

to a depth of ten� however all the solutions correctly implement a general stack �within

the limits of the available memory	
 That is� given su
cient memory� each implements an

integer stack of any size
 So not only has genetic programming found solutions but it has

been able to generalise from the limited information in the �tness tests

Each program contains redundant code� i
e
 code that can be removed yielding a shorter

program but with the same functionality
 The essential code is shown within the shaded

boxes in Figures �
�� �
�� �
� and �
��
 The equivalent simpli�ed code is given in Figures

�
�� �
�� �
� and �
�� �QROG� is de�ned on page ��	

As has already been mentioned only four of the �� runs yielded solutions
 The �tness

of the best solution found by each run is plotted by the frequency histogram in Figure

�
��
 This shows that most runs produced partial solutions which pass about ��� of the

��� �tness tests
 Figures �
�� and �
�� show that typically the highest �tness score was

found by generation � and no further improvement in the best score was made before the

end of the run� �� generations later
 They also show the population as a whole rapidly

converges to the best value with a few individuals having very low �tness values

��

read

aux

ADD

write_Aux

1

max

write

aux inc_aux

makenull top pop push

write

dec_aux arg1

write_Aux

write_Aux

0

write_Aux

write_Aux

empty

Figure �
�� Evolved Stack �

write_Aux

1

aux

emptymakenull

read

aux read inc_aux

aux

Qrog2 write

dec_aux arg1

pushpoptop

Figure �
�� Simpli�ed Stack �

read

SUB

aux 0

read

write_Aux

inc_aux

SUB

makenull top pop push

write

write_Aux

1

1 arg1

ADD

dec_aux

write_Aux

write_Aux

SUB

1

ADD

arg1 arg1

SUB

dec_aux

write

aux

empty

aux

Figure �
�� Evolved Stack �

read

aux

inc_aux

Qrog2

empty

aux

makenull top pop push

1

read

aux

write

dec_aux arg1

write_Aux

Figure �
�� Simpli�ed Stack �

��

push empty

ADD

aux ADD

aux max

inc_aux arg1

write

SUB SUB

0 aux

read

write_Aux

write_Aux

read

arg1

topmakenull

SUB

ADD

1 write_Aux

arg1

SUB

write_Aux

SUB

0 ADD

1 aux

read

arg1

pop

write

aux 0 write_Aux

dec_aux SUB

1 arg1

SUB

1 arg1

SUB

write

SUB

Figure �
��� Evolved Stack �

pop

read

aux

dec_aux

Qrog2

empty

aux

SUB

0

write

inc_aux arg1

push

top

read

aux

write_Aux

makenull

-1

Figure �
��� Simpli�ed Stack �

��

0

2

4

6

8

10

12

14

16

100 110 120 130 140 150 160

N
o
.

r
u
n
s

Max Tests passed

Figure �
��� Distribution of maximum �tness found by �� runs of the stack problem

A typical imperfect evolved strategy is to store only one item at a �xed location

Further improvement from this partial solution appears to be di
cult� perhaps due to

loss of genetic diversity �i
e
 functions� terminals or key blocks of functions and terminals	

exacerbated by the relatively small population size or the e�ects of �neutral crossover��

i
e
 crossovers whose o�spring has identical �tness to its parents �cf
 Chapter �	

��	�� E�ort Required to Find a General Stack

Following Koza� ����� page ���! P �M� i	 denotes the probability of a solution being found

at generation i when using a population of size M
 Therefore the probability of not �nding

a solution is � � P �M� i	
 In R independent runs� the chance of �nding no solutions is

 �� P �M� i	!R
 Therefore the chance of �nding one or more solutions is �� �� P �M� i	!R

Requiring to be assured �to within probability �	 of obtaining at least one solution and

rearranging yields the number of GP runs required�

�� �� P �M� i	!R � �� �

 �� P �M� i	!R � �

R log� �� P �M� i	!	 � log �

R �

�
log �

log��� P �M� i		

�
��
�	

��

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

Mean
Min

Best of Generation

Figure �
��� Evolution of �tness in a typical stack run

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

 Stack 1
 Stack 2

 Stack 3
 Stack 4

Mean
Min

Best of Generation

Figure �
��� Evolution of �tness� means of �� stack runs
 The four solutions to the stack
problem are also shown

��

0

50

100

150

200

250

0 20000 40000 60000 80000 100000

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

Max
Min

Mean

Figure �
��� Evolution of program size in a typical stack run

Given that � out of �� runs succeeded by generation ��� the maximum likelihood

estimate of P ������ ��	 is ����� i
e
 ����
 Substituting � � ���� and P ������ ��	 � ����

yields ��
 I
e
 �� independent runs� with each generating up to ������ trial solutions� will

�assuming our estimate of the probability of solution is correct	 ensure that the chance of

producing at least one solution is better than ���
 This would require a total of up to

��� ��� � �� � ���� ��� trial programs to be tested

For the sake of comparison� a large number of random programs were generated� using

the same mechanisms as the GP� and tested against the same �tness tests
 A total of

���������� randomly produced programs were tested� none passed all of the tests

��	�� Evolution of Program Size

Figures �
�� and �
�� show a marked and rapid fall in program size initially coincident with

�nding improved solutions
 �A program�s size is the number of nodes within it� i
e
 the

number of functions plus the number of terminals	
 However once the GP stops �nding

improved solutions the programs within the population become longer and this growth

continues as the population evolves

The long term growth in program size was expected as similar e�ects �variously called

��u��� �bloat� and �introns�	 have been widely reported in other GP work Angeline�

����� page ��!� Nordin et al�� ����!
 However in one extended run of the Boolean ��

multiplexor problem Koza� ����� page ���! also reports such growth but says the program

��

0

50

100

150

200

250

0 20000 40000 60000 80000 100000

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

Max
Min

Mean
Solutions

Figure �
��� Evolution of program size� means of �� stack runs
 The lengths of the four
solutions to the stack problem are also shown

size stabilizes after generation ��
 The following section analyses the reasons for this

Evolution of Size in the Boolean
�Multiplexor Problem

The anomalous behaviour of program size of the Boolean ��multiplexor may be explained

by the fact that a limit on the tree height of �� was enforced
 At �rst sight this would

not appear to be unduly restrictive but if we consider the sizes of various random trees

for this problem we see a tree height limit can have a signi�cant impact on program size

Two of the functions used in the ��multiplexor problem take two arguments� one takes

three and the fourth takes one
 Thus the size of a tree of the maximum height will be

between the size of a program containing functions with only one argument and that

of a tree where every function has three arguments� i
e
 between �� and �
����� � �	 �

��� ���� ���
 In addition to the four functions there are six terminals� thus a tree composed

of randomly selected primitives will have on average ������������������������� �

��� nodes above each node in the lower level
 As this is less than one a random tree will be

short �so as an approximation the maximum tree height can be neglected	 and will contain

about �
����� � ��

	 nodes
 If we consider a tree of maximum height then it must contain at

least one chain of �� functions
 If this is composed of randomly selected functions then

each node within it will have on average ��� � �� ��� � �� ��� � � nodes above it
 One

of these will continue the chain and the remainder will start new trees
 If the new trees

��

are composed of randomly selected primitives they will on average also contain about ��
	

nodes
 Thus such a tree will on average contain about �� � ��� � �	 � ��
	 � �	 � � � ���

	

nodes
 That is on average a tree of maximum height composed of randomly selected

primitives will contain about �� nodes

While the above analysis assumes random trees which is highly unrealistic� it does

highlight the importance of low numbers of branches per function node and the way this

may cause even small trees to be unexpectedly tall
 Returning to Koza� ����� pages ����

���! we see that Figure ��
�� and the example program presented also give some weight to

the argument that the tree height limit is constraining growth of program size
 Figure ��
��

shows the population mean of the program size in one run of the ��multiplexor problem

lying near ��� from generation �� to ���
 This is close to the value of �� we would expect

if the population was composed of random trees whose growth was only restricted by the

tree height limit
 Secondly the height of the example large program ���� nodes	 is ��� i
e

only three short of the maximum tree height

Bloat in Variable Length Representations

Once the GP has stopped �nding improved solutions� the best an individual can do is to

produce o�spring with the same �tness as itself
 Angeline� ����!� Nordin et al�� ����!

etc
 suggest that this explains why programs tend to get bigger� programs are bigger than

others with the same �tness because they contain more �junk code� or �introns�� i
e
 code

which� although it may be executed� has no impact on the program�s �tness
 Crossover

points are chosen at random� so the larger a portion of code is the more likely it is to

be chosen as a crossover point
 Nordin et al�� ����! suggests this leads to an �implicit

parsimony pressure� for �tness a�ecting parts of programs to be as small as possible �and

so less likely to be the target for crossover and so be disrupted by it� i
e
 the o�spring

not being as �t as its parents	 and for introns to occupy as much space in the program as

possible
 This explanation assumes that on average non��tness a�ecting code will continue

to have no impact on �tness after it has been changed by crossover

A slightly more general way of looking at bloat is in general there are many more ways

to code long programs which have a particular �tness than short programs
 Since they

have the same �tness� �tness selection does not guide the search and the search is random

In a random search we expect to �nd solutions which occur often in preference to those

that are rare
 Thus growth of program size� once discovery of higher �tness individuals

has slowed or stopped� can be explained as due to GP preferentially discovering short

��

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

P
r
o
g
r
a
m

S
i
z
e

Tests passed

Initial
7000 generates

21000 generates

Figure �
��� Fitness v
 Program Size� Typical stack run
 �To improve presentation only
extrema and ��� of the data are plotted	

and therefore rare solutions initially followed by random discovery of longer and more

common ways of expressing the same solution with consequent growth of program size in

the population
 In general� unless there is some factor which prefers shorter solutions� we

would expect bloat to occur in all stochastic search techniques which use a variable length

representation

Initial Fall in Program Size

While growth in program size is a common� the initial reduction was unexpected �cf
 Fig�

ures �
�� and �
��	
 A possible explanation for the fall is that initially shorter programs

are �tter but� as Figures �
�� and �
�� show there is little correlation between an initial

program�s �tness and its size
 Instead program size falls because initially crossover pro�

duces �tter programs which are shorter than average
 This may be because it is easier

for shorter programs to be more general �and so �tter	 or because they are closer to the

length of actual solutions found
 Indeed it is possible that better performance might be

achieved by starting with an initial population composed of shorter programs

��	 Summary

This chapter �which was published� in part� in Langdon� ����b!	 shows that genetic

programming can automatically synthesise general implementations of an integer stack

��

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

P
r
o
g
r
a
m

S
i
z
e

Tests passed

Initial
Final

Figure �
��� Fitness v
 Program Size� Stack �
 �To improve presentation only extrema
and ��� of the data are plotted	

from randomly addressable memory when guided only by a small number of �xed test

cases which examine the external behaviour of trial solutions� i
e
 without consideration

of how they try to implement a stack
 Whilst Andre� ����b! has demonstrated two

communicating programs co�evolving� the stack problem �excluding work described in

later chapters	 was unique in requiring the co�evolution of �ve independent operations to

solve it � Bruce� ����! also uses �ve independent operations	
 As with Andre�s approach�

the GP architecture used treats each separate individual within the population as a multi�

part program� each part operating and evolving independently but communicating via

shared memory and co�evolving to solve the problem by working together

The relative ease with which GP solved the stack problem may be due to the decision to

provide stack pointer manipulation primitives
 Certainly experience with more complex

data structures indicates the importance of higher level index operations� even though

these can in theory be fabricated from lower level primitives �cf
 Section �
��	

There are many ways to implement a program which will pass the test cases
 If

we regard automatic programming as a search process� then the existence of multiple

implementations means there are multiple solutions �or optima	 in the search space
 In

a random search this would make the search easier
 However the requirement for co�

operation means multiple implementation might make the search harder

�
 The �ve operations are initially created independently of each other� so multiple

��

possible implementations reduce the chance of the operations in a single individual

being compatible with each other

�
 It is reasonable to speculate that crossover between individuals which use incompat�

ible implementations will be less likely to lead to superior o�spring

These may be contributory factors to the tendency for GP population to become trapped

at suboptimal solutions
 The bulk of the population converging to a partial solution found

early in the run and little or no improvement in �tness occurring subsequently

On this problem� genetic programming has been shown to be more successful than

random search� which has never produced a program that passed all the �tness test cases�

let alone a general one

From an information theory perspective� genetic programming has converted the in�

formation held in the test cases �the speci�cation	 into the information held in a program

�the solution	
 The information content of the test cases is about ���
� bits� whereas that

of the solutions �including redundant code	 is much less� e
g
 ��
� bits for stack �
 That is

the GP has lost information� however this is exactly what we want it to do$ We want the

solutions to be more general than the test cases
 Not only has GP produced less speci�c

�i
e
 containing less information	 programs it has chosen the correct information to retain

from which it has produced correct general solutions
 Since this has been done without

explicit guidance� we can conclude that� in this case� GP has some correct implicit bias

�possibly via the function and terminal sets	
 However it seems reasonable to speculate

that similar implicit biases will apply to other programming problems and so we may hope

GP will evolve other general solutions to speci�c test cases

��

Chapter �

Evolving a Queue

Like the stack� the queue is an important data structure based upon the list data model
 A

common use of queues is to hold data requiring processing until a service provider is able

to process it
 Data for each new request enters the queue at its rear and waits until data

in front of it has been processed and removed from the front of the queue
 When it reaches

the front of the queue� it too is processed and removed from the front queue
 Queues are

also known as �FIFO� �First�In First�Out	 lists Aho and Ullman� ����� page ���!

This chapter shows that genetic programming can automatically synthesise a queue of

integer values from randomly addressable memory
 In contrast to the stack� when GP was

guided by a �tness function that considers only the behaviour of the queue and did not

consider its implementation at all� resource hungry solutions were evolved
 Whilst these

may be considered �correct� they are not practical
 However GP can evolve practical

implementations when the �tness function includes consideration of the resources used

As with the stack� apart from resources consumed� evolution was not guided by considering

the implementation used

��� Problem Statement

The de�nition of a queue is given in Table �
�
 Note the use of the function �addone�

Table �
� is analogous to the de�nition of a stack given in Table �
� on page ��
 A circular

bu�er implementation of a queue is shown in Figure �
�
 As with the stack �Section

�
�	� the de�nition given in Aho et al�� ����! was simpli�ed to reduce the complexity of

the �tness testing by removing the checks for under�ow and over�ow
 Such checks are

sometimes included to safely handle coding or user errors however they are not part of the

essential operation of a queue Aho and Ullman� ����� page ���!

As in Chapter �� the correctness of each trial solution is established using the values

returned by the operations and in the de�nition given in Aho et al�� ����! only two of the

��

��

Makenull Empty Front

1

2

3

4

5

7

8

9

6

0

Maxlength - 1

tail

head

1

2

3

4

5

7

8

9

6

0

Maxlength - 1

tail

head

(dequeue)

(enqueue)

addone(tail)

1

2

3

4

5

7

8

9

6

0

Maxlength - 1

tail

head

(dequeue)
DATA

Initialise queue to empty by
setting tail to one slot before
head

If tail is one slot before head
then the queue is empty
 In
this example the queue con�
tains four items� so Empty
will return false

Read the data item at the
front of the queue from the
cell pointed to by head

Enqueue Dequeue

1

2

3

4

5

7

8

9

6

0

Maxlength - 1

tail

head

(dequeue)

(enqueue)

DATA

1

2

3

4

5

7

8

9

6

0

Maxlength - 1

tail

head

(dequeue)

(enqueue)

Put a new data value onto rear of the queue
by increasing tail by one �and wrapping
round if needbe	 and then writing the new
value into the cell tail now points to

Read the front of the queue from the cell
pointed to by head and then remove it by
increasing head by one �and wrapping round
if needbe	

Figure �
�� Circular Implementation of queues
 �Cells containing data are shaded	

��

Table �
�� Pseudo Code De�nition of the Five Queue Operations

Operation Code Comment

addone �i	 addone �� �i � �	 � maxlength� cyclic increment function

makenull head �� �� initialise queue

tail �� maxlength � ��

empty empty �� �addone �tail	 � head	� is queue empty�

front front �� queue head !� front of queue

enqueue�x	 tail �� addone �tail	� add x to queue

queue tail ! �� x�

dequeue dequeue �� queue head !� return front

head �� addone �head	� and remove it

�ve operations return values
 As in Section �
�� it was felt that not being able to directly

check in any way the correctness of three of the operations was possibly too much and so

the de�nition of dequeue �cf
 pop	 requires it to return the current front of the queue as

well as removing it
 This alternative de�nition Aho and Ullman� ����� page ���! allows

at least some level of correctness of dequeue to be directly assessed

Note that the queue problem� like the stack� requires the GP to evolve �ve operations

so together they implement an abstract data type
 That is� again we are requiring the GP

to simultaneously co�evolve �ve operations

A queue can be implemented in at least three fundamentally di�erent ways� packed

array �where the data is moved from the rear to the front of the array	� linked list and

circular bu�er �see Figure �
�	
 There are many possible implementations of each of these

As with the stack� a trial solution�s �tness is not assessed by how well its implementation

conforms to any speci�c implementation
 Instead evolution� guided by how well the op�

erations work together� must �nd an implementation which each operation is compatible

with
 Whilst the GP is free to choose to use any implementation of any of the three

di�erent types� the index primitives �Section �
�	 were included speci�cally for circular

queue implementations

From a practical point of view any implementation of a queue data type will have some

restriction on the amount of data it can contain
 maxlength �cf
 Table �
�	 was chosen to

have the same value as in the stack experiments� i
e
 ten
 However in order to allow the

evolution of circular implementations of a queues �like that given in Aho et al�� ����!	

which require a gap between the head and tail of the queue� the number of items in the

��

queue is limited to nine� i
e
 ten less one for the gap
 The presence of this gap shows there

is something in the queue� whilst its absence indicates the queue is empty �rather than all

available slots are used	

��� Architecture

The multi�tree architecture and multi�tree crossover described in Section �
�
� was chosen

as this allows each individual within the population to simultaneously implement trial

solutions to each of the �ve operations that form the complete queue program
 All the

experiments reported in this chapter use Automatically De�ned Functions �ADFs� see

Section �
�
�	
 Each ADF is represented by an additional tree following the �ve operation

trees

��� Choice of Primitives

The experiments described in this chapter used di�erent combinations of primitives
 The

details are given in Tables �
�� �
�� �
� and �
��
 The reasons for the di�erences between

each experiment are discussed later with each experiment� however all the primitives used

in this chapter are described in this section

The choice of which primitives are available to the GP follows the reasoning of the

stack problem �Section �
�	 i
e
 primitives like those a human programmer might use to

implement a queue were chosen
 This ensures a solution can be coded using the available

primitives and� as some constructs are useful to human programmers� it was expected

that corresponding primitives might be useful to the GP
 For example primitives were

included that aid maintenance of pointers to the front and rear of the queue� although

their functionality could in principle be evolved using combinations of the other primitives

The following primitives were used in the experiments in this chapter�

� arg�� the value to be added to the end of the queue or the argument of the ADF

When arg� is used by any of the operations except enqueue it has the value zero

Evolving programs can read arg� but they can not change it

� arithmetic operators � and � and the �protected� modulus operator� mod
 mod

is included to support the manipulation of pointers required by a circular bu�er

�cf
 function addone in Table �
�	

In mathematical terms the modulus of a number modulo zero is not de�ned and

often computer implementations of the modulus operator have ill de�ned behaviour

��

Table �
�� Implementation of �Protected� Modulus Function

a � �rst argument�

b � abs � second argument 	�

if �b � �	 return a�

else return �a � b � b	 � b�

or create run time exceptions if the divisor is zero
 To avoid this we follow common

GP practice and insist that the modulus function be able to accept any value �i
e

including zero� this is known as �closure�� see Section �
�
�	 and use a �protected�

modulus function which returns a well de�ned legal value for every legal input

The protected modulus function� mod� returns the �rst argument modulo the second

unless the second is zero� in which case it returns value of �rst argument

In the C programming language� which was used to implement these experiments� the

behaviour of the modulus operator ��	 with negative arguments is implementation

dependent Kernighan and Ritchie� ����� page ���!
 It is important that the results

of these experiments should be reproducible which requires the behaviour of all

primitives to be known� therefore the behaviour of mod is de�ned for negative inputs

Unless the divisor is zero� mod is de�ned to yield a non�negative result no matter

what sign its arguments have
 This is implemented by using the absolute value of

the divisor �see Table �
�	
 Other protected modulus function have been used Koza�

����� page ���! and Jannink� ����!

� constants �� � and max �which has the value ten	

� indexed memory functions read and write

� primitives to help maintain pointers� aux�� aux�� aux�� Inc Aux�� Inc Aux�� Inc Aux��

Dec Aux�� Dec Aux�� Dec Aux�� Set Aux�� Set Aux�� Set Aux�� MInc�� MInc��

and MInc� �Implementation of MIncn given in Table �
�	

� Functions that simply link subtrees together� PROG� evaluates both its arguments

and returns the value of the second� whilst QROG� evaluates its two arguments but

returns the value of the �rst

� The Adf� primitive provides the mechanism for calling the Automatically De�ned

Function �see Sections �
�
� and �
�	

��

In some experiments it is possible for one operation to call another as a function

When the called operation is �nished� execution control returns to the calling op�

eration rather than terminating the evolved program as it would normally do
 The

mechanism used to implement this is the same as that used to implement ADFs

The corresponding primitives have the same name as the operation �except the �rst

letter is capitalised	
 Thus the Front terminal �front takes no arguments	 provides

the means for other operations to use the front operation
 �We have adopted the

convention of using the actual names of the primitives and trees used in the code�

including the case of the letters
 The code uses the convention that the names of

primitives which invoke other operations contain only lowercase letters� while the

names of the corresponding program tree are capitalised	

Once again all of the above function accept ���bit signed integers and the both the

functions and terminals yield ���bit signed integers

In the �rst experiments all primitives were used in all trees but in later ones the syntax

was made more sophisticated allowing each tree �i
e
 operation or ADF	 to have its own

set of primitives
 As in all the experiments in this thesis� apart from di�erences caused by

primitives having di�erent numbers of arguments� if a primitive is included in the syntax

for a particular tree� it is as likely as any other legal primitive to be used in that tree in

the initial random population

����� Indexed Memory

The memory structure used for the stack was retained �cf
 Sections �
�
� and �
�
�	 which

provides �� ���bit signed integer memory cells �numbered ��� � � � ��	
 The symmetric

addressing range allows the GP additional implementation freedom
 Array and circular

bu�er implementations for such a queue are relatively memory e
cient �requiring n and

n � � memory cells respectively	 and so easily �t into the �� cells available
 A linked list

implementation requires �n or �n �if a double link chain is used	
 Thus �� cells is more

than su
cient for all of the common implementations of a queue of up to nine integers

As Section �
� will describe� memory hungry partial solutions can arise
 One of the

ways used to discourage these was to reduce the memory available so that such partial

solutions reach the limit of the available memory earlier
 This allows evolution to explore

other solutions when it might otherwise have been trapped by the population converging

to a memory hungry partial solution
 In the �nal experiments in this chapter �Section

�
��	 the memory was reduced to ��� � � � ��
 Although there is still su
cient memory for

��

linked list implementations� they were not observed in any of these experiments

In the �rst experiments presented in this chapter� attempts to access� via read or write�

memory cells outside the legal range cause �tness testing to stop� as described in Section

�
�
 In later experiments� �tness testing was allowed to continue on addressing errors by

write discarding the data to be stored �in which case it returns zero	 and providing a

default value of zero when reading from an illegal address

In the initial population the �rst argument of read and write �like all functions� argu�

ments	 is random code and so will yield a random value
 In practice this is likely to be

near zero but could be anything
 If it is outside the range ��� � � � �� then �tness testing

will stop and the program containing the read or write will probably have a low �tness

If a function consistently causes programs containing it to have below average �tness the

number of times the function appears in the population will fall� eventually being removed

entirely �see Section �
� for a discussion of Price�s theorem	
 It was felt that this might

be happening and so be the cause of poor GP performance
 However if read and write

are allowed to continue following a memory addressing error �i
e
 �rst argument � �� or

� ���	 the current test may fail but the program will get the opportunity of running other

tests which it may pass
 Thus the negative impact of random code on read and write may

be reduced allowing the population to retain them for longer� which may enable evolution

to provide useful arguments for them
 As was expected� programs evolved which rely on

how memory addressing errors are dealt with �e
g
 Figure �
�	

����� Registers

In addition to the addressable memory two or three auxiliary variables� �auxn�� were

provided
 The motivation for including them and the primitives that manipulate them

was that they could be used as pointers� holding addresses to be used with the index

memory
 However� as with all the other primitives� the GP is not forced to use them in

any particular way or even use them at all

There are �ve primitives associated with each variable �however not all �ve are used

in all experiments	�

�
 auxn� which evaluates to the current value of register n

�
 Inc Auxn� which increases the current value of register n by one and returns its new

value

�
 Dec Auxn� which decreases the current value by one and returns the new value

��

Table �
�� Implementation of Modulo Increment Terminals

auxn���

auxn � mod� auxn� ��	� �NB max � ��	

return auxn�

�
 Set Auxn� which evaluates its argument and sets register n to this value
 Unlike

write Aux �cf
 Section �
�
�	 it returns the new value

This change was made after it was noted that the GP could exploit the implicit stor�

age in the write Auxn primitives� to ease the formation of �shu�er� type solutions

�Section �
�	

�
 MIncn� Modulus Increment� sets register n to one plus its current value reduced

modulo max and returns its new value �see Table �
�	

A key ingredient to successfully evolving circular bu�er implementations of queue

data structures seems to be the manipulation of pointers to the two access points

for the data structure� i
e
 the front and back
 Experiments in Section �
� included

the MIncn terminals to provide this functionality
 In other experiments the GP was

required to evolve this functionality from the other primitives

��� Fitness Functions

The �tness of each individual program is evaluated by calling its constituent operations

�i
e
 the trees� makenull� front� dequeue� enqueue and empty	 in a series of test sequences

and comparing the result they return with the anticipated result
 Only if they are the

same is the individual�s �tness increased
 NB whilst all testing is black box with no infor�

mation about the program�s internal implementation being used� following the discovery

of memory hungry solutions �Section �
�	 the �tness function was modi�ed to include

penalties for excessive resource �i
e
 memory	 usage and we show that memory e
cient

implementations can be evolved �see Sections �
�� �
� and �
��
�	

The two operations makenull and enqueue do not return an answer
 As with the stack

makenull and push operations� they can only be tested indirectly by seeing if the other

operations work correctly when called after them
 They are both scored as if they had

returned the correct result

As with the empty operation in the stack data structure� the empty operation returns

either true or false �cf
 Table �
�	 however� like the other four operations� it is composed

��

of signed integer functions and terminals and the evolved code returns a signed integer

Therefore a wrapper is used to convert the signed integer to a boolean value before �tness

checks are performed
 The wrapper converts a zero value to true and all other values to

false
 The evolved code can compare two values using subtraction �no explicit comparison

operators are provided	
 If they are equal� subtracting them yields zero which the wrapper

converts to true
 This wrapper also avoids the potential bias in the wrapper used with

the empty stack operation �Section �
�	

As was explained in Section �
�� the queue is de�ned to exclude error checks and so

the �tness test case is designed to avoid causing the logical errors that these checks would

trap
 I
e
 they never try to enqueue more than nine integers� never uses dequeue or front

when the queue should be empty and the data structure is always initialised by makenull

before any other operation is called
 All storage �i
e
 the indexed memory and the auxiliary

registers	 is initialized to zero before each test sequence is started

Initially the �tness function was identical to that used for the stack� with the supposi�

tion of enqueue for push etc
 �cf
 Section �
�	
 However unlike the stack� various programs

were evolved which passed the whole test case but did not correctly implement a FIFO

�First�In First�Out	 list
 As these were produced the �tness test case was changed� to

include more tests� di�erent test orders and to enqueue di�erent numbers

Initially the �tness function� like the stack� was simply the sum of the number of tests

passed
 Di�erent �tness scalings were tried� which gave less weight to �easy� tests
 In the

experiments in Sections �
� and �
�� makenull and enqueue tests are equivalent to only

�� of dequeue� front and empty tests
 In later experiments a single �tness value for each

program was replaced by �Pareto� scoring �See Sections �
�
� and �
��
�	
 The details of

each �tness function used are described with each experiment

����� Test Case

Initially the �tness test case� like the rest of the �tness function� was identical to that

used for the stack� with the supposition of enqueue for push etc
 and so the argument of

enqueue was identical to that used with push �Table �
�� page ��	� i
e
 an integer between

����� and ���
 As memory was initialised to zero and all enqueued data is non�zero

�cf
 Table �
�	 an e�ective test of whether a memory cell has been used or not is to see if it

contains a non�zero value
 In the case of the queue� partial solutions were produced which

exploited this and used it to estimate whether the queue was empty or not
 Such solutions

could fail if tested on a queue containing the value zero
 The GP found and exploited this

��

and a few similar �holes� in the test sequences to produce high scoring individuals which

solve the test case rather than the queue problem
 Therefore �from Section �
� onwards	

the test data values were changed to increase the proportion of small integers and a �fth

long test sequence was added to test for memory hungry solutions

A possible explanation for why additional measures were needed in the �tness testing

of the queue that were not required with the stack is that without appropriate cursor

primitives �such as MIncn	� the queue is a harder problem and the absence of a solution

allows the GP to explore the �tness function more fully and then exploit �holes� in it

��� Parameters

The default values for parameters given in Section E
� were used except� the population

size� the maximum program length� the length of each run and the use of a �ne grained

demic population �see Section �
�
�	
 The values of these parameters were changed between

the various experiments described in this chapter� details are given in Tables �
�� �
�� �
�

and �
��

����� Population size

Initial runs with a population of ����� were very disappointing
 Whilst the initial �tness

function� the initial primitives used or loss of genetic diversity caused by premature con�

vergence �i
e
 when the population converges to a local optimum rather than the global

optimum	 may have contributed to this� it was decided to follow advice in Kinnear� Jr
�

����c! and Koza� ����� page ���! and make the population as big as possible
 All the

queue experiments described in this chapter have a population size of ������

����� Maximum Program Size

As was discussed with the stack problem �see Section �
�	 each genetic program is com�

posed of six trees �cf
 Section �
�	 which must �t into a �xed length table �cf
 Section E
�	

There are no restrictions on each tree�s size� however their combined lengths must sum to

no more than the size of the table
 The table size was the same as in Chapter �� despite

having an additional tree �adf�	
 This is reasonable as Koza� ����� page ���! suggests

using an ADF generally reduces the total size of the program

As Figures �
�� and �
�� show individual programs within the population typically

grew towards the maximum available space and so its e�ects can not be neglected
 Section

�
�
� described how the crossover operator ensures this limit is not violated

��

Random queue programs are bigger on average than random stack ones �compare Fig�

ures �
�� and �
�� with Figures �
�� and �
�� �pages �� and ��		 principally because of

the higher proportion of functions with two arguments amongst the primitives ���� ver�

sus ���� cf
 Table �
�� and Table �
� �page ��		
 Random trees are created from the

root �using the �ramped�half�and�half� method Koza� ����� page ��!	 so the higher the

number of branches �i
e
 function arguments	 at each level the bigger the tree will be and

�when using the grow mechanism	 the greater the chance of growing to another level
 Thus

the limit on total tree size �i
e
 program length	 is more of a constraint in this chapter than

it was in Chapter �
 �Alternative means of creating random trees for the initial population

are proposed in Bohm and Geyer�Schulz� ����! and Iba� ����b!	

 Gathercole and Ross� ����! consider the impact of restrictions on program size in the

case of programs consisting of a single tree and shows the standard GP crossover operator

can lead to loss of diversity at the root of the tree
 Whilst the analysis does not include

multi�tree programs or treat in details restrictions on total program size rather than tree

height� it may be the case that the restriction on total program size does cause problems in

these experiments
 There is some evidence that roots of trees in this chapter may converge

to inappropriate primitives which the GP then has to work around to evolve operational

code

When the initial random population is created� the trees within the individual are

created sequentially
 As each primitive is added to the current tree the code ensures that

the individual remains within the total restriction on program size
 Thus the total size

limit has little impact on the �rst trees created but as each new tree makes the total

program longer� the size limit has a disproportionate e�ect on the last tree to be created

�i
e
 adf�	
 If as a random program is being created� its length nears the length limit�

the chance of adding a terminal �rather than a function	 to the program is increased to

restrict the addition of new branches to the tree and thus constrain its growth
 This leads

to asymmetric trees
 �Section �
� introduces a per tree restriction on program size which

ensures the e�ects do not fall disproportionately on the last tree	
 The crossover operator

used �Section �
�
�	 ensures the o�spring will never exceed the total size limit and so the

e�ect of the size limit does not fall unduly on the last tree after the creation of the initial

population

��

��� Automatically De
ned Functions

The failure of early trials without Automatically De�ned Functions �ADFs	 and Koza�s

strong advocacy of them Koza� ����� page ���! lead to the decision to implement ADFs

within the GP�QUICK frame work �cf
 Section E
�	

The initial implementation was very much like that used by Koza but contained no

restrictions upon the primitives that could be used within the ADF tree
 I
e
 each primitive

could occur in each of the operations and the ADF
 In Koza�s ADFs the function and

terminal set are usually di�erent from those in the main tree �in his terminology� �the

result producing branch�	
 Typically his ADFs do not have primitives that enable them

to access the actual variables of the problem� instead access is indirect via the ADFs�

arguments Koza� ����� page ��!

Subsequently the implementation was extended to allow each tree to have unique

terminal and function sets
 NB each operation ��result producing branch�	 can also have

a unique set of primitives �Section �
�	

In later experiments described in this chapter the ADF concept was extended in three

ways�

�
 The �ve operations may themselves be treated as evolving functions and be called

by other operations
 When they �nish processing instead of causing the program to

halt� control returns to the caller� which continues execution

This new ability was introduced because sometimes the requirements of one opera�

tion can be a subset on another�s
 For example front�s functionality is a subset of

that required of dequeue �cf
 Table �
�	 and so in later experiments �Sections �
�

and �
��	 dequeue is allowed to treat front as an ADF
 Whilst this would seem intu�

itively reasonable� in principle it means more analysis must be performed before the

problem is given to the GP
 An alternative could be to use an ADF which the two

operations could share
 This would be more general in that it allows the operations

to have common functionality� rather than one being a subset of the other but this

would require the co�evolution of three program trees rather than two

�
 As the name implies� automatically de�ned functions are normally viewed as com�

puting a function of their inputs which they return to their caller
 However their

purpose in GP is to ease the evolution of functionality� especially where it is repeat�

edly required
 If the ADF is restricted to returning its answer but the functionality

requires some variable to be updated� then code to transfer the ADF�s answer to the

��

variable must be used whenever the ADF is called

For example if� as part of a bigger program� we wish to evolve code that increments

one of a number of variables
 We would expect a parameterised ADF to be helpful

The ADF can simply increment its argument and then the ADF can be called with

each variable as its argument
 But if the ADF can only read its arguments� it must

return the value of the variable plus one and rely on code at each point where it was

called to update the correct variable with the new value

It is expected that generally it will be harder to evolve such multiple instance of code

�which may deal with di�erent variables and could be in di�erent trees� and thus

cannot share genetic material at crossover� Section �
�
�	 than if a single instance

of code to update the ADF�s argument� which automatically ensures the correct

variable is modi�ed� could be evolved once within the ADF

In traditional programming languages� this is done by passing the variable to the

function by reference so the function can manipulate the variable directly
 When

the function is called a check is often made that the function�s argument is indeed a

variable and a reference for it exists
 Whilst it would be possible to build such a check

into GP crossover �and other genetic operators	� thus ensuring only legal programs

are generated� this means making a distinction between variables and constants

In normal GP there is no such distinction� all genetic material has the same type

Whilst such distinctions can be made� as discussed in Section �
�
�� this is a �eld of

research in its own right and would have been too much of a distraction from this

thesis
 Therefore the genome interpreter was made su
ciently robust to cope with

arbitrary code as the argument of ADFs that use pass�by�reference
 Should more

than one variable occur in the the ADF�s argument� the reference of the last is used

If there are only constants� the ADF does not try and update them

Instead of introducing primitives to explicitly update ADF arguments� it was decided

that such ADFs should implicitly update their argument by setting it to the �nal

value calculated by the ADF as it returns to its caller
 The ADF also returns the

calculated value
 Whilst this is straightforward and reduces the volume of code

in the ADF it means it is impossible for an ADF with more than one argument

to update them independently
 For our purposes this was not necessary and the

implementation only allows an ADF�s �rst argument to be passed by reference

Section �
��
� describes one case where this feature was used

��

�
 Syntactic and semantic restrictions on the ADF were also introduced
 These are

described in Section �
��
�

There has been only a limited amount of work on allowing recursion within genetic

programming� Koza� ����� page ���!� Brave� ����c!� Sharman and Esparcia�Alcazar�

����!� Whigham and McKay� ����� page ��!� Nordin and Banzhaf� ����a! and Wong and

Leung� ����!
 Recursion and GP is a big and important research topic which would be too

much of a distraction from this thesis
 Therefore� whilst recursive calls are implemented�

recursion is not allowed in any of the experiments in this thesis
 In Sections �
� and �
�

recursion is prevented by a run time check which aborts �tness testing �in the same way

as memory address errors in Section �
�
�	
 In all other experiments the syntax of the

evolving programs is designed to prevent recursion occurring

��	 Evolved Solutions � Caterpillar

In a group of �� runs �ignoring those that aborted due to time constraints	 four partial

solutions were found
 All four passed all ��� tests� but subsequent analysis showed that

two were not general and had exploited the fact that the test case did not simultaneously

enqueue more than four integers �cf
 Table �
� page ��	
 I
e
 they were able to pass all

the tests whilst only implementing a queue of four items and so could fail if �ve or more

items were simultaneously in the queue
 However two programs �e
g
 Figure �
�	 evolved

which� given su
cient memory� correctly implement a queue

These are known as �caterpillar� solutions �see Figure �
�	 because they enqueue new

items in front of the last item in the queue �the caterpillar�s head	 thus causing the

caterpillar to grow one cell
 Data is dequeued from the other end of the queue �the

caterpillar�s tail	 causing the caterpillar to shrink as its tail moves one cell� in the same

direction as the head moves
 The distance between the head and the tail grows as items

are enqueued and decreases as they are dequeued but the caterpillar as a whole moves

forward
 Unfortunately to be general such a solution requires in�nite memory as it always

crawls forward and never wraps round as a circular implementation of a queue would

Note although adf� is available it is not used

See Table �
� for details of the primitives and parameters used in these runs
 The

�tness case was identical to that used with the stack� except front replaced top� dequeue

pop and enqueue replaced push �cf
 Tables �
�� �
� and �
�� pages �� and ��	

��

Table �
�� Tableau for Evolving a Queue� Caterpillar solution found

Objective To evolve a �rst�in �rst�out queue

Architecture Five separate trees� plus a single ADF

Primitives �� �� �� �� max� mod� arg�� aux�� Inc Aux�� Dec Aux�� aux��
Inc Aux�� Dec Aux�� read� write� Set Aux�� Set Aux�� Adf�

Fitness Case Test case as for the stack� replacing push by enqueue etc
 I
e
 � test
sequences� each of �� tests �see Tables �
� to �
�	

Memory errors or recursive adf� calls abort program

Fitness Scaling �
� for each front� dequeue and empty test passed plus �
�� for each
makenull and enqueue test passed

Selection Scalar tournament of �

Hits n#a

Wrapper makenull result ignored

front no wrapper

dequeue no wrapper

enqueue result ignored

empty result � � 	 TRUE� otherwise FALSE

adf� n#a

Parameters Population � ������� G���� program size � ���

Success Predicate �tness � ��
����� i
e
 all ��� tests passed

aux1

Head Tail

aux2aux2 aux1

Figure �
�� Execution of �caterpillar� program
 Labels in bold indicate current values�
dotted show previous values
 Shaded cells hold queue
 The heavy arrow indicates the
general movement of the caterpillar as data items are added to the queue
 As items are
removed from the head of the queue it moves to the right� i
e
 it acts like the tail of a
caterpillar

��

aux2 1

front

ADD

read

aux2aux1

SUB

empty

adf1

write

Inc_Aux2 aux1

dequeue

write

Inc_Aux1 arg1

mod

read

SUB

SUB

write

Set_Aux2

1

mod

aux1 aux2

0

Inc_Aux2

1

enqueuemakenull

Set_Aux2

Set_Aux1

Dec_Aux1

Figure �
�� �Caterpillar� Program

��

��� Evolved Programs � Shu
er

After the �caterpillar� runs described above� a number of changes were made with a view

to discouraging caterpillar like programs and encouraging circular queue implementations

�see also Table �
�	�

� The number of tests run was doubled from ��� to ��� by adding a �th test sequence

of ��� tests
 This prevents caterpillar like solutions by adding su
cient enqueue

operations to ensure a caterpillar will run into the end of the indexed memory

� However after the addition of the �th test sequence� it was noted that in some cases

the population still converged to caterpillar like partial solutions
 Until they ran out

of memory these were �tter than the rest of the population and so dominated it but

the �th test sequence prevents them from passing all the tests

To discourage memory hungry partial solutions early in the population�s evolution�

a memory penalty was introduced
 This reduced an individual�s �tness by �
� per

word of indexed memory used� above �� words
 �� was chosen to allow for a circular

queue implementation ���	 and to allow the two pointers to be stored in indexed

memory ��	 plus a few spare

The penalty is calculated from the maximum memory used across the �ve test se�

quences
 Memory usage need not be symmetric but it is assumed to be contiguous�

i
e
 the penalty is based upon the index number of the highest memory cell used

minus that of the lowest cell used plus �

Whilst penalising caterpillar like solutions it may also have penalised memory in�

tensive solutions such as linked lists but �as the next section will show	 it does not

prevent other implementations such as packed arrays which make e
cient use of

memory

� It was noted that various partial solutions exploited holes in the test sequences� such

as the lack of small values �particularly zero	 in the queue
 Therefore the distribution

of values in the queue was changed from uniform to a �tangent� distribution
 A

tangent distribution is produced by generating random numbers uniformly between

� and � and taking their tangent
 The answer is multiplied by a scaling factor�

F
 ��� of the numbers generated are expected to be in the range �F

 � F

�ignoring rounding to integers	
 The other ��� can be very large or very negative�

��

Table �
�� Tableau for Evolving a Queue� Shu�er solution found

Objective To evolve a �rst�in �rst�out queue

Architecture Five separate trees� plus single ADF

Primitives �� �� �� �� max� mod� arg�� aux�� Inc Aux�� Dec Aux�� aux��
Inc Aux�� Dec Aux�� read� write� Set Aux�� Set Aux�� Adf�

Fitness Case � test sequences like those for the stack �see Tables �
� and �
�	
plus �th test sequence of ��� tests� use of tan argument distribution
�F � ��
�	

Memory errors or recursive adf� calls abort program

Fitness Scaling �
� for each front� dequeue and empty test passed� plus �
�� for each
makenull and enqueue test passed� less �
� for each word of indexed
memory used above ��

Selection Scalar tournament of �

Hits n#a

Wrapper makenull result ignored

front no wrapper

dequeue no wrapper

enqueue result ignored

empty result � � 	 TRUE� otherwise FALSE

adf� n#a

Parameters Population � ������� G���� program size � ���

Success Predicate �tness � ���� i
e
 all ��� tests passed

see Figure �
�
 In this section F was set to ��
�� so approximately half the values

enqueued correspond to legal memory indices

In a group of ��� runs� one run found a solution which passes all ��� tests �see Figures

�
� and �
�
 Many partial solutions �i
e
 which passed many of the tests	 of this type were

also found and a few solutions which pass the whole test case were found by runs with

slightly di�erent parameters or primitives	

As Figure �
� shows� this solution correctly implements a �rst in �rst out queue of up

to nine items
 Unexpectedly it does this by physically moving the contents of the memory

cells
 I
e
 as each item is removed from the queue� all the remaining items are moved �or

shu�ed	 one place down
 Thus the front of the queue is always stored in a particular

location
 One of the auxiliary variables is used to denote the newest item in the queue

This is also the number of items in the queue and so can be used directly by empty to

decide if the queue is empty or not
 The other variable is used by dequeue as scratch

storage
 It is always zero when not being used by dequeue
 adf� has the �trivial� use of

��

-100

-50

0

50

100

0 0.25 0.5 0.75 1

E
n
q
u
e
u
e
d

r
a
n
d
o
m

n
u
m
b
e
r
s

Uniform random number

 F

-F

31.4 * tan (x*pi)
31.4

-31.4
0

Figure �
�� Tangent function used to generate distribution of test data values from
F tan��x	
 Where x is a uniform random number and F is a scaling coe
cient

clearing the second auxiliary variable when called by makenull

Figure �
� gives the clear impression of being built up in stages
 As each stage is added

to dequeue it can process longer queues and so pass more tests� i
e
 it has a higher �tness

0 1 2 3 4 5 6 7 8 9 10 11 12 13

front

dequeue

aux1

0 00 00
9

queuequeuequeue queue queue queue queue queue queue

enqueue

Figure �
�� Execution of �Shu�er� program
 Note data are always dequeued from cell �
but may be enqueued into any cell � � � � �

���

Inc_Aux2

write

write

Inc_Aux2 write

Inc_Aux2 write

Inc_Aux2 write

Inc_Aux2

mod

Inc_Aux2 write

Inc_Aux2 write

Inc_Aux2 write

Inc_Aux2

Inc_Aux2

mod

Inc_Aux2

write

Set_Aux2

arg1

Set_Aux1

Dec_Aux1

makenull

Adf1

Set_Aux1

Adf1

Set_Aux1

arg1

front

mod

mod

read

1

aux2

0

empty

read

aux1

Set_Aux2

Set_Aux2

arg1

adf1

write

Inc_Aux1 arg1

enqueue

writeInc_Aux2

writeInc_Aux2

writeInc_Aux2

write

Adf1

mod

aux2

write

max arg1

mod

dequeue

Figure �
�� �Shu�er� Program

empty

read

aux1

read

1

write

Inc_Aux1 arg1

enqueue

write

Inc_Aux2 write

Inc_Aux2 write

Inc_Aux2

write

Inc_Aux2

write

Inc_Aux2 write

Inc_Aux2 write

Inc_Aux2 write

Inc_Aux2

Set_Aux2

Dec_Aux1

Prog2

0

read

Inc_Aux2

Qrog2

dequeue

makenull front

Prog2

Set_Aux1 Set_Aux2

0 0

Figure �
�� Simpli�ed �Shu�er� Program

���

��� Circular Bu�er � Given Modulus Increment

Whilst the �shu�er� solution is an entirely correct solution to the queue problem� it is

a very rare one �in that it was found only once in ��� runs	
 The experiments in this

section are designed to test the feasibility of evolving circular queue implementations with

the �tness function when given primitives which perform the appropriate increment oper�

ations
 The �modulus increment� �MIncn	 terminals correspond to inc aux and dec aux

used in the stack experiments �cf
 Section �
�
�	
 They take the value of the corresponding

auxiliary variable� increase it by one� reduce it modulo max �i
e
 ��	 and store the new

value back into the auxiliary variable �cf
 Table �
�	
 The complete parameters are given

in Table �
�� and Table �
� contains all the changes between these experiments and those

that produced the Shu�er solution

In one set of runs of the �� runs that completed� � produced solutions which passed

the whole test case �another � aborted due to run time constraints	
 Figure �
� shows

the simplest
 This program can be simpli�ed to Figure �
�� using the facts that in this

program aux� is always � and noting that for these test sequences twice the next item to

be dequeued �i
e
 the front of the queue	 is always an address outside the used part of

the index memory and so is always zero
 �In the runs described in this section� reading

outside the indexed memory returns zero rather than aborting the program	

The probability of a successful run P ����� ��	 is estimated as ����� i
e
 � successes

in �� trials
 �A pessimistic estimate includes all the runs and assumes the runs which

ran out of time would have failed� i
e
 P ����� ��	 � ����	
 Using Equation �
� �Section

�
�
�	 the number of runs required to be assured �to within probability ��	 of obtaining

at least one solution is � �pessimistically ��	
 This requires �� ��� ��� � �� � �� ���� ���

�pessimistically ���������	 individuals to be processed

���

Table �
�� Number of each the �ve queue operations used in the �tness test case for each
length of queue
 �Test case used in experiments where �Modulus Increment� was provided
and where it was evolved	

Queue length makenull front dequeue enqueue empty Totals

unde�ned � �

� �� �� �� ��

� � � �� �� � ��

� � �� �� � � ��

� � � � � ��

� � � �� ��

� � �� � � ��

� � � �� � ��

� �� �� � � ��

� � � � ��

� � � � ��

Totals �� �� �� ��� �� ���

aux1 aux1

Tail

0 1 2 3 3 5 7 8 9 106

enqueue

Head

aux2 aux2

0 0

dequeue

front

000

Figure �
�� Execution of �Modulus Increment� program
 Data are enqueued in front of
cell indicated by aux� and dequeued from cell in front of that indicated by aux�
 Labels
in bold indicate current values� dotted show previous values

���

Table �
�� Tableau for Evolving a Queue� Given Modulus Increment Primitives

Objective To evolve a �rst�in �rst�out queue

Architecture Five separate trees� plus single ADF

Primitives makenull �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
aux�� Set Aux�� Set Aux�� Set Aux�� Inc Aux�� MInc��
Inc Aux�� MInc�� Inc Aux�� MInc�� Dec Aux�� read�
write� Adf�

front �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
aux�� read� Adf�

dequeue �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
aux�� Inc Aux�� MInc�� Inc Aux�� MInc�� Inc Aux��
MInc�� Dec Aux�� Adf� read� write� Adf�� Front

enqueue �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
aux�� Inc Aux�� MInc�� Inc Aux�� MInc�� Inc Aux��
MInc�� Dec Aux�� read� write� Adf�� arg�

empty �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
aux�� read� Adf�

adf� �� �� �� �� max� mod� PROG�� QROG�� arg�

Fitness Case � test sequences of �� tests and one of ��� �Table �
�	
 Values en�
queued as Table �
� except F � ��
� rather than �
�

No program aborts

Fitness Scaling Pareto comparison with each operation and a memory penalty con�
tributing separately
 Operations score � per test passed and each
memory cell used �above ��	 scores ��

Selection Pareto tournament of �

Hits No
 tests passed

Wrapper makenull result ignored

front no wrapper

dequeue no wrapper

enqueue result ignored

empty result � � 	 TRUE� otherwise FALSE

adf� n#a

Parameters Population � ������� G���� program size � ���

Success Predicate ��� hits� i
e
 all tests passed

���

read

ADD

aux3 aux2

read

ADD

aux3 aux2

read

ADD

ADD

front

SUB

aux2 aux3

QROG2

aux3 max

PROG2

aux2 PROG2

aux2

0

mod aux1

SUB

PROG2

empty

makenull

read

PROG2

Set_Aux1

0 Set_Aux1

Set_Aux1

Set_Aux3

Set_Aux2

Set_Aux1

0

MInc3

PROG2

write

Minc1 arg1

enqueue

QROG2

write 0

MInc2 0

dequeue

QROG2

arg1 max

adf1

aux2aux3

ADD

read

Figure �
�� �Modulus Increment� Program

read

ADD

aux21

front

PROG2

Set_Aux1

0

PROG2

Set_Aux2

0

Set_Aux3

1

makenull

MInc2

read

dequeue

write

Minc1 arg1

enqueue

aux1

SUB

aux2

empty

Figure �
��� Simpli�ed �Modulus Increment� Program

���

Table �
�� Changes between Shu�er experiment and evolving a queue given MIncn

The six trees that form each program were split into various categories�

� those that initialise things �makenull	

� those that change the queue �makenull� dequeue� enqueue	�

� subroutines �adf�	

Using these categories the primitives were restricted to particular trees�

� Set Auxn can only be used by makenull

� The primitives which change things �write� Inc Auxn� Dec Auxn� MInc Auxn	 can
only appear in tree where change is expected

� Allow arg� only in trees which have arguments� i
e
 enqueue and adf�

� adf� contains only primitives which perform calculations ��� �� max� mod� PROG��
QROG�	
 I
e
 do not have side e�ects

� dequeue can call front

Add a third variable Aux� and associated primitives �i
e
 Set Aux�� Inc Aux� and MInc�	

Add PROG� and QROG�
 dequeue requires two actions to be performed �return result
and remove item from queue	� QROG� naturally allows this and allows the �rst action
to be the one yielding the overall result

Dec Aux� and Dec Aux� are removed
 By removing decrement it was hoped to avoid
clashes when crossing over between similar programs whose exact operation was incom�
patible
 I
e
 one program causes queue head to move up one enqueue but a similar one
causes it to move down and to encourage �hybrid� solutions in which�

� aux� can be used as a count of queue length as it has both increment and decrement
primitives

� Aux� and Aux� can still be used as head and tail pointers

� PROG� and QROG� can readily link together partial solutions
 It had been noted
that many partial solutions used primitives �especially mod	 to link together partial
solutions where the primary e�ect of the primitive appears to be a nuisance	

No memory abort

Pareto �tness scaling� see Section �
��
�

Change to �th test sequence to produce a more even spread of queue lengths �Table �
�	

Change to range of values in the queue �by changing F from ��
� to ��
�� see Section �
�	

A new individual is not inserted in the population if it is worse than the member of
the population it is replacing
 This change later removed� as it seemed to encourage
premature convergence

���

���� Circular Bu�er � Evolving Modulus Increment

In this section we describe an experiment which shows that it is possible to evolve a queue

as we did in the previous section� however in this experiment we do not provide the GP

with problem speci�c primitives
 Instead we show that such primitives can be evolved�

using ADFs� as the GP solves the problem
 However �rst it is necessary to explain some

of the techniques used
 �Complete parameters are given in Table �
�� and Table �
��

summarises the changes between this experiment and those in the previous section	

������ Pareto Fitness

The �tness function should be able to discriminate accurately between programs through

out the evolution of the population
 That is both at the beginning� when the population

contains random �poor	 programs and later when the population should contain better

programs
 To do this the test case was designed to cover all parts of the trial programs

with tests of a range of di
culties
 So early on the easy tests would discriminate between

poor and very poor programs �all programs failing the harder tests	
 Later on� when better

programs have evolved� it is expected that most programs will pass the easy tests and so

the harder tests will be used to discriminate

A future area for research would be to investigate dynamically choosing which tests to

use� so as to accurately discriminate between programs
 Potentially far fewer tests need

be run to discriminate between members of a tournament� rather than between members

of the whole population
 This could be incorporated into tournament selection so �tness

evaluation was at selection rather than when new trial programs are created
 The tradeo�

between accurately assessing the value of an individual �and the number of �tness tests

that it must execute	 and how well the evolutionary process performs is also worthy of

investigation
 Nordin and Banzhaf� ����b! suggest noisy �tness value evaluation need not

be too detrimental
 �This seems reasonable since genetic algorithm selection techniques�

such as roulette wheel selection� are inherently noisy Blickle and Thiele� ����!	
 Co�

evolution provides a mechanism for automatically dynamically changing which �tness

tests are used
 Whilst an active research area Hillis� ����!� Angeline� ����� page ���!�

 Reynolds� ����a!� Koza� ����!� Siegel� ����! co�evolution and pre�de�ned dynamic �tness

functions Fukunaga and Kahng� ����! are �elds of research in their own right and would

have been too much of a distraction from this thesis which uses only �xed �tness functions

A single �tness function is used to decide how well all components of a program are

performing and produce a single objective value for this
 It has already been noted that

���

certain parts of the problem �i
e
 makenull and enqueue	 are easier than others and so a

scaling factor ��
��	 was included to increase the impact of more di
cult parts of the test

case
 Despite this it was noted that sometimes the GP population traded improvement

on one part of the test case against improvement on others
 That is improvement in one

part of the program was lost from the population as it was displaced by improvement in

another which produced a higher �tness
 If the �rst improvement is critical for an overall

solution the GP is forced to rediscover it later
 Rather than explore increasing complex

weightings for the various components of the �tness function it was decided to use Pareto

�tness

Pareto optimality �cf
 Section �
�
�	 o�ers a way of comparing individuals within the

population using multiple criteria without introducing an arbitrary means of combining

them into a single �tness
 Six criteria are used�

�
 number of makenull tests passed

�
 number of front tests passed

�
 number of dequeue tests passed

�
 number of enqueue tests passed

�
 number of empty tests passed

�
 number of memory cells �above a minimum	 used �NB this is a penalty	

�In this section the whole test case is always used� i
e
 programs don�t abort� so all

programs pass all makenull and enqueue tests therefore criteria �
 and �
 don�t help to

di�erentiate between programs	

Whilst Pareto �tness has been used with linear chromosome GAs this is the �rst use

of it with genetic programming
 �Experiments in later chapters include explicit niching

measures to reduce population convergence but they were not used here	

������ Demic Populations

In this and the previous section the GP population is divided into separate demes which

constrain parents to be near to each other
 Dividing the population limits the speed at

which it converges and so may reduce the impact of premature convergence and improve

the quality of the solutions produced
 The technique used is described in Section �
�
�

���

Figures �
�� to �
�� show the spread of programs with a certain useful characteris�

tic through the population
 The characteristic chosen� is that adf� should perform an

operation like modulus increment

For the purposes of these graphs� a cycle length is de�ned
 Each adf� is called with

the value it returned previously starting with zero� until either it returns a value outside

the legal range of memory addresses �in which case the cycle length is zero	 or a value it

has already returned
 In the latter case the cycle length is the number of calls required to

make adf� return the same value as before
 If the program uses adf� as a simple modulus

increment operator� a cycle length of at least �� is required to pass all ��� tests
 Therefore�

it was felt� this would be a good metric
 Indeed all the solutions do have a cycle length ��

or more
 However as Figure �
�� shows� it is possible for a GP to fail to solve the problem

even after it has evolved this building block

Figure �
�� does shows the �adf� cycle length� building block spreading through neigh�

bouring demes
 An alternative view is it lay hidden �perhaps within �introns�	 and at

about generation �� changes in the population made it bene�cial to express it
 �Figure

�
�� shows it was present in reasonable numbers in the initial population	

Figure �
�� shows separate regions of the population but the separation is not as

marked as described in Collins� ����� page ���! where large homogeneous regions form

within the population� separated by narrow �hybrid bands�
 The lack of clear separation

may be an advantage since �almost no evolution� occurs within the homogeneous regions

but instead �almost all the genetic diversity and evolutionary innovation occurs in the

hybrid bands�
 If the bands are very small they occupy only a small part of the population

and so much e�ort is wasted on breeding in the homogeneous regions
 The best compromise

between avoiding the whole population converging to a single solution and the population

forming very well de�ned regions separated by narrow hybrid bands may be �as we have

here	 ill de�ned regions with large overlaps

There are many di�erences between this work and Collins� ����� Figure �
�!� the

population is smaller �which makes it harder for demes to achieve isolation	 and the length

of the evolutionary process is shorter but also the GP is not obliged to choose between

two complementary genotypes
 Collins� demes are similar but were designed to achieve

high performance on a particular parallel machine architecture �Connection Machine��	

���

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

M
e
a
n

c
y
c
l
e

l
e
n
g
t
h

(
b
e
s
t

1
%

o
f

p
o
p
u
l
a
t
i
o
n
)

Number of Generation Equivalents

291 passes
Successful run

Figure �
��� Evolution of adf� cycle length in two runs of the Queue problem �when
evolving modulus increment	
 The successful run produced Queue �
 �Graphs plot mean
cycle length of the �� of population with the longest cycles	

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100I
n
d
i
v
i
d
u
a
l
s

w
h
o
s
e

a
d
f
1

h
a
s

a

c
y
c
l
e

l
e
n
g
t
h

o
f

1
0

o
r

m
o
r
e

Number of Generation Equivalents

291 passes
Successful run

Figure �
��� Number of individuals in the population whose adf� has a cycle length of ��
or more in two runs of the Queue problem �when evolving modulus increment	
 Successful
run produced Queue �

���

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

Solution

Generation 50
Generation 54
Generation 56

End of run

Figure �
��� Spread of individuals whose adf� has a cycle length � �� near end of successful
run ��	 of Queue problem �when evolving modulus increment	

5

10

15

20

55 60 65 70 75

Solution

Generation 50
Generation 54
Generation 56
Generation 59

End of run

Figure �
��� Spread of individuals whose adf� has a cycle length � �� near to where
successful Queue ��	 individual evolved

���

������ Good Engineering Practice

There is increasing interest in directing the GP genetic operators to increase the viability

of o�spring� a number of active approaches have been described in Section �
�
�
 This

section describes measures taken to ensure the ADF is �sensible�
 �The use of a �tness

penalty for excessive memory usage was described in Section �
�	
 Both creation of the

initial random population and the crossover operator were changed to ensure every adf�

has the following properties�

� It does not yield a constant i
e
 the same value regardless of its argument

� It transforms its input� i
e
 its output is not equal to its input

These constraints are implemented by testing the adf� part of a whole program inde�

pendently of the rest of the program
 �This can readily be done� as adf��s primitives do

not have side e�ects
	 These tests are in addition and separate to the �ve test sequences

already described
 adf� is tested with the values �� ��

 � and each answer given by adf�

with these values
 I
e
 if �adf� �	 � ��� then adf� will also be tested with a value of ��

The proposed adf� tree is rejected �so causing a new one to be generated for testing	 if

either�

� all the answers returned by adf� are the same� or

� any value returned by adf� is the same as its input

������ Pass by Reference

In order to allow a primitive modulus increment primitive �cf
 MIncn	 subroutine to evolve�

adf� was changed to use the pass�by�reference mechanism described on pages ����� which

allows it to update its the argument

Examples�

�
 If initially aux� has the value � and adf� increments its argument �adf� aux�	 would

change aux� to have the value �

�
 �adf� �QROG� �ADD �read �	 �	 aux�		 passes the value of the expression �store �! � ��

to adf�
 When adf� has �nished its calculations on this value� the result will be both

stored in store �! and returned by adf�

���

Table �
�� Range of data values enqueued �F � �
�	 when evolving �Modulus Increment�

enqueue arguments

� ��� �� �� �� �� �� �� �� �� �� � � � � � � � � � � �� �

No
 � � � � � � � � � � �� � � � � � � � � ��

Total ���

Table �
��� Tableau for Evolving a Queue� Circular bu�er solution found

Objective To evolve a �rst�in �rst�out queue

Architecture Five separate trees� plus single ADF

Primitives makenull �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
read� write� Set Aux�� Set Aux�

front �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
read

dequeue �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
read� write� Adf�� Front

enqueue �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
read� write� Adf�� arg�

empty �� �� �� �� max� mod� PROG�� QROG�� aux�� aux��
read

adf� �� �� �� �� max� mod� PROG�� QROG�� arg�

Fitness Case � test sequences� of �� tests and one of ��� �Tables �
� and �
�	

No program aborts

Fitness Scaling Each operation scored independently using Pareto comparison �� per
test passed	� Memory usage above minimum ��� cells	 penalized

Selection Pareto tournament of �

Hits Test passed

Wrapper makenull result ignored

front no wrapper

dequeue no wrapper

enqueue result ignored

empty result � � 	 TRUE� otherwise FALSE

adf� n#a

Parameters Population � ������� G����� program size � ���� deme � �� �

Success Predicate ��� hits� i
e
 all tests passed

���

Tail Head

-2-3-4-5-6-7-8-9-10

aux2aux2aux1aux1

-1

head

dequeueenqueue front

0

Figure �
��� Execution of Queue program �
 Data are enqueued in cell indicated by aux�

Data is dequeued from the cell indicated by aux� by �rst copying them to cell zero
 �Cell
zero is overwritten as the data values are extracted from it	
 Labels in bold indicate
current values� dotted show previous values

������ Results

In one set of �� runs� six passed the whole test case
 Subsequent analysis shows that

three of these are entirely general solutions to the stack problem� i
e
 will pass any legal

test sequence
 Further� given suitable rede�nition of max and su
cient memory� all three

could implement an integer queue of any reasonable length

Analyzing the other three programs shows that whilst they pass all ��� tests� they

exploit holes in the test sequences
 That is� they are not general and other test sequences

could be devised� which they would fail

Figures �
�� to �
�� show two of the correct programs
 Figure �
�� and �
�� show

simpli�cations of them and Figure �
�� shows how the �rst implements a circular queue

of up to nine integers
 The second �Figure �
��	 allows ten integers

Figures �
�� and �
�� show one of the programs that passes all the tests but which

could fail a di�erent test sequence
 The program contains a small bug which the test case

did not detect
 The bug arises because the Front tree access aux� directly but doesn�t

allow for the wrap�round required in a circular queue
 If it had evolved to use adf� this bug

would not have appeared
 Figure �
�� shows a simpli�cation of this imperfect program

and Figure �
�� shows its operation

Using the formula for the number of runs required �Equation �
� page ��	 and � � ����

and P ����� ���	 � ���� yields ��
 I
e
 �� independent runs� with each generating up to

��������� trial solutions� will �assuming the probability of solution is ���� i
e
 ����	 ensure

that the chance of producing at least one solution is better than ���
 This would require

a total of up to �� ���� ��� � �� � ��� ���� ��� trial programs to be tested

���

SUB

0

1 SUB

SUB

SUB

1 SUB

0 Set_Aux1

0

SUB

1 1

SUB

Set_Aux2

SUB

max 1

arg1SUB max 1

arg1SUB

SUBmod

max max

mod

max

PROG2

arg1 arg1

PROG2

QROG2

SUB

adf1

aux1

QROG2

max 0

Adf1

read

aux2PROG2

write

QROG2

0

read

aux2 read

aux2

10

SUB

makenull dequeue

PROG2

Front

PROG2

QROG2

front

read

aux2

read

read

write

QROG2

0 PROG2

QROG2

max

read

aux2

Adf1

aux2

QROG2

aux1 max

Adf1

0

PROG2

QROG2

QROG2

write

0

Adf1

aux1

enqueue

read

Adf1

QROG2

aux1 Adf1

Adf1

QROG2

aux1 write

aux1 arg1

aux1

SUB

aux2

empty

Figure �
��� Evolved Queue Program �

Adf1

aux2read

aux2

write

0

read

aux2

QROG2 write

0

PROG2

dequeue

mod

max

SUB

SUB

arg19

SUB

arg19

adf1

Adf1

aux1

write

aux1 arg1

PROG2

enqueue

aux1

SUB

aux2

empty

front

read

aux2

Set_Aux1

Set_Aux2

0

makenull

Figure �
��� Simpli�ed Queue Program �

���

aux2

dequeue
front

aux1aux1

enqueue

0 1 2 3 4 5 9 11 127 106 8

1 2 3 4 5 6 7

8 9 10 11 12

13

TailHead

aux2

Figure �
��� Execution of Queue program �
 Whilst also a circular queue implementation�
in this case adf� increases it�s argument by two and arranges on over�ow to use the cells
it previously skipped �numbers on the arrows indicate order cells are used in	
 Cell zero
is only used once� but other cells are re�used

Set_Aux1

Set_Aux1

aux2

aux2

Set_Aux1

Set_Aux1

ADD

Set_Aux2

Set_Aux1

0

Set_Aux2

0

SUB

Set_Aux1

Set_Aux1

aux2

Set_Aux1

0

ADD

Set_Aux2

aux2

aux2

aux2

Set_Aux1

Set_Aux2

Set_Aux2

Set_Aux2

Set_Aux2

aux2

Set_Aux1

write

ADD

write

ADDSet_Aux2

Set_Aux1

Set_Aux1

Set_Aux1

Set_Aux2

aux2 Set_Aux1

Set_Aux1

Set_Aux1

aux2

aux2 Set_Aux1

ADD

ADD

write

write

ADD0

write

ADD

0

makenull

front

read

aux2

read

mod

aux1 SUB

Adf1

aux1

aux1

dequeue enqueue

write

aux2 arg1

Adf1

aux2

mod SUB

empty

aux2 aux1

Figure �
��� Evolved Queue Program � �adf� follows	

���

1

arg1

mod

SUB

ADD

max max

arg1

1 max

mod

PROG2

PROG2

0 max

mod

0

arg1 ADD

max max

mod

1

max max

arg1 PROG2

SUB

QROG2

ADD

PROG2

mod

arg1 ADD

QROG2

1 max

max

SUB

arg1

SUB

SUB

ADD

max max

max

maxPROG2

SUB

PROG2

arg1 arg1

max

max

SUB

max1

QROG2

QROG2

1 max QROG2

1 ADD

arg1

mod

1 max

PROG2

0 max

PROG2

ADD

PROG2

1

QROG2

1 max

QROG2

1 max

ADD max

SUB

1 0

mod

PROG2 QROG2

max1

QROG2

PROG2

max arg1

PROG2

QROG2

0 0

mod

arg1 arg1

PROG2

ADD

ADD

arg1

max

QROG2

PROG2

PROG2

PROG2

ADD

SUB

ADD

PROG2

adf1

Figure �
��� Evolved Queue �� adf�

Set_Aux1

Set_Aux2

0

ADD

2 mod

arg1 11

adf1

aux2

SUB

empty

aux1write

aux2 arg1

Adf1

aux2

PROG2

enqueue

read

aux1

QROG2

Adf1

aux1

dequeue

read

aux2

frontmakenull

Figure �
��� Simpli�ed Queue Program �

���

00 Tail

0 1 2 3 3 5 7 8 9 106

Head

dequeue

front

aux1aux1aux2aux2

enqueue

Figure �
��� Execution of near perfect queue program ��	 �can you spot the bug�	
 Data
are enqueued to the cell in front of the one indicated by aux� and dequeued from the one
in front of that indicated by aux�
 Shaded cells contain data

ADD

1 aux

mod

mod

max 1

1

mod

read

front

PROG2

Set_Aux1

1

0

mod

0 max 1

Set_aux1

PROG2

Set_Aux1

Set_Aux1

1

PROG2

SUB

PROG2

mod

0 max

ADD

aux1 1

PROG2 0

PROG2

Set_aux2Set_Aux1

0

SUB

mod

mod

mod

mod

mod

write

Adf1

aux2

arg1

aux2

aux2

aux2

aux2

aux2

enqueue

SUB

aux1 aux2

emptydequeue

read

Adf1

aux1

Set_aux2

makenull

Figure �
��� Near perfect Queue Program ��	 �adf� follows	

���

SUB

0 1 QROG2

arg1 0

mod

SUB

arg1 1

max

mod

0 SUB

1 max

PROG2

0 max

QROG2

PROG2 max

QROG2

mod

mod

mod

maxarg1

ADD

0 SUB

arg1

ADD

arg1 0

SUB

max arg1

QROG2

SUB

SUB

0 1

mod

mod

SUB

0 1QROG2

max mod

mod

mod

1 arg1

arg1

max

mod

1

arg1

mod

QROG2

SUB

QROG2SUB

0 1 SUB

0 1

mod

QROG2

arg1 arg1

max

mod

max 1

QROG2

ADD

0 0

1

mod

PROG2

0 1

SUB

0 1

SUB

QROG2

arg1

max

mod

arg1

adf1

SUB

QROG2

QROG2

max arg1

SUB

arg1

mod

ADD

mod
arg1

SUB

QROG2

Figure �
��� Near perfect queue program ��	� adf�

ADD

1 aux

read

front dequeue

read

Adf1

aux1

Adf1

aux2

arg1

enqueue

write SUB

aux1 aux2

empty

ADD

1

arg1 max

mod

adf1

Set_aux2

Set_Aux1

1

makenull

Figure �
��� Simpli�ed Queue Program ��	

���

0

50

100

150

200

250

300

200000 400000 600000 800000 1e+06

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

Mean
Min

Best of Generation

Figure �
��� Evolution of the number of �tness tests passed in a typical run of the Queue
problem �when evolving modulus increment	

0

50

100

150

200

250

300

200000 400000 600000 800000 1e+06

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

 Solutions

Mean
Min

Best of Generation
Solutions (general)

Solutions (not general)

Figure �
��� Evolution of the number of �tness tests passed
 Means of �� Queue runs
�evolving modulus increment	
 The discovery of the six programs which pass all the
�tness tests is also plotted

���

0

50

100

150

200

250

200000 400000 600000 800000 1e+06

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

Max
Min

Mean

Figure �
��� Evolution of program size in a typical run of the Queue problem �when
evolving modulus increment	

0

50

100

150

200

250

200000 400000 600000 800000 1e+06

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

 Queue 2 Queue 3 Queue 4Max
Min

Mean
Solutions (general)

Solutions (not general)

Figure �
��� Evolution of program size
 Means of �� Queue runs �evolving modulus
increment	
 The sizes of the six programs which pass all the �tness tests and when they
were found are also plotted

���

Table �
��� Changes between experiments evolving a queue given MIncn and evolving it

The population is divided in to � � � overlapping demes �Section �
��
�	
 As this slows
the rate of convergence� runs were continued for ��� generation equivalents �rather than
��	

Replace MIncn and Inc Auxn primitives by the following changes to adf� and how it is
used

� Each new adf� is checked to see it is �sensible� �Section �
��
�	

� adf� uses pass by reference �Section �
��
�	

� As adf� now changes its argument� it is no longer allowed in the front or empty
trees �which are restricted to use only read�only primitives� Section �
�	

� Allowing adf� to be used by makenull seemed to be causing a con�ict with its use
by dequeue and enqueue
 As it is not required by makenull� makenull was changed
so that it could no longer call it

� Cache of results of calling adf� is maintained
 This produced a reduction in run
time of about ���

� Reduce F from ��
� to �
�
 This may be too small� as each of the �buggy� programs
which pass the whole of the test case� are only able to do so because a critical element
in the queue has the value zero

� Apply memory penalty above �� words of indexed memory used� rather than on ��
or above

� When applying the memory penalty only include cells actually written to rather
than counting all cells between the highest and lowest address used �either read or
written	
 It was hoped that this would allow looser patterns of memory usage and
so ease the evolution of the corresponding adf�

� Reduce number of memory cells from �� to ��

Remove Aux�

���

���� Discussion� Building Blocks and Introns

In this section we return to the shu�er solution evolved in Section �
� and then discuss

possible reasons for �introns� �i
e
 code within the trees which does not a�ect the trees

performance	 and implications for a GP �building block hyposthesis�
 The shu�er solution

evolved in Section �
� is interesting for several reasons�

�
 GP solved the problem in an unexpected way� i
e
 a way we would not expect a

human programmer to use
 However the solution is entirely correct

�
 As Figure �
� shows� the shu�er solution correctly implements a �rst�in �rst�out

queue of up to nine items
 However unlike the other correct evolved solutions pre�

sented in this thesis� it is not generic� i
e
 it cannot implement queues of arbitary

length
 The code is composed of a �xed number of repeating units� and this num�

ber determines the maximum queue length
 Presumably� should longer queues be

required� they could be readily evolved from this solution

�
 The program is clearly composed of repeating units �write Inc Aux�	� cf
 Figure �
�

As each unit is added� the solution is able to correctly process longer queues and so

pass more of the �tness test case
 I
e
 each unit increases the �tness of the solution

It appears the solution has evolved by being assembled from �building blocks� by

crossover

Many evolved solutions in this thesis contain repeated units of code but usually only

one instance of the unit contributes to the operation of the program and the others have

no e�ect of �tness� i
e
 they are introns
 For example the makenull tree of queue � �see

Figure �
��	 contains the subtree �Set Aux� aux�	 eight times but only one of these is

important to the operation of the solution
 The other seven are introns
 The subtree

�Set Aux� aux�	 in the makenull tree is vitally important to the �tness of the whole

program and so can be expected to be positively correlated with �tness
 Thus we would

expect crossover and selection to ensure that the subtree was spread rapidly through the

population
 In a �xed representation genetic algorithm this would mean� increasing the

number of members of the population which contain the building block� but in a varible

length representation such as GP� there is an alternative� increasing the number of times

the building block occurs in each individual
 Often repeating a code fragment in a single

program will have a deleterious e�ect on the program�s �tness and individuals carrying

more than one instance of the code will be swept from the population by selection
 However

���

when it is not harmful� the number of copies of it can be expected to grow
 In a few cases�

such as �write Inc Aux�	 in the shu�er� the additional code can be bene�cial and so will

spread both into more individuals and also each individual will contain more copies of

it
 However in most case� it appears the best that can be expected is that� the code

fragment is not harmful
 NB this does not prevent it spreading
 Provided it is useful at

some point in the program� multiple useless copies of it �i
e
 introns	 can be expected

The observation that multiple units of code are seldom bene�cial implies that such units

cannot be thought of a �building blocks�
 Chapter � shows the correlation between code

fragments and �tness can be used to quantitatively predict how many copies of the code

can be expected in subsequent generations

While nature does occasionally duplicate genes� this seems to be a relatively rare event�

in contrast in GP duplication of code seems to be rampant
 It would be interesting to

consider forms of crossover which discourage or even prevent code duplication
 This could

take the form of a rule which prevented crossover inserting code which duplicated code

already in the tree
 This would add a bias away from very small crossover fragments �as

single terminal are likely to exist in most trees	
 A check that a large fragment was not

carrying repeating smaller fragments might also be needed

���� Summary

This chapter �which was published in part in Langdon� ����b!	 has presented a series of

experiments which show genetic programming can automatically generate programs which

implement integer queue data structures from randomly addressible memory when guided

by a small �xed test case
 Further each of the correct solutions evolved �in Section �
��	

is generic� in that they could �with su
cient memory and change of parameters	 provide

the abstract data structure of any size

Conceptually a queue is scarcely more complex than a stack and yet GP has found it

far harder to evolve implementations of queues than was the case with stacks
 There are

many reasons why this may be the case� the perceived di�erence �������� trial programs

versus ���������� in the last experiment in this chapter	 may be due to the details of the

two experiments� e
g
 some aspect of the �tness function suits the stack but the �tness

functions used in this chapter were not well suited to the queue
 However other possibilities

are�

� In the stack problem the GP was provided with appropriate cursor primitives �i
e

inc aux and dec aux	 and these made the task very much easier
 A comparison

���

of Section �
� and �
�� provides support for this argument
 In Section �
� cursor

primitives suitable for a circular queue implementation were provided and the GP

found programs which passed all the tests much more readily than in Section �
��

where it was obliged to evolve such primitives

� The small di�erence in apparent problem di
culty may not be the cause of the

di�erence� instead the important di�erence may be the number of di�erent ways of

solving �or partially solving	 the problem
 In Chapter � there are two similar basic

ways to implement a solution �either a push�down or a push�up stack	
 However

there are three fundamentally di�erent ways to implement a queue �circular bu�er�

packed array and linked list	 as well as the �caterpillar� partial solutions found

in Section �
�
 Each of which can be implemented in two or more distinct ways

corresponding to the push�up push�down choice

This could be viewed as meaning there are more solutions �any one of which would

be acceptable	 in the search space and so the problem is easier
 But what seems

to happen is the GP population converges to a partial solution which has initially

relatively high �tness and �nds it di
cult to evolve past this to complete solutions

� Genetic programming scales badly so a slightly more di
cult problem becomes very

much more di
cult for GP

From an information theory perspective� genetic programming has converted the in�

formation held in the test cases �the speci�cation	 into the information held in a program

�the solution	
 The information content of the test cases is about ���� bits� whereas that

of the solutions �including redundant code	 is less� e
g
 ��� bits for queue � �this reduces to

��� bits if the simpli�ed code is considered	
 So as with the stack� the GP has produced a

more concise de�nition of the problem than the test case it was given
 The di�erence is not

as great as was the case with the stack as the evolved program contains redundant code

�The queue programs may contain more redundant code simply because the solutions took

longer to �nd which gave greater time for redundant code to form and spread	

An implementation which incorporates �pass by reference� into the ADF framework

has been described

This chapter has shown �good engineering practice� can be incorporated into GP� via

the test function� syntax and genetic operations

It has shown results can be obtained using Pareto optimality within GP

���

Table �
��� Di�erences Between Stack and Final Queue Experiment

Page

Pareto scoring� including excessive memory usage penalty �to discourage
caterpillar	

���

Population of ������ rather than ����� ��
�
�	
 ��

Use of �� � demes rather than completely mixed population ��
��
�	
 ���

Wrapper on empty true is de�ned as � rather than � � ��
�	

��

�� memory cells instead of �� �to discourage caterpillar	
 ���

Continue on memory error ��
�
�	
 ��

��� tests rather than ���
 Additional test sequence to discourage caterpillar
 ��

Last test sequence ensures all legal queue lengths are tested �Tables �
� and �
�	
 ���

enqueue argument given by ��� tan rand��	 rather than rand�����	����� ��
�	
 ��

New primitives ��
�	

� Aux�

� �no inc aux or dec aux	

� Write Auxn replaced by Set Auxn

� mod

� PROG�� QROG�

��

Primitives restricted as to which tree they may occur in ��
�	
 ��

Automatically De�ned Functions ��
�	 �including pass by reference �
��
�	
 ��� ���

Front callable by dequeue ��
�	
 ��

Check adf� is �sensible� ��
��
�	
 ���

adf� cache �Table �
�� and Section E
�	 ���

In these experiments the GP showed a marked tendency to converge to non�optimal

solutions even with the large ������� individuals	 populations
 Thus these problems would

appear to be �GP deceptive�

This chapter provides additional support for partitioning large populations
 The model

used is that of demes

���

Chapter �

Evolving a List

The list is one of the basic data models used in computer programs Aho and Ullman�

����� page ���!
 This chapter shows it is possible using genetic programming �GP	 to

evolve a list data structure from basic primitives
 There are many ways in which a list

can be implemented � Aho et al�� ����! suggest three fundamentally di�erent ways� each

of which has many variations	 but GP is able to co�evolve all the list components so they

form a single working implementation

This chapter describes a case where loops have been successfully evolved
 A CPU

penalty component of a niched Pareto �tness function �Section �
�
�	 was introduced to

contained run time which otherwise might have become excessive
 Similarly syntax re�

strictions were used to limit run time� e
g
 by preventing nested loops �Section �
�
�	 and�

inconjunction with execution directed crossover �Section �
�	� to guide the genetic search

A call by reference mechanism is introduced to GP and used inconjunction with Automat�

ically De�ned Functions �Section �
�	
 The last experiment in this chapter �Section �
�	

presents a candidate model for maintaining evolved software and demonstrates it on the

list problem

��� Problem Statement

An integer list data structure Aho et al�� ����! has ten component operations which

are summarised in Table �
�
 Whilst each of the ten operations is relatively simple� the

complete problem represents a sizable increase in complexity from Chapter �
 Note that

a list is a generalization of a stack and a queue �which we met in Chapters � and �	
 A

stack can be formed from a list by restricting access to just one end of it� while a queue

is a special type of list where access is restricted to both ends
 Items being added to one

end of the list and removed from the other

The immediate goal is to evolve a list which works correctly with a limited number of

���

���

Table �
�� De�nitions of the Ten List Operations

Makenull Make the list an empty list and return position given by End

Retrieve�p	 Return the element at position p

Insert�x� p	 Insert x at position p� moving elements at p and following positions to the
next higher position

Delete�p	 Delete the element at position p� moving elements at p�� and following
positions to the previous lower position

End Return the position following the last element of the list

First Return the position of the �rst position
 If the list is empty� return the
position given by End

Next�p	 Return the position following position p

Previous�p	 Return the position before position p

Locate�x	 Return the position of the �rst element containing value x
 If x is not in
the list at all then return the position given by End

Printlist Print the elements in their order of occurrence

elements
 Nine �NB the same as Chapter �	 was chosen as su
cient to demonstrate the

principle but as we shall see �in Section �
�	 GP is capable of evolving lists of any �nite

size

��� Architecture

The multi�tree architecture and multi�tree crossover described in Section �
�
� and suc�

cessfully used in Chapters � and � was extended to include ten trees �one for each of the

ten list operations	 plus �ve other trees� one for each Automatically De�ned Function

�ADF	

��� Automatically De
ned Functions

Work on the queue has shown that co�evolving code which has some functionality in

common can be eased if there is a shared ADF which can evolve to provide common code

for the common functionality
 This appears to be far easier than expecting the same

functionality to evolve twice in separate locations �Section �
��	
 �See Section �
�
� for an

introduction to ADFs	

Analysing Table �
� we see a common requirement is for an addressing scheme for

the list elements� however End� First� Next and Previous already collectively provide

addressing actions
 To take advantage of this� other parts of the list are allowed to call

���

Table �
�� Summary of the Properties of List Operations and ADFs

Treat as
ADF

Returns value Arguments Pass�by�
reference

Directly
testable

Su
cient
testing

Makenull � p

Retrieve � p
�

p p

Insert � � �

Delete � � �

End
p p p

First
p p p

Next
p p

�
p p

Previous
p p

�
p p

Locate � p
�

p

Printlist � � p p

Adf�
p p

� �
Ins adf

p p
� �

Del adf
p p

� �
Loc adf

p p
� �

Prt adf
p p

� �

them� i
e
 their code both implements the operation and is an ADF �cf
 Front� Section

�
�	
 Chapter � indicates that it may be bene�cial for functions which calculate the next

value of their argument to use a pass by reference calling mechanism �Sections �
� and

�
��
�	
 This avoids evolving code to write the return value into the argument after every

call
 Therefore all of the operations that can be treated as ADFs and that have arguments

�i
e
 Next and Previous	 update them directly using the pass by reference mechanism

�Table �
� summarises characteristics of operations and the ADFs	

Again from Table �
� we see four operations �Insert� Delete� Locate and Printlist	 may

need to process multiple elements of the list
 A single ADF was provided in the hope that

it would evolve to meet this common need
 As each operation processes list elements di�er�

ently the ADF is parameterised� using a private ADF for each operation �see Figure �
�	

When the main ADF is called� it is passed a reference to the corresponding private ADF�

which it in turn may call �using the reference	
 To avoid additional arguments each private

ADF may have access to the arguments of its operation as well as its own �e�ectively it is

in the scope of its operation	
 As before �cf
 Section �
�	 the ADF hierarchy was chosen

so recursion cannot arise

���

Operations

Shared ADF

Private ADFs

Adf1

Ins_adf Del_adf Loc_adf Prt_adf

DeleteInsert PrintlistLocate

Figure �
�� ADF Calling Hierarchy Available to Solve the List Problem

��� Choice of Primitives

The terminals and functions were chosen to make the task of evolving a list as easy as

possible and follow on from those used when solving the queue problem
 Tables �
� and

�
� show where they may be used and describe what they do

Thirty one memory cells are provided� which should su
ce for lists of up to nine

elements
 These are numbered ��� � � � ��� which allows evolved code to use negative as

well as positive addresses
 Code may also use the auxiliary variable �aux�	� possibly to

store the length of the list

����� Iteration

The requirement to process multiple list elements means the GP must support iteration

�loops	 or recursion� either implicitly �e
g
 using block memory move functions	 or ex�

plicitly
 It was decided not to use high level functions but instead to require the GP to

explicitly evolve iterative structures
 Fears that the loop primitive� forwhile� could cause

excessive run time lead to� forbidding nested loops� loops only being allowed where they

appear to be required �i
e
 Adf�	� and a limit ���	 on the number of iterations
 The limit

was set as low as possible but still allows loops to span all the available memory

The fear of long or inde�nite loops appears to have restricted the use of iteration

in GP� with Huelsbergen� ����! reporting �for the most part � � � GP solutions are re�

stricted to non�iterative �non�looping	 programs�
 However there are a number of papers

where programs containing loops have been successfully evolved
 They used a number

of techniques to address the problem of inde�nite loops� Cramer� ����! aborts any pro�

gram that fails to stop within a speci�ed time� Teller� ����b! proposes two solutions�

���

�popcorn� which allows �tness testing to continue whilst it continues to do something

interesting �which may increase its �tness	 but imposes a maximum waiting time be�

tween interesting events� once this expires �tness testing stops
 In contrast the �anytime�

algorithm requires the program to have its best estimate available on demand
 Once

a �xed time limit has expired the program is stopped� even if it is in the middle of a

loop� and its �tness is based upon this answer �which is extracted from an indexed mem�

ory cell	
 Teller�s uses the anytime system in his PADO work Teller and Veloso� �����

Teller and Veloso� ����c� Teller and Veloso� ����d� Teller and Veloso� ����b� Teller� ����a�

Teller� ����b� Teller� ����� Teller and Veloso� ����a!
 Nordin and Banzhaf� ����a�

page ���! enforces a limit on the total number of times loops within a program may

be executed while Koza� ����� Chapter ��! applies both a limit on the total number of

iterations ����	 and a limit for each loop primitive ��� or ��	
 The same approach is used

in Kinnear� Jr
� ����a! but with larger limits ���� and ����	
 In Koza� ����� Chapters ��

and ��! the inde�nite loop problem is side stepped by prede�ning the loop and its limits so

the loop contents are evolved but not its start or terminating conditions
 While Maxwell�s

co�routine model Maxwell III� ����! avoids loop timeouts by allowing selection between

executing programs �those that are stuck in an in�nite loop are expected to have a low

�tness and thus to be removed from the population even though they are still executing	

����� Syntax Restrictions

Syntax rules were imposed with the aim of aiding the evolutionary process by forbid�

ding exploration of apparently infeasible programs without the cost of evaluating their

�tness and also ensuring essential primitives are not lost from the population
 �Section

�
� describes other work on using syntax rules to aid GP
	

Whenever a new individual is created �i
e
 either by crossover or in the initial random

population	 it is compared with the syntax rules
 If it violates any of them� it is discarded

and a new one is created to replace it
 If crossover creates an illegal individual then the

new one is created by re�selecting crossover points within the same tree within the same

parents
 In contrast to Section �
��
�� these rules are enforced by analysing the program

source code and it is not necessary to execute any part of the program to verify they are

obeyed
 The rules were�

� Prt adf must contain at least one print function

� The loop index� i�� may only appear inside the third argument of forwhile� i
e
 the

loop

���

Table �
�� Tableau for Evolving a List

Objective To evolve a list

Architecture Ten separate trees� plus �ve ADFs

Primitives Makenull PROG�� write� Set Aux�� End

Retrieve arg�� read

Insert PROG�� aux�� adf�� Next� ARG�� ARG�� write

Delete PROG�� aux�� adf�� Next� ARG�� Prev

End aux�

First aux�

Next arg�

Previous arg�

Locate adf�� First� ARG�

Printlist adf�� First

Adf� arg�� aux�� forwhile� i�� FUNC� End

Ins adf arg�� swap

Del adf arg�� swap� ARG�� Next

Loc adf arg�� ARG�� read

Prt adf arg�� read� print

All trees may contain �� �� �� � and max

Fitness Case ��� trees run in �� sequences
 ��� consistency tests
 Tangent test
data distribution �F � ��	

Fitness Scaling Each tree scored independently using Pareto comparison� memory
usage above minimum ��� cells	 and CPU usage above ��� per test
run are Pareto �tness penalties

Selection Elitist Pareto Tournament group �� Niche population sample size ��

Hits Number of consistency checks passed

Wrapper Insert� Delete and Printlist result ignored� otherwise no wrapper

Parameters Population � ������� G����� program size � ���� Max initial tree
size ��� ��� directed crossover

Success Predicate ��� hits� i
e
 all tests passed

���

Table �
�� Actions Performed by Terminals and Functions

Primitive Purpose

max constant �� �� max list size	

PROG��t�u	 evaluate t� return u

arg� argument of current operation or ADF� but�

ARG�� ARG� arguments of Insert� Delete� Locate or Printlist

aux� an auxiliary variable �i
e
 in addition to indexed memory	

Set Aux��x	 aux� � x� return aux�

forwhile�s�e�l	 for i� � s� i� � e� i���

if timeout ���	 exit loop

if l returns zero exit loop

return i�

FUNC call private ADF of operation which called Adf�

print�d	 if room in print bu�er ���	 copy d into it� return number of items in it

else evaluate d� return �

Indexed memory is held in store �l � � � �l !� where l � ��� i
e
 a total of �� cells

read�x	 if jxj � l return store x!

else return �

write�x�d	 if jxj � l store x! � d� return original contents of store x!

else evaluate d� return �

swap�x�y	 if jxj � l and jyj � l exchange contents of store x! and store y!

if jxj � l and jyj � l store y! � �

if jxj � l and jyj � l store x! � �

return �

���

� Loops may not appear inside the third argument of other loops �i
e
 no nested loops	

� Adf� must contain at least one loop� which must contain at least one i�

� It would appear to be sensible for code to use its arguments
 Where feasible� syntax

checks are used to encourage this
 Thus Retrieve� Next� Previous� Adf�� Ins adf�

Del adf� Loc adf and Prt adf must contain at least one arg� terminal and Adf� must

contain at least one FUNC �cf
 Table �
�	 primitive

��� Fitness Function

����� Pareto Optimality and Niches

Pareto �tness was described in Section �
�
� and used in some queue experiments �cf

Section �
��
�	
 Pareto scoring means individuals which make an improvement on any

part of the problem tend to be preferred� whereas a scalar �tness will tend to require

each improvement to match or exceed any deterioration in all other parts of the problem

Whether an improvement is more important than a deterioration is given by scaling pa�

rameters within the �tness function
 Consequently setting them is complex and must be

done with care
 To some extent Pareto �tness avoids this problem

With Pareto scoring� a single population can contain several hundred di�erent �tness

values �or niches	 each of which is the best in the sense of not being dominated by any

other member of the population
 This encourages crossover between individuals that are

good at di�erent parts of the problem� which may produce o�spring that are relatively

�t on more of the problem
 However unless there is some selection pressure to maintain

multiple niches� the population will tend to reduce the number of niches it occupies
 This

is an aspect of �genetic drift� is particularly important in small populations Horn et al��

����!
 To maintain a large number of niches the �tness sharing scheme described in Section

�
�
� was used

Where a selection tournament is unable to discriminate between two or more candidates

�either because they have identical �tness or no �tness value dominates all the others	 then

these candidates are compared with a sample of the rest of the population
 The one that is

dominated by or has identical �tness to the fewest other members of the population wins

the tournament
 This creates a secondary selection pressure in favour of individuals that

occupy relatively unpopulated niches� which tends to prevent the population converging

and instead it contains many di�erent non�dominated �tness niches

Figure �
� shows a typical run of the list experiment
 When �tness sharing is used the

���

1

10

100

1000

10000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Number of Individuals Created

Points on pareto surface
No. non-dominated progs

No comparison set

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Number of Individuals Created

 Max passes

 Max passes (no comparison set)

 51

 24

13

Figure �
�� Evolution of the number of �tness niches occupied with and without compari�
son with the rest of the population �� indicates run without comparison set	
 Typical list
runs �starting from identical initial populations	
 All plots� except the maximum number
of tests passed� are plotted on a log scale

number of non�dominated �tness values within the population �i
e
 occupied points on the

Pareto surface	 evolves to be about �������� with on average ��� programs per niche
 In

contrast where comparison with the rest of the population is not used the number of non�

dominated �tness values in the population falls rapidly� stabilising at about ��
 However

the population eventually converges to a few of these so that they contain about 	
� of the

population
 Without comparison with the rest of the population� the proportion of the

population with one of the best �tness values is also more erratic

����� Fitness Test Case

The �tness of each individual is determined by running it on �� �xed test sequences

containing in total ��� operations
 Tests are grouped into �a total of ���	 subsequences

which call several operations and cross check the values returned by them
 If the checks

are passed we increase the program�s �tness along each dimension corresponding to an

operation in the subsequence
 However if a check is not passed no further tests from

the test sequence are made and the next sequence is started
 This has the advantage of

reducing run time by reducing the number of operations that are executed but perhaps

encourages premature convergence by stressing the tests that occur at the start of each

sequence which tend to be easier and possibly susceptible to solution by simple but highly

���

test speci�c code

No preset design or pattern of memory usage is imposed by the �tness tests
 This

undoubtedly makes the problem more di
cult but we wish to show an implementation

can be automatically generated
 This �exibility makes testing more complex as often it is

impossible to say the answer returned by an operation is correct� until it can be compared

with answers returned by other operations �cf
 column six in Table �
�	

As in Chapters � and �� the tests only cover correct operation of the list
 I
e
 error

trapping� such as detecting the deletion of non�existing list elements� is not covered

Again like Chapters � and � all storage� i
e
 the indexed memory and aux�� is initialized

at the start of each test sequence �i
e
 �� times	
 In half the test sequences the indexed

memory is initialized to zero �aux� is always set to zero	
 In the other half �unlike Chapters

� and �	 the indexed memory is initialized to a random but �xed data pattern� which

is di�erent for each test sequence
 This is to discourage the GP from evolving partial

solutions which exploit the value zero to indicate memory cells are unlikely to have been

written to and so are empty
 In earlier experiments �cf
 Section �
�
�	 such programs

had been found� they appeared to work until they inserted zero into the data structure

The random data patterns have the same distribution of values as that inserted into the

list
 In most other published work indexed memory is initialised to zero �as in Chapters

� and �	 however Jannink� ����� page ���! describes a regular non�zero initialization

pattern
 Crepeau� ����� page ���! �memory locations �are	 initially �lled with random �

bit values� as this makes it �highly probably� that problem speci�c values needed to solve

the problem �are somewhere in memory�

Test Data Values

Values to be entered into the list are speci�ed in the test sequence
 The �tangent� distri�

bution of test data values with its wide range of positive and negative values both large

and small� described in Section �
� was used again
 The scaling factor F was set to ��� so

that about half the data values inserted in the list lie in the range of legal memory indexes

�i
e
 ���	

����� CPU and Memory Penalties

CPU Penalty

The number of instructions �i
e
 function calls and terminals evaluated	 are counted as

each individual is tested
 The mean number per operation used is calculated and becomes

���

a penalty component in the Pareto �tness
 However individuals which use less than ���

instructions per operation have zero penalty

This scheme was introduced as it was anticipated that the forwhile loop could lead

to very time consuming �tness evaluations and so excessively long run times
 Figure �
�

shows when the CPU penalty is applied most program evolve to use less than or near to

the CPU threshold during their �tness testing
 As each program takes less CPU to test

the total run time is reduced
 The penalty also causes the evolution of near parsimonious

code �Figure �
�	
 This is in dramatic contrast to the queue �which had no CPU or

space penalties� cf
 Figure �
��� page ���	 where programs rapidly grew to the limit of

the available space
 This growth is widely seen in GP and is often referred to as �bloat�

 Tackett� ����b� page ��!
 However the threshold was chosen with care to avoid over

penalizing constructs �like loops	 which have a high CPU cost but may not appear to help

achieve higher �tness levels until later in the evolutionary process
 Therefore the threshold

was deliberately set high at about � � fastest program that might evolve

This is thought to be the �rst use of an explicit CPU penalty in the �tness function�

however both Teller�s PADO and Maxwell III� ����! include implicit run time as part

of �tness evaluation and there are many case where program size is included as part of

the �tness calculation� e
g
 Iba et al�� ����b� Zhang and M"uhlenbein� ����a! �where the

language does not include program branching� subroutines or iteration� program size and

number of primitives evaluated are the same� i
e
 a CPU penalty is equivalent to a size

penalty	

Memory Penalty

When evolving a queue� memory hungry partial solutions evolved �cf
 Section �
�	
 There�

fore an excessive memory usage penalty was introduced to dissuade the population from

evolving down this blind alley
 A threshold of using �� cells must be passed before this

penalty applies ��� being su
cient for queue of nine items	
 This penalty was retained

for the list and such memory hungry behaviour has not been observed
 This might mean

the penalty is working or such solutions are not common in which case the penalty may

be unnecessary or too restrictive

Increased Penalties Following Finding a Solution

In order to search for faster solutions or ones that use less memory� after the �rst solution

has been found in a run� both penalties are increased by setting their thresholds to zero

���

0

20000

40000

60000

80000

100000

120000

140000

0 500000 1e+06 1.5e+06 2e+06 2.5e+06

I
n
s
t
r
u
c
t
i
o
n
s

r
u
n

Number of Individuals Created

Peak 267,608 in initial population

 Evolved list 1

 Max

Threshold

Max
Mean
Min

Fastest solutions 1
Fastest solutions 2
Mean CPU threshold

Figure �
�� Evolution of the number of primitives executed during �tness testing on the
List problem� means of �� runs
 Error bars indicate one standard deviation either side of
the population mean
 The fastest solutions evolved during the two successful runs and the
population mean of the threshold above which the CPU penalty is applied are also shown

The minimum number of instructions are executed by relatively unsuccessful programs as
these are run on few tests

The new �tness function is applied to members of the existing population as well as newly

created individuals

����� Locating Errors with Fitness Testing

In any multi�component problem there will be some ambiguity between which parts are

performing well and which contain errors� however the �tness tests were designed to try

and reduce this by indicating those operations which pass su
cient tests so that they are

probably correct
 That is� failure to pass the whole test case is probably due to errors

elsewhere in the program
 This has the potential advantage of reducing the number of

active dimensions in the �tness function and the information is also used in the following

section

Various points in the test case were chosen to indicate one or more operations have

been tested su
ciently so that if no errors have occurred up to this point we are con�dent

they are working correctly
 Naturally this must be done with care so operations are not

said to be correct when they still contain errors
 This is implemented by marking the

chosen points in the �tness test sequences with the operation�s name
 If they are reached

without any errors occurring this is taken to mean testing of that operation is complete

���

Regardless of any subsequent errors �which are assumed to be the fault of one of the other

operations	 the operation is given its maximum possible score �i
e
 the score it would have

if every consistency check was passed	
 This is applied to Retrieve� End� First� Next�

Previous and Printlist
 This does not change the execution of the �tness test case but in

principle this information could be used to avoid retesting operations which are believed

to be correct
 �However often it is necessary to run �correct� operations again in order to

be able to test other parts of the code	

��� Directed Crossover

As Figures �
� and �
� show� GP solves the di�erent parts of the list problem at di�erent

times
 If it were known that a fragment of code was working well it would seem wasteful to

perform crossover in it
 Of course GP does not know for certain if code is correct� however

the crossover location can still be guided by the program�s current behaviour �as this may

be misleading ��� remain unguided	
 As discussed in Section �
�
� a number of papers

show �albeit on very di�erent problems	 bene�ts in using either current behaviour Rosca

and Ballard� ����! program syntax Gruau� ����� D�haeseleer� ����! or evolving program

syntax Whigham� ����b! to bias crossover or other genetic operators
 Our mechanism

succeeds in dynamically redistributing crossover locations to code in need of improvement

as the population evolves
 It only considers code at the level of individual operations or

ADFs but could be re�ned

The mechanism uses knowledge of the �rst parent�s �tness and the number of times

the trees in it were executed and whether they appeared to be successful or not to proba�

bilistically bias the choice of which tree the crossover occurs in
 It avoids trees which are

believed to be correct �as de�ned in Section �
�
�	� that have never been executed �NB if

the only di�erence between a parent and its o�spring is in non�executed code� then that

code will not be executed in the o�spring either and the o�spring will behave identically

to the parent	 or those that passed all their �tness tests
 Otherwise it is biased to choose

trees that appear to fail most often �details given in Langdon� ����a!	

An alternative worth exploring would be a more incremental approach aiming program

modi�cation at code that is closest to working� avoiding code that is performing badly

until other code is working
 However such an approach was not taken as being more

complex but also for fear that it would encourage the evolution of specialist programs

which could not evolve to solve the entire problem

���

Fraction

Maximum Score

insert
delete

first
next

prtlist

makenul

retriev
end

prev

locate 0

500000

1e+06

0

0.5

1

 Number of Individuals Created

Figure �
�� Evolution of the Maximum Score in the Population for Each List Operation�
Typical Run

Fraction

Maximum Score

insert
delete

first
next

prtlist

makenul

retriev
end

prev

locate 0

500000

1e+06

1.5e+06

2e+06

0

0.5

1

 Number of Individuals Created

Figure �
�� Evolution of the Maximum Score in the Population for Each List Operation�
Means of �� Runs

���

��	 Parameters

The default values for parameters given in Section E
� were used except for� the population

size �������	� the maximum program length ����	� maximum size of each individual tree

in the initial population ���	 and the length of each run �� ��� generation equivalents�

cf
 Table �
�	

��� Results

In a group of �� runs� two produced solutions which passed all the tests
 All runs completed

at least ��� generation equivalents with the promising ones being continued �the longest

run being ��� generations	

Like the stack and the queue� solutions have been found which not only pass all the

tests� but subsequent analysis shows to be correct and general� i
e
 given su
cient memory

would correctly implement a list of any �nite size
 Figure �
� shows the �rst program to

pass all the test case �evolved after ��
���� generation equivalents	 which is also a general

and generic solution to the list problem

Figure �
� contains simpli�ed equivalent pseudo code for four of the operations and

shows GP has implemented the list as an array� with Insert opening a gap for the new

data element by moving part of the list up one memory element
 Delete moves the top

part of the list down one element overwriting the element to be deleted

Solutions were also found which exploit the �nite size of the test set� in that they are

able to pass all of the tests but are not entirely general
 Interestingly the same GP run

found solutions which are general less than �ve generations later
 Each program contains

redundant code� i
e
 code that can be removed yielding a shorter program but with the

same functionality
 In Figure �
� the essential code is highlighted by shaded boxes

On continuing the evolutionary process� shorter solutions with reduced CPU cost were

found� see Figures �
� and �
�
 �The data after generation ��� are more sparse
 To avoid

excessive variability in Figures �
�� �
� and �
� only data referring to �fteen or more runs

are plotted	
 In the �rst successful run reductions of ��� in program length and ��� in

the number of instructions required to complete the test sequences were produced
 In the

second case the changes were more dramatic with program length falling by two thirds

and number of instructions to about a quarter of the �rst solution found
 The shortest

solutions reported by both runs have similar lengths and execute about the same number

of primitives during the �tness test case
 The evolution of solutions which use fewer in�

���

1

arg1

Next

swap

swap

del_adf

locate

adf1

adf1

adf1

First

arg1

loc_adf

read

ADD

0

ARG1 arg1

ADD

SUB arg1

ADD

first

1

end

ADD

aux1 1

adf1

1

prtlist

ADD

0 arg1

forwhile

FUNC

i0

forwhile

aux1 0aux1

SUB

ADD

0 0

adf1

SUB

0 arg1 swap

0 arg1

1

swap

SUB

ins_adf

ADD

SUB

ARG1 Prev

aux1

adf1

ARG1

SUB aux1

aux1ADD

delete

arg1

prt_adf

ADD

arg1 print

read

arg1

makenull

PROG2

write

0 PROG2

End

PROG2

SUB

1 End

Set_Aux1

0

End

1

SUB

ADD

arg1arg1

ADD

ADD

SUB

arg1 arg1

arg1

1

SUB

prevnext

ADD

1 arg1

retriev

read

arg1

SUB

Next

aux1

adf1

ARG2 aux1 0

ADD

ARG2 ARG1

write

ADD

write

insert

Figure �
�� First Evolved Solution to List Problem

���

Insert

aux���

for i��ARG�� i�� aux�� i���

swap � i�

store ARG�! � ARG�

Delete

aux���
for i��ARG�� i�� aux�� i���

swap i� �i� � �	

Printlist

for i���� i�� aux�� i���

print store i�!

Locate

for i���� i�� aux�� i���

if store i�! � ARG� return i�

return aux� � �

Figure �
�� Simpli�ed Pseudo Code Equivalent to First Evolved Solution to List Problem

structions is exactly what the increase in the CPU penalty �described in Section �
�
�	 was

designed to achieve
 However if the penalty was not increased there was some reduction

due to random �uctuations
 The increase in penalty produced bigger e�ects in these runs

but it is not known if this is generally true

Figure �
� shows the number of various primitives in a typical population as it evolves

relative to their abundance in the initial random population
 It shows a number of prim�

itives become very rare and indeed nine are lost entirely from the population
 In �� runs

out of the �� after ��� generations less than ��� of the population contained a primitive

required in the solutions that were found
 Of these ��� �� runs lost all of one or more

such primitives
 That is in about half the runs loss �or scarcity	 of one or more primitives

prevents �or makes unlikely	 �nding a solution similar to those found
 �Chapter � discusses

why primitives may become extinct	

From Figure �
� a crude estimate of the probability of a solution being found by genera�

tion ��� when using a population of size ������� can be estimated at �#��
 Using Equation

�
� �page ��	 the number of GP runs required to be assured �with ��� probability	 of

obtaining at least one solution can be estimated to be ���
 This would require a total of

up to � ��� � ��� � ���� ��
 trial programs
 NB this must be treated as an estimate� not

an exact �gure

���

0

100

200

300

400

500

0 500000 1e+06 1.5e+06 2e+06 2.5e+06

P
r
o
g
r
a
m

S
i
z
e

Number of Individuals Created

 Evolved list 1

Max
Mean
Min

Shortest solutions 1
Shortest solutions 2

Figure �
�� Evolution of program size� means of �� runs
 Error bars indicate one standard
deviation either side of the population mean
 The shortest solutions evolved during the
two successful runs are also shown
 �Program size limited to ���
	

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

P
r
i
m
i
t
i
v
e

A
b
u
n
d
a
n
c
e
/
A
b
u
n
d
a
n
c
e

i
n

I
n
i
t
i
a
l

P
o
p
u
l
a
t
i
o
n

Number of Individuals Created

Figure �
�� Evolution of the frequency of rare primitives �i
e
 terminals and functions where
the number of them in the population falls below ��� of its original value
 NB the many
case where primitives did not fall dramatically or increased in number are not shown	

This graph plots the ratio of the number of them in the population to the number of them
in the initial population for a typical run
 The nine primitives which are lost completely
from the population are shown as solid lines� the others are shown as dotted lines

���

��� Software Maintenance

Software maintenance is the problem of ensuring existing code continues to operate ef�

fectively
 This may involve correcting bugs in existing code or adapting code to new

requirements
 In the software industry maintenance is a major task but has as yet at�

tracted little interest from GP
 Petry and Dunay� ����! is one exception and Andre�

����c! considers using GP to extend the functionality of human written optical character

recognition programs �i
e
 maintain them	

Automatically generated code �such as produced by a high level language compiler	

may be di
cult to maintain at the code level and it is common practice to change the

inputs to the code generator �i
e
 the source code	 and run it again
 It is anticipated

that evolved code will also be di
cult to maintain� so maintenance may be performed by

changing the inputs to the automatic code generator �i
e
 the GP	 and running it again

This section uses the list problem to demonstrate the following model for maintaining

evolved code�

�
 Start with the original �tness function and the population that contained the solution

to the original problem �this should avoid solving the new� possibly harder� problem

from scratch	�

�
 Write additional �tness tests for the new functionality�

�
 Expand the existing individuals within the population to include random code for

the new functionality�

�
 Evolve the expanded population with both the original and new �tness tests

To use the list problem as a test bed for this model� it is split into two� one part

representing the original problem and the other the new requirements
 The �rst is all the

operations except Locate and Delete� which represent the new requirements
 Locate and

Delete were chosen in the expectation that once Insert and Printlist operations are working�

being similar� Locate and Delete could be readily added
 As they are also the most di
cult

operations �see Figures �
� and �
�	� removing them from the �rst phase should have the

advantage of speeding it up allowing more time to be spent on the maintenance phase

Each GP run starts as before �Sections �
� to �
�	 except in the �rst phase the new

�tness function does not test either Delete or Locate �it comprises �� test sequences

and a total of ��� operation calls and ��� consistency checks	
 After a solution to the

smaller problem has been found� solutions are allowed to spread through the population by

���

continuing the run until at least ����� other individuals which solve the smaller problem

�i
e
 pass all ��� checks	 have been found before proceeding to the second phase

At the start of the second phase the trees for Delete and Locate �and their associated

ADFs	 in every individual in the population are re�created at random
 The other eleven

trees in each individual are not changed
 So we start the second phase with every individual

being a hybrid of code that is adapted to the smaller problem �but need not be an exact

solution to it	 and random code
 In the second phase� the �rst �� test sequences are

augmented by � more designed to test Delete and Locate� they contain ��� operation calls

and �� consistency checks
 The population is allowed to evolve as before
 The directed

crossover mechanism �Section �
�	 ensures crossovers are allowed in every tree but are

weighted towards the newly introduced random code

This use of a substantially adapted population as a starting point can be compared

to Perry�s Perry� ����! use of an initial population which is primarily random but also

contains a small number of partially adapted individuals
 On a learning task �rather than

maintenance	 he shows it gives a performance improvement
 Ferrer and Martin� ����!

also reports improved performance from seeding the initial population with previously

found good solutions
 While Kraft et al�� ����! construct the initial population to contain

a high proportion ���� or more	 of terminals which the user has chosen as likely to be

relevant

����� Results

In a group of �� runs� �ve produced solutions which passed the �rst set of tests
 In these

�ve� evolution was allowed to continue for between �� and �� generations� during which

two runs found programs which pass the second phase of testing
 Both runs produced

general programs which implement a list and have a similar structure to those produced

in the �rst experiment
 As with the �rst experiment� on continuing the evolutionary

process �with increase CPU and memory penalties	 both runs found shorter solutions and

solutions which took fewer instructions to complete the test cases

From �nding the �rst solution to the �rst part of problem to starting the second took

between �
� and �
� generation equivalents and the �rst solutions to the whole problem

appeared �
� and ��
� generations later �i
e
 ��
� and ��
� after the �rst solutions to the

�rst part	

The probability of a solution being found by generation ��
� when using a population

of size ������� is estimated to be �#� �further work is needed to verify this estimate	

���

Using this� the number of individuals which need to be evaluated in order to be ��� sure

of at least one solution is ���� ���
 Or �����th of the e�ort to solve the whole problem

Whilst Bruce� ����! does not deal with program maintenance� he reports a similar

impressive reduction e�ort required to evolve a complete solution when individual ��ve	

components are evolved sequentially rather than simultaneously
 However unlike our ap�

proach� to e�ect sequential evolution the action of each operation on internal memory is

speci�ed by the user and forms part of the �tness function

���� Discussion

While genetic programming appears to �nd the list problem hard� in terms of the num�

ber of individuals generated� it is only about three times more di
cult than the queue�

despite requiring the co�evolution of ten operations rather than �ve
 There are many dif�

ferences between the GPs used to solve these problems �such as the syntax restrictions�

Section �
�
�	 which no doubt play a part in the di�erence� none the less so small a rise

in problem di
culty given the change in size is interesting

It is tempting to ascribe the GP�s di
culty in �nding solutions to the many cases

where vital primitives are removed by evolution from the population
 The size of the

population makes it very unlikely that the complete loss of a primitive from the population

�Section �
�	 is due to random chance �known as �genetic drift�	
 However this should be

regarded as a symptom of a deeper problem� they are not justifying their presence in the

current population

Their loss indicates they have below average �tness� i
e
 in many populations� the

�tness function is being deceptive and leading the GP towards some local optima and

away from correct solutions
 Thus simply adding more of them to the population via

a mutation operator would not be expected to solve this problem directly
 �However

mutation might be bene�cial by allowing the population to retain them whilst it evolves

beyond the deceptive local optima or via other e�ects such as incorporating an element

of hill climbing� see O�Reilly and Oppacher� ����! and Iba et al�� ����c!	
 Their below

average �tness may be associated with the CPU penalty� which introduces a small selection

pressure against �introns� �see Nordin et al�� ����!	 or code of no immediate purpose

and this may eventually succeed in removing all of certain primitives

Measures to retain population diversity such as �tness niches or demes appear to be

necessary to give the evolutionary process time to assemble the primitives into high value

building blocks from which complete solutions can be assembled so enabling it to escape

���

from local optima
 Overlapping demes� which constrain mates to be selected only from

near neighbours �similar to those in Tackett and Carmi� ����!	 succeeded in delaying the

lost of primitives but spreading the population out across the �tness landscape using a

��tness sharing function� Horn et al�� ����! was more e�ective in delaying the losses for

longer and so was used

While �tness niche appear to combat the e�ects of deceptive �tness functions to some

extent� the many non�dominated solutions within the population mean the primary selec�

tion pressure is to �nd relatively unpopulated �tness niches� rather than better ones
 It

also means almost all crossovers occur between disparate individuals
 It is unclear how

bene�cial this is
 Ryan� ����! suggests bene�ts for disassortive mating� while Harvey�

����! suggests �for a variable length but linear GA	 better results may be obtained by

breeding between similar programs
 He suggests this will produce smaller improvements

at each stage but more progress in the long run

One of the lessons� for multi�part programs� from the queue was while ADFs are useful�

it may be better to ensure the evolutionary pressures on them do not pull in more than one

direction by avoiding an ADF being used in two completely di�erent ways
 For example

in the queue problem the enqueue and empty operations have little in common� when

they shared the same ADF it appeared to try and satisfy both and so failed to develop

any clear functionality and no overall solutions were found
 Accordingly the use of ADFs

was constrained �Table �
�	
 This up front GP design and the use of syntax restrictions

�Section �
�
�	 was intended to help the GP� it would be interesting to see how far the GP

would get with fewer restrictions

���� Conclusions

The importance of abstract data structures to software engineering is well recognised

Our experiments �which were published in part in Langdon� ����d!	 show genetic pro�

gramming� using indexed memory� can automatically implement integer list structures�

co�evolving all ten components simultaneously
 The list data structure is a generalisation

of the stack and the queue data structures �which have already been evolved	 however it

is more complex than either

As with earlier work� generic programs have been automatically created that not only

solve the problem on which they were trained but which �with su
cient memory	 imple�

ment the abstract data structure of any size

A model for maintaining evolved software based on population re�use has been demon�

���

strated and �in one example	 considerable savings shown compared to evolving a solution

to the new requirement from scratch

Program execution time can be included as a Pareto component of �tness and leads

to shorter and more e
cient programs
 It has been shown that a genetic programming

population using Pareto tournament selection� in conjunction with comparison with �a

sample of	 the rest of the population can stably support many �tness niches

Whilst this work has shown �tness niches� CPU penalties and biased choice of crossover

points were e�ective when evolving a list� further work is required to demonstrate to what

extent they are generally useful

���

Chapter �

Problems Solved Using Data

Structures

In this chapter we show that data abstraction can be bene�cially used within genetic

programming �GP	
 Work so far Teller� ����a� Andre� ����b� Brave� ����� Jannink� ����!

shows GP can automatically create programs which explicitly use directly addressable

�indexed	 memory to solve problems and Chapters �� � and � demonstrate that GP can

automatically generate abstract data structures such as stacks� queues and lists
 In this

chapter we show that GP can evolve programs which solve problems using such data

structures
 In two cases we show better GP performance when using data structures

compared to directly addressable memory
 In the remaining case �which is the �rst problem

presented	 the evolved solution uses an unexpected data structure which is appropriate

to the problem rather than indexed memory when both are available
 Section �
� reviews

published GP work where explicit memory is used and concludes that in most successful

cases data structures appropriate to the problem have been provided for the GP �although

the experimenter may not have used the term �data structure�	

Three example problems are presented
 In each the task is to induce a program which

processes a context free language given training samples of the language
 We chose prob�

lems that should be solvable using stack data structures as stacks were the easiest of the

data structures investigated in Chapters �� � and � to evolve
 In general� data structures

at least as powerful as stacks are required to process context free languages

In Section �
� GP evolves a program which classi�es sequences of brackets as being

correctly or incorrectly nested
 Section �
� evolves programs which classify sequences of

multiple types of bracket as being correctly nested or not �a Dyck language	 and Section

�
� evolves programs which evaluate Reverse Polish �post�x	 expressions
 The structure

of Sections �
�� �
� and �
� is based on the structure of Chapters �� � and �
 For example

Sections �
�
�� �
�
� and �
�
� each contain the problem statement for one of the three

���

���

problems
 Section �
� summarises this chapter

��� Balanced Bracket Problem

Other work on GP evolving language recognizers has concentrated upon using GP to

evolve tree based speci�cations for abstract machines� such as �nite state machines Dunay

et al�� ����!� deterministic pushdown automata Zomorodian� ����!� machines composed

of simple Turing machines Dunay and Petry� ����� Petry and Dunay� ����! or special

memory nodes within the tree Iba et al�� ����!
 However Koza� ����� page ���! recasts

a simple language recognition problem in terms of classifying DNA sequences as introns

or exons and shows GP can evolve a correct program for this task and Wyard� �����

Wyard� ����� Lucas� ����! use GAs operating on formal grammar rules of various types to

induce grammars for a number of regular and context free languages
 In contrast we wish

to use the task of evolving a language recogniser to investigate the impact of providing

data structures versus indexed memory� and so we follow normal GP practice and our GP

executes the GP tree directly i
e
 treats it as a program

In this section we show GP can solve the balanced bracket problem directly when

given an appropriate data structure � Zomorodian� ����! previously solved this problem

using GP to evolve a speci�cation for a pushdown automaton� Wyard� ����! used a GA

operating on formal grammar rules to induce a grammar for it and Lankhorst� ����!

used a �xed representation GA to specify a pushdown automaton� while Sun et al�� ����!

solved it by training a neural network in combination with a stack	
 The balanced bracket

language is a context free language and so can be recognised by a pushdown automaton

�which implies use of a stack	 and not a regular language� which could be recognised by a

�nite state machine
 However a pushdown automaton is not required� the balanced bracket

language can be recognised by an intermediate machine� a �nite state automaton with a

counter
 The solution found by GP was of this form
 In a run where both index memory

and register memory were available� the evolved solution used the register memory� NB

GP selected the appropriate data structure for the problem

	���� Problem Statement

The balanced bracket problem is to recognise sentences composed of sequences of two

symbols� � and �� which are correctly nested
 E
g
 ���� is correctly nested but ��� is not

A limit of ten symbols per sentence was assumed

���

	���� Architecture

Two automatically de�ned functions �ADFs	 �see Section �
�
� for an introduction to

ADFs	 are available to assist the main result producing branch �or tree	
 The �rst� adf��

has no arguments and has the same terminal and function sets as the main tree
 However

as it does not have any arguments� it does not use the primitive arg�

The second� adf�� has one argument but cannot contain terminals and functions with

side e�ects
 This allows a cache of previous values returned by it to be maintained� thus

reducing run time
 �Caches of ADF values were also used in Chapter �� cf
 Table �
��

�page ���	
 See also Section E
�	

	���� Choice of Primitives

Table �
� shows the parameters used and the terminals and functions provided� NB they

include indexed memory but not stacks

For ease of comparison the same sized indexed memory and stacks were used in all

three sets of experiments in this chapter
 Both were deliberately generously sized to avoid

restricting the GP�s use of them
 The indexed memory consisted of ��� memory cells�

addressed as ��� � � � � ��� and the stack allowed up to �� ���bit signed integers to be

pushed
 As in the previous chapters� memory primitives had de�ned behaviour which

allows the GP to continue on errors �e
g
 popping from an empty stack or writing to a

non�existent memory cell	
 All stored data within the program is initialised to zero before

the start of each test sentence
 Table �
� �page ���	 gives the actions of terminals and

functions used in this chapter

	���� Fitness Function

The �tness of each trial program was evaluated on a �xed set of ��� example sentences

containing both correctly nested �positive tests	 and incorrectly nested brackets �negative

tests	
 The test case includes all the positive cases up to a length of ten symbols and all the

negative examples up to a length of four
 The number of negative examples grows rapidly

with sentence length and so above a length of four a limited number negative examples

were chosen at random �see Table �
�	
 The program is run once for each symbol in the

sentence
 Thus each program is run ���� times ���� for � and ��� with an argument of � 	

The value returned by the program on the last symbol of the sentence gives its verdict

as to whether the sequence is correctly nested� i
e
 the value returned by the program is

ignored� except on the last symbol of each test sentence

���

Table �
�� Tableau for Balanced Bracket Problem

Objective Find a program that classi�es sequences of � �represented by
�	 and � ���	 as being correctly nested or not

Architecture Main tree� adf� �no arguments	 and adf� �one argument	

Primitives �any tree	 ADD� SUB� PROG�� IFLTE� Ifeq� �� �� ��� max� forwhile� i�

�rpb� adf�	 adf�� aux�� read� write� swap� Set Aux�

�rpb� adf�	 arg�

�rpb only	 adf�

Max prog size � � �� � ���
 In initial population each tree is limited to ��
primitives

Fitness case ��� �xed test examples� cf
 Table �
�

Fitness Scaling Number of test examples correctly classi�ed �scalar	

Selection Tournament group size of � used for both parent selection and
selecting programs to be removed from the population
 Steady
state population �elitist	

Hits Number test sentences correctly classi�ed

Wrapper Zero represents False �i
e
 not in language	 otherwise True

Parameters Pop � ������� G � ��� ��� demes� no CPU penalty� no aborts

Success predicate Fitness � ���

This test case and the test cases used in Sections �
�
� and �
�
� are available via anony�

mous ftp� node ftp
io
com� directory pub#genetic�programming#code �le GPdata gp��
test
tar
Z

	���� Parameters

The default values for parameters given in Section E
� were used except the population

size and the maximum program length
 The parameters used are summarised in Table �
�

Earlier work �cf
 Chapter �	 had shown even a large population had a great ten�

dency to converge to partial solutions which e�ectively trapped the whole population

preventing further progress
 In this �and the following section	 the population was par�

titioned into demes so crossover is restricted to near neighbours in order to reduce the

speed of convergence �see Section �
�
�	
 As in Chapter � the population is treated as

a �� � ��� torus with two members of the population per square on its surface
 Each

time a new individual is created� a � � � square neighbourhood on the torus �known

as a deme	 is selected at random
 Parents and the individual their o�spring will re�

place are selected from this deme rather than from the whole population Tackett� �����

Collins� ����!

���

Table �
�� Number of correctly nested and incorrectly nested bracket test sentences of
each length used in the nested bracket test case
 Longer incorrect sentences were chosen
at random from all the possible incorrect sentences of the same length

Length Positive Negative

� all �

� all � all �

� all �

� all � all ��

� random �

� all � random �

� random �

� all �� random ��

� random ��

�� all �� random ��

Totals �� ���

	���	 Results

In the �rst run a general solution was produced by generation ��� which contained ��

primitives
 This is shown in Figure �
� and a simpli�ed version is shown in Figure �
�

In contrast to earlier work Zomorodian� ����!� where GP was obliged to evolve push�

down automata� the evolved solution is e�ectively a �nite state machine with a counter

�NB less powerful than a pushdown automaton	
 The evolved solution �cf
 Figure �
�	

only uses a single integer memory cell �aux�	� in which it counts the depth of nesting

At the end of a legal sentence this count must be zero
 Further� should the brackets be

unbalanced before the end is reached� this is recognised and aux� is also used as a �ag

indicating this
 This solution not only passes all the �tness tests and is a general solution

to the problem but �given suitable rede�nition of max	 is a solution for sequences of any

length

To �nd the solution given in Figure �
� required ��� ��� ��� � ���� ��� individuals to

be processed
 This is similar to that required in Zomorodian� ����! where a solution was

found in generation �� with a population of �����
 ��� � �� ��� � ��� ���	

Given the readily found general solution did not exhibit stack like behaviour it was

decided not to repeat this problem with a GP that had stack primitives

���

1 adf1

Ifeq

arg1

-1

aux1 0-1

SUB

-1 max

forwhile

adf2

-1

adf1

ADD

Set_Aux1

ADD

arg1 ADD

adf2

SUB

read

arg1

aux1

adf1

0

ADD

arg1

forwhile

PROG2

arg1

adf1

max

forwhile

arg1arg1

PROG2

arg1

Set_aux1

forwhile

arg1arg1 arg1

arg1

PROG2

arg1

PROG2

arg1arg1

ADD

1 arg1

PROG2

arg1 arg1 forwhile

arg1 arg1arg1

PROG2

max

adf2

ADDarg1

ADD

Set_Aux1

aux1

PROG2

Set_Aux1

Set_Aux1

ADD

arg1 ADD

adf2

-1

aux1

Ifeq

Ifeq

rpb

0 0

forwhile

arg1

adf2

arg1

forwhile

arg1 arg1

forwhile

forwhile

Figure �
�� Solution to Bracket Problem

Set_Aux1

ADD

aux1

0 SUB

-1 max

0

Ifeqarg1 1

Set_Aux1

ADD

1 aux1

0

Set_Aux1

ADD

1 max

0

-1

PROG2 0

Ifeq

Ifeq

Figure �
�� Solution to Bracket Problem �Simpli�ed	

���

��� Dyck Language

In this section we apply genetic programming to a solve a new problem� that of recognising

a Dyck language
 Two sets of experiments were conducted� the �rst provided the GP

with primitives which implement a stack for it and the second provided indexed memory

and other primitives like those from which it has been shown GP can evolve stack data

structures� cf
 Chapter �
 The same �tness function� population size and other parameters

were used in both sets of experiments
 Solutions were readily found when the GP was

provided with a stack data structure but no solutions have been found when using indexed

memory

The Dyck problem was chosen as Dyck languages are context free languages and require

machines at least as powerful as pushdown automata �i
e
 stacks	 to solve them
 Dyck

languages are generalisations of the balanced bracket problem to multiple types of bracket

	���� Problem Statement

The problem is to recognise which sentences are correctly bracketed� however there are

now four types of bracket pairs� �� �� �� �� f� g� �� �
 E
g
 fg�� is correctly bracketed but

�g is not
 As with the nested brackets problem� a limit of ten symbols per sentence was

assumed

	���� Architecture

In the �rst experiments �stack given	 no ADFs were used� whilst in the second there are

three ADFs� having �� � and � arguments
 It was hoped that these could evolve to operate

like pop� push and top
 Each could be called from the main tree� additionally the third

�which it was hoped might evolve to act like top	 could be called by the �rst

	���� Terminals� Functions and Parameters

The terminals� functions and control parameters used in these two experiments are as

Section �
� except where given in Table �
�
 The di�erences between the two experiments

in this section are shown in the middle and right hand columns of Table �
�

The �ve stack primitives are based on the de�nition of a stack given in Table �
�

�page ��	� however they have been made more rugged by ensuring their behaviour is

de�ned in all circumstances� i
e
 including errors such as popping from an empty stack

Their behaviour is de�ned at the end of this chapter in Table �
�

���

Table �
�� Tableau for Dyck Language Problem

Objective Find a program that classi�es sequences of four types of bracket
�� �represented as �	� � ���	� � ���	� � ����	� f ���	� g ����	� � ���	
and � ����	 	 as being correctly nested or not

Primitives Common Stack Given Index Memory

All trees� ADD� SUB� PROG��
IFLTE� Ifeq� �� �� max�
aux�

Makenull� Empty�
Top� Pop� Push

read� write�
inc aux�� dec aux�

rpb� as all plus ifopen� ifmatch�
ARG�� Set Aux�

adf�� adf�� adf�

adf�� as all plus adf�

adf�� as all plus arg�� arg�

Max prog size Initial tree limit �� �� �� �� � ���

Fitness Case ��� �xed test examples� cf
 Table �
�

Fitness Scaling Number of correct answers returned

Selection Tournament size � �After �rst solution CPU penalty used giving a
two dimensional �tness value� �tness niching used with a sample
of up to �� ��� �	 nearest neighbours
	

Hits Number test symbols correctly classi�ed

Wrapper Zero represents True �i
e
 in language	 and all other values False

Parameters Pop � ������� G � ��� Pareto� � � � demes� CPU penalty only
after �rst solution found� Abort on �rst error in sentence

Success predicate� Hits � ����� i
e
 all answers correct

This problem is more complex than that in Section �
� and so the test case is longer

To constrain the increase in run time� forwhile loops were not used

	���� Fitness Function

The �tness of every trial program is determined by presenting it with a series of symbols

from test sentences and counting how many times it correctly classi�es each as to whether

it is the last of a correctly balanced sequence
 All memory is initialised to zero before the

start of each test sentence

Test Case

The number of possible test sentences of a particular length is much larger than in Section

�
� and so it was not practical to include sentences longer than eight symbols and even

for lengths of six and eight symbols it was necessary to select �at random	 positive test

examples to include

In a correctly matched sentence there will be equal numbers of opening and closing

���

brackets of each type but this is unlikely to be true in a random sequence of brackets
 If the

only negative examples are random sequences of symbols� a program could correctly guess

most answers just by considering if there are equal numbers of each pair of bracket
 We

anticipate that such programs can be readily evolved� for example the program that evolved

in Section �
� does this
 However it may be anticipated that evolving complete solutions

from such partial solutions will be very di
cult
 �Chapter � suggests the evolution of

correct stacks is made harder by the presence of �deceptive� partial solutions
	 To penalise

such partial solutions the test case included examples where there are equal numbers but

which are not correctly nested �referred to as �balanced� in Table �
�	

As before it was not practical to include all cases and so longer negative examples

�both balanced and not balanced	 were selected at random
 Even so the �tness tests are

much longer than that in Section �
� and so to keep run time manageable the number of

times each program must be run was reduced by�

� Only using the �rst half of the test case �i
e
 tests up to length six	
 However if

a program passes all the shorter tests then it was also tested on test sentences of

length seven and eight
 Thus most of the time the second half of the test case is not

used
 It is only used by programs that are nearly correct� which evolve later in the

GP run

� In the �rst experiments in this chapter� each program is only tested at the end of

each test sentence
 In these experiments the value returned for each symbol is used

If a wrong answer is returned the the rest of the sentence is ignored
 This reduces

run time as in many cases only part of the test sentence is processed

Some shorter sentences are identical to the start of longer ones and so they need

not be tested explicitly as the same actions will be performed as part of a longer

test
 Therefore such duplicates were removed from the test case
 The test case after

removing such duplicates are summarised in the right hand side of Table �
�

Symbol Coding

Initially brackets were coded as ����������� but general solutions proved di
cult to

�nd
 Instead� despite the use of �balanced� negative examples� partial solutions based

upon summing up symbol values dominated
 Since the purpose of the experiment was to

investigate learning correct nesting of symbols rather than learning which symbols match

each other the problem was simpli�ed by providing the GP with two new primitives

���

Table �
�� Number of correctly and incorrectly nested test sentences in the Dyck language
test case
 The incorrect test sentences are divided into those with the correct number of
each type of bracket but which are in the wrong order �referred to as �balanced�	 and
others �referred to as �random�	
 Longer sentences were chosen at random
 The right
hand side of the table gives the number in each category actually used in the Dyck test
case� i
e
 after removing duplicates

Len� Positive Negative After Removing Duplicates

gth Balanced Random Positive Balanced Random Score

� all � �

� all � all �� � ��

� �� �� ��

� all �� all �� �� �� �� ���

� �� �� ��

� random �� random �� �� �� �� �� ���

� �� �� ���

� random �� random �� �� �� �� �� ���

Totals �� ��� �� ����

�ifmatch and ifopen� cf
 Table �
�	 which say which symbols match each other
 To further

discourage partial solutions based on summing symbol values the symbols were recoded

as prime values with no simple relationships between them �cf
 Table �
�	

Evolving Improved Solutions

The combination of Pareto �tness� a CPU penalty and �tness niches introduced in Chapter

� �Section �
�
�	 was used in these experiments
 Brie�y after an individual which passes all

the tests is found the GP run is allowed to continue using a modi�ed �tness function which

includes a CPU penalty
 Each program�s �tness now contains two orthogonal terms� the

original score and the bmeanc number of instructions run per program execution
 Tourna�

ment selection is still used for reproduction and deletion but now uses Pareto comparison

�see Section �
�
�	� so passing tests and using little CPU are equally important
 The

�tness sharing scheme described in Section �
�
� was used
 This introduces a secondary

selection pressure to be di�erent from the rest the population so allowing high scoring and

high CPU programs to co�exist with programs with lower scores but using less CPU
 This

may reduced premature convergence

	���� Results

In three runs given the stack primitives general solutions were evolved by generation �

to �� �in three identical runs but using simple non�demic �normal	 populations� two runs

���

0

5000

10000

15000

20000

25000

30000

35000

40000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

I
n
s
t
r
u
c
t
i
o
n
s

r
u
n

Number of Individuals Created

 Dyck Solution (22.6)

Max
Mean
Min

Fastest solutions

Figure �
�� Evolution of the number of primitives executed during �tness testing on the
Dyck problem� means of � runs using demes
 Error bars indicate one standard deviation
either side of the population mean
 The fastest solutions evolved in each run are also
plotted
 The minimum number of instructions are executed by relatively unsuccessful
programs as these are run on few tests

produced solutions in generations �� and ��	
 Evolution was allowed to continue after the

�rst individual to pass all the tests was found
 Under the in�uence of the CPU penalty

faster but still general solutions were found �see Figure �
�	
 Figure �
� shows the �rst

solution to evolve in a run using demes and Figure �
� shows one of the fastest solutions

produced in the same run after �� generations
 As in Section �
� the solutions are not

only general solutions to the given problem� but given a deep enough stack would work

with any sentences of any length

As all runs given stack primitives and using demes succeeded in �nding a solution the

best �i
e
 most likely	 estimate of the number of runs required to be assured �with ���

probability	 of obtaining at least one solution is one
 This would require a total of up to

��� ��� � � � ��� ��� trial programs

In contrast none of �� runs using the indexed memory primitives passed all the tests

�The probability of the di�erence between the two experiments being due to chance is

� �
��	
 Some of the more promising runs were extended beyond �� generations up to

��� generations without �nding a solution
 The best �produced after �� generations	 still

failed � tests �on sequences of up to six symbols	
 It showed some stack like behaviour

which enables it to pass �� of the tests of length seven and eight but also showed some

���

Arg1

0

0aux1

Push

ARG1

Push

aux1 1 max

Push

ADDARG1

IFLTE

Pop ARG1

ifmatch

ifmatch

Pop

0

ADDPop ARG1

Push

Push max1aux1

Push

Push

IFLTE

IFLTE

Figure �
�� First Solution to the Dyck Problem
 Evolved after ��
� Generations

ifopen

Push

Top

Pop max

Pop ARG1 Push

Push

ARG1

ifmatch

Figure �
�� One of the Fastest Solutions to the Dyck Problem evolved after �� Generations

signs of over �tting to the speci�c test case used rather than having learnt to solve the

general problem

A program which always returns zero �i
e
 True	 has a �tness of zero because it will

always fail on the �rst symbol of each test sentence �a sentence of odd length must be

unbalanced	
 In contrast a program which never returns zero will always be correct on

the �rst symbol of each sentence and so will get the opportunity to be tested on the

second symbol which it may also pass
 For the actual test case used a program which

never returns zero has a �tness of ���
 While aborting a test sentence on the �rst error

reduces the number of times programs are run� it may also make it more di
cult to evolve

a solution
 In both experiments the GP population quickly learns not to return zero� but

when using indexed memory it appears to be more di
cult than when given a stack to

escape this local optima and learn to return zero at some points

��� Evaluating Reverse Polish Expressions

In this section we describe the �nal comparison of appropriate data structures and indexed

memory
 Once again solutions are readily evolved when the appropriate data structure is

provided but no solutions have been found when using indexed memory

Two sets of experiments were made� the �rst provided the GP with primitives which

implement a stack for it and the second provided primitives like those from which it has

���

been shown GP can evolve stack data structures

	���� Problem Statement

In this section the GP evolves a four function ��� �� � and �	 calculator� i
e
 evaluates

integer arithmetic expression
 The problem is simpli�ed by presenting the expression

in Reverse Polish Notation �post�x	� which avoids consideration of operator precedence

and by avoiding expressions which include division by zero
 No limit on the length of

expressions was assumed� however the expressions tested were between three and �fteen

symbols long �see Table �
�	

	���� Architecture

The multi�tree architecture and multi�tree crossover described in Section �
�
� and em�

ployed in Chapters �� � and � was used
 This allows trees within each individual to evolve

to specialise in solving one of the operations that form the complete calculator program

Each individual within the population consists of �ve separate trees �num� plus� minus�

times and div	 plus either zero or two ADFs
 As in sections �
� and �
� each test sentence

is presented a symbol at a time to the GP� however in this case the appropriate tree is

selected
 E
g
 if the symbol is an integer� then the num tree is executed with the integer

as its argument
 Each tree returns a value as the current value of the expression �num�s

answer is ignored	

In the �rst experiments �stack given	 no ADFs were used� whilst in the second there

are two ADFs� having � and � arguments respectively
 It was hoped that these could

evolve to operate like pop and push
 Both ADFs could be called from the �ve main trees

	���� Terminals� Functions and Parameters

The terminals� functions and control parameters are as Section �
� except where given in

Table �
�

Fears that run time might prove to be excessive led to the decision to remove some

unnecessary primitives from the function and terminal sets
 Since all storage including the

supplied stack is initialised before the evolved programs can use it� the Makenull operation

is not needed
 Therefore the terminal set was simpli�ed by not including Makenull and

Empty �which is also not needed	 in these experiments

���

Table �
�� Tableau for Reverse Polish Notation �RPN	 Expression Evaluation Problem

Objective Find a program that evaluates integer Reverse Polish �post�x	 arith�
metic expressions

Primitives Common Stack Given Index Memory

���� trees� ADD� SUB� MUL�
DIV� PROG�� �� ��
aux�� Set Aux�

Top� Pop� Push read� write� inc aux��
dec aux�� adf�� adf�

num� as ops plus arg�

adf�� as ops but no adfs

adf�� as ops but no adfs and add arg�

adf�� as ops but no adfs and add arg�� arg�

Max prog size Initial tree limit �� �� �� � ��� �� �� � ���

Fitness Case ��� �xed test expressions� cf
 Tables �
�� �
� and �
�

Fitness Scaling Number of correct answers returned

Selection Pareto tournament size �� CPU penalty �initial threshold �� per
operation	� �tness niching used with a sample of up to �� other
members of the population

Hits Number of correct answers returned

Wrapper Value on num ignored
 No wrapper on other trees

Parameters Pop � ������� G � ���� Pareto� no demes� CPU penalty �in�
creased after �st solution found	� abort on �rst wrong answer given
in expression

Success predicate Fitness � ���� i
e
 a program passes all tests

���

	���� Fitness Function

In each individual in the population a separate score is maintained for its �ve operations

�num� plus� minus� times and div	 plus a CPU penalty
 Each time the individual returns

the correct answer �and it is checked	 the score for each of its operations that has been

used since the last time its result was checked is incremented
 As in Section �
�� these

scores are not combined and each contributes as a separate objective in multi�objective

Pareto selection tournaments

Test Case

The �xed test case was created before the GP was run
 Part of the test case was devised by

hand and the remainder was selected at random
 However randomly selected data values

�from the range ��� � � � � ��	 proved to be unsatisfactory for expressions containing �#�

because division of two randomly selected integers has a high chance of yielding zero or an

integer near it and therefore data values were changed by hand
 �Less than one in eight

divisions of randomly chosen values will yield a value of � or more or �� or less	

The following rules were used to create the test case�

� It was expected that as minus and divide are not commutative they would be the

most di
cult operations to evolve and therefore the test case include a higher pro�

portion of minus and divide than the other two arithmetic operations �cf
 Table �
�	

� The test case was designed to include deeply nested expressions �cf
 Table �
�	 as it

was anticipated otherwise non�general partial solutions only able to evaluate simple

expressions� which could be evaluated without using a stack� would predominate

� To avoid consideration of exception handling� and its associated complexity� divide

by zero was deliberately excluded from the test case

� Randomly generated data values were manually changed so that only a few divisions

yield values in the range �� � � � � �

� To avoid problems with over�ow� randomly generated expressions did not allow�

arguments to addition or subtraction outside the range ���
 � � � ���
 or arguments

to multiplication or division outside the range ������ � � � � �����

� Also to avoid over�ow problems� data values set by hand were chosen so neither the

product of two arguments of divide nor the square of the second argument exceeded

�������������

���

Table �
�� Length of reverse polish expressions at each point where answers are checked
in the �tness test case

length � � � � � � � � 	 �
 �� �� �� �� �� Total

No� of cases �
 � �� �� �� � �� � � � � �	�

� Most test expressions were well formed� with exactly the right number of data values

for the number of operators �and vice�versa	
 �Since all four operators are binary this

means there is one more data value than the number of operators in the expression
	

However� to test generality� one expression with fewer arithmetic operations was

included
 In this case there should be multiple data values left after evaluating the

expression

As before it was necessary to constrain run time
 This was done by checking answers

during the evaluation of each expression and aborting evaluation following the �rst error

detected and removing test examples which essentially duplicated others
 This left ���

test expressions which include ��� points where the trial program�s answer is checked

CPU Penalty

The long run times encountered with these experiments led to the decision to include

a CPU penalty of bmeanc number of primitives executed per program run
 Unlike the

previous section� this CPU penalty was applied from the start of each run
 However

initially only programs with long run times are penalised �by ignoring the penalty where

it was � ��
 This was implemented by setting the penalty is zero for such fast programs	

Should a program be evolved which passes the whole �tness test case then the CPU penalty

is increased by applying it to all programs

	���� Results

In eleven runs using stack primitives� six produced solutions which passed all the tests�

these were found between generations �� and �� �see Figure �
�	
 In four cases the �rst

programs to pass all the tests were also general solutions to the problem
 In the other

two the �rst solutions failed special cases such as � � � and x�y � � �which were not

included in the test case	� however in both runs general solutions were evolved less than

�� generations later �before �� generations	

Under the action of the increased CPU penalty� solutions which took about one third

���

Table �
�� Number of times each tree occurs in reverse polish expression �RPN	 test case
and the score it has when the whole test case is passed

Operation No
 Max Score

num ��� ���

plus �� ��

minus ��� ��

times �� ��

divide ��� ���

���

Totals ��� ���

Table �
�� Number of symbols �i
e
 operators or numbers	 used in the RPN test case for
each level of expression nesting
 �Depth of nesting calculated after the symbol has been
processed	

depth � � � � � � Total

No
 of cases ��� ��� ��� �� �� � ���

of the CPU time of the �rst solution found were evolved
 Figure �
� shows one of the �rst

general solutions to be evolved and Figure �
� shows one of the fastest solutions evolved

at the end of the same run

In �� runs with stack primitives replaced by indexed memory �see right hand side of

Table �
�	 no program passed all the tests
 �NB the probability of the di�erence between

the two experiments being due to chance is � ��	
 The highest number of tests passed

���� of ���	 was achieved by a program which used the �rst ADF to implement DIVR

�i
e
 standard divide but with the arguments in reversed order� see Table �
�	 and the

second to approximate both push and pop on a three level stack
 Other unsuccessful trials

included adding a third ADF �with two arguments	 in the hope that this might evolve

the DIVR functionality leaving the other ADFs free to implement push and pop �best ���

in �� runs� of which �� ran out of time before �� generations	 and supplying SUBR and

DIVR functions �in place of SUB and DIV	 where the best score was ���� in �� runs

The probability of a general solution being found by generation �� when given the

stack primitives is best estimated at ����
 Using Equation �
� �page ��	 the number of

GP runs required to be assured �with ��� probability	 of obtaining at least one solution

is ��
 This would require a total of up to ��� ��� � �� � ���� ��� trial programs

���

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

I
n
s
t
r
u
c
t
i
o
n
s

r
u
n

Number of Individuals Created

 Threshold

Max
Mean
Min

Fastest solutions (general)
Fastest solutions (other runs)

Mean CPU threshold

Figure �
�� Evolution of the number of primitives executed during �tness testing on the
calculator problem� means of �� runs
 �Average data is not plotted after generation �� as
several runs run out of time by this point
	 Error bars indicate one standard deviation
either side of the population mean
 The fastest solutions evolved during the six successful
runs and the population mean of the threshold above which the CPU penalty is applied are
also shown
 The minimum number of instructions are executed by relatively unsuccessful
programs as these are run on few tests

div

Set_aux1

PROG2

PROG2 0

Aux1Top

plus

Set_aux1

ADD

Pop aux1

Set_Aux1

minus

Set_Aux1

MUL

Pop Aux1

times

SUB

Pop aux1

num

ADD

Push

MUL

aux1 1

Push

arg1 PROG2

Top Pop

SUB

Set_Aux1

SUB

PROG2

Popaux1 aux1

PROG2

1

DIV

Figure �
�� First Solution to the RPN Problem
 Evolved after ��
� generations ������
instructions to complete test case	

���

num plus

MUL

Push

aux1

Set_Aux1

arg1

Set_aux1

ADD

Pop aux1 SUB

1 aux1 1

SUB

ADD

Set_Aux1

minus

Set_Aux1

MUL

Pop Aux1

Set_aux1

DIV

Pop aux1

divtimes

Pop

Figure �
�� One of the Fastest Solutions to the RPN Problem evolved after �� generations
����� instructions to complete test case	

Discussion

The non�commutative functions �� and �	 appear to be more di
cult to evolve than

commutative ones because the arguments on the stack are in the opposite order to that

used by the SUB and DIV functions
 �The problem can be readily solved� when given

the stack primitives� by replacing SUB and DIV by SUBR and DIVR which process their

arguments in the opposite order� i
e
 the order on the stack
	 The div tree has to use some

storage �i
e
 aux�	 to reverse the order of the stack arguments �sub can simply negate the

result of performing the operation in the wrong order to get the right answer	
 The need

to use aux� makes the problem deceptive� in that many programs can obtain high scores

using aux� as the top of the stack and only fail tests which require deeper use of the stack

Some of the di
culty the GP with indexed memory found may have been due to trying

to use aux� both as stack pointer �for which inc aux� and dec aux� make it suitable	 and

as the top of stack �as evolved in many cases where the stack primitives were given	
 If

this is case better results might be obtained by adding a second auxiliary variable �aux�	

so these two uses could be split between two variables

The top curve on Figure �
� shows the initial CPU penalty threshold� i
e
 before a

solution has been found
 This shows on average the CPU threshold is higher than the

average maximum CPU used by any individual in the population
 While this means

the CPU penalty has a small e�ect� the e�ect need not be negligible since any program

which does exceed the threshold automatically has poor �tness and so is likely to be

removed quickly from the population �and so not be included in these statistics	
 I
e
 the

penalty may still be e�ective in constraining growth in elapse time and program size �often

described as �bloat�	

Contrasting Figure �
� with a similar plot for the list problem �Figure �
�� page ���	 we

see in the list the CPU penalty is much more constraining� despite the threshold being set

at ��� per test rather than ��
 This is probably simply due to the presence of the forwhile

���

primitive in the function set but may also be due in part to the problem requiring more

primitives to solve it �fastest evolved solution ��
� per test versus �
� for the calculator	

��� Work by Others on Solving Problems with Memory

This section brie�y reviews published work on solving problems using GP which includes

memory primitives
 In most successful cases data structures appropriate to the problem

have been used although the term �data structure� may not have been
 The principle

exception is Teller�s signal processing system PADO
 This section groups publications

according to memory structure� starting with the simplest and �nishes with consideration

of PADO

	���� Scalars

 Cramer� ����! showed programs which use simple scalar memory could be evolved� how�

ever the paper concentrates upon program representation not use of memory
 Huelsber�

gen� ����! solved the same problem� albeit with di�erent primitives etc
� but also uses

simple scalar memory
 Huelsbergen also shows the problem can be solved by random

search in a practical time

 Koza� ����� page ���! presents an example where a single variable is used to maintain a

running total during execution of a loop
 While in Koza� ����� page ���! a small number of

variables are used in a protein classi�cation problem where the program processes proteins

sequentially� a residue at a time
 The variables provide the ability to store information

about previous parts of the protein which is expected to be useful in this classi�cation

problem
 NB in both cases programs were evolved using memory appropriate to the

problem

	���� One Indexed Memory

Most of the published work on using GP where use of memory is explicitly evolved follows

 Teller� ����� Teller� ����a! which introduced �indexed memory�� i
e
 a single multiple

celled directly addressable memory� to GP
 For example Raik and Browne� ����! use

indexed memory to show that on a reactive task� GP with explicit memory performs

better than GP with implicit memory
 Indexed memory� as it allows random access�

provides little �structure� and could be problem independent� however in Andre� ����b�

Andre� ����b� Andre� ����a! the indexed memory is made problem speci�c by treating

it as two dimensional and sizing it so that it is isomorphic to a small problem �world�

���

That is the memory is given a structure appropriate to the problem
 A similar approach

is taken in Brave� ����c! where memory is isomorphic to a full binary tree �world�

The simple indexed memory used in Crepeau� ����! is not obviously structured in a

problem speci�c manner
 The author suggests the success of GP at evolving a �Hello
World�

program by manipulating �a subset of	 Z�� machine code may in part be due to initialising

memory with random � bit values
 Thus it is �highly probable� Crepeau� ����� page ���!

that the needed ascii values are initially in the indexed memory

Another GP system which evolves machine code� based this time on the SUN RISC

architecture� allows large amounts of directly addressable memory� however Nordin and

Banzhaf� ����a! does not describe experiments using it
 Nordin and Banzhaf� ����!

describes experiments using the system for sound compression where indexed memory and

structured memory �a stack	 were tried
 In these experiments �programs took longer time

to evolve and performed worse in �tness but had a softer sound with less overtones� than

experiments without memory
 However other changes were simultaneously made which

may have made the task more di
cult
 Therefore it is di
cult to draw any conclusions

regarding the bene�ts or otherwise of data structures from this paper

 Jannink� ����! includes �� memory cells in one experiment to evolve programs which

generate �random� numbers
 This is said to give �the best average validation score��

i
e
 better than when the programs were not given access to memory
 Details of how the

evolved programs use memory are not given and no comparison with other memory sizes

or structures is provided

	���� Case Base

 Spector and Alpern� ����! presents a system which attempts to evolve music�making

programs� speci�cally producing jazz improvisation responses to supplied �single�measure

calls�
 �While we �Spector and Alpern	 have not yet succeeded in inducing and reca�

pitulating the deep structure of jazz melody� promising music generating programs have

been evolved and the authors �believe that our framework holds promise for the eventual

achievement of this goal
�

While the authors refer to their memory system as �indexed memory� it is problem

dependent
 Consisting of �� identical data structures� each of which is designed to hold a

melody �expressed as �� MIDI values	
 One data structure holds the input� another the

output �i
e
 the program�s jazz �response�	 and the rest form a one dimensional array of

�� elements containing a case base of human written music
 Only the output structure

���

may be written to
 Various problem dependent functions are provided for cutting and

splicing segments of melodies but data values within the data structures cannot be directly

manipulated

	���� Strongly Typed Genetic Programming

 Montana� ����! presents two examples where GP is provided with local variables which

it uses to solve problems �the two other examples don�t allow explicit use of evolvable

memory	
 The use of the strong typing framework means the variables must be typed
 In

both examples the variables are lists� which are either of the same type as the input or

the same type as the output
 That is with strongly typed GP data structures appropriate

to the problem are readily chosen �STGP also prevents some kinds of abuse of the data

structures	

	���� Graph Data Structures

 Brave� ����� Brave� ����a! shows GP using a graph data structure which provides prim�

itives to connect nodes and follow connections
 Using this data structure the GP was

able to solve a navigation problem which requires it to form a mental model of its world

This builds on Andre� ����b! but replaces a predetermined isomorphism between indexed

memory and the problem �world� by a more complex data structure that is appropriate

to the problem

	���	 Linked List Data Structure

 Haynes and Wainwright� ����! requires GP to evolve control programs for agents which

have to survive in a simulated world containing mines
 The agent�s memory is a dynami�

cally allocated linked list� with a new list element representing the current location being

automatically allocated each time the agent enters a new location in the world
 Read and

write access is with respect to the current location� e
g
 the current memory cell� the cell

representing the location north of here� the cell north�east of that and so on
 The list

keeps track of the agent�s path allowing it to backtrack along its path
 �Since its path lies

in a mine�eld a safe option is always for the agent to retrace its steps	
 NB the memory

is structured in an appropriate fashion for the problem

	���� Tree Structured Memory for Temporal Data Processing

 Iba et al�� ����! introduces �special �memory terminals�� which point at any nonterminal

node within the tree
� The value given by a memory terminal is the value at the indicated

���

point in the tree on the previous time step
 While this structure is applicable to a range

of signal processing problem� once again memory has been constrained for the GP into a

structure appropriate to the problem

 Sharman et al�� ����� Esparcia Alcazar and Sharman� ����! similarly use memory

terminals to hold values previously calculated at nodes within the program tree� however

the mechanism for connecting terminals to inner nodes is di�erent� explicit �psh� functions

within the program tree save the value at that point in the tree by pushing it onto a stack

The stack is non�standard as �psh� writes to the current stack whereas �stkn� terminals

provide a mechanism to read the stack created on the previous time step
 The stack is

also non�standard in that the �stkn� terminals non�destructively read data inside the stack

�rather than from just the top of stack	

	���
 PADO

PADO Teller and Veloso� ����c� Teller and Veloso� ����d� Teller and Veloso� ����� Teller

and Veloso� ����b� Teller� ����a� Teller� ����b� Teller and Veloso� ����a� Teller� ����! is

a GP based learning architecture for object recognition and has been shown to be able to

correctly classify real world images and sounds far better than random guessing �albeit

with less than ���� accuracy	
 PADO is a complex system with many non�standard GP

features �the classi�cation system is built from a hierarchy of individual programs which

may use libraries of evolving code as well as ADFs similar to Koza�s� repeated execution of

programs within a �xed execution time� programs are represented by a directed graph of

execution nodes rather than as trees and the genetic operators used to create new program

are themselves evolved	
 The programs it generates are large and their operation is poorly

understood

PADO was deliberately designed not to use domain knowledge and so only the simplest

memory structure �indexed memory	 is used
 It has been applied to complex ill behaved

problems where there is no obvious data structure
 GP could in principle build problem

speci�c structures on top of indexed memory which the complexity and size of the evolved

programs might conceal� however there is no evidence that this is happening
 The better

than random performance of PADO may be due to its many other features rather than

its simple memory structure

���

��� Summary

The experiments described in Sections �
� to �
� �which were reported in part in Langdon�

����b!	 have shown GP can solve two new problems
 In Section �
� we showed GP can

induce programs which correctly classify test sentences as to whether they are in a Dyck

language or not and in Section �
� we showed GP evolving code which evaluates Reverse

Polish Notation �RPN	 expressions
 In Section �
� we showed GP can solve the nested

bracket problem without requiring an intermediate step generating an abstract machine

All three examples were solved by GP using the appropriate data structure for the

problem
 The two more complex examples �Dyck language and RPN	 proved to be more

di
cult for GP when provided with indexed memory rather than when provided with a

stack
 Despite indexed memory being more powerful than stacks or simple scalars� none

of the three problems has been solved using indexed memory

Section �
� reviewed the current GP literature where problems have been solved using

evolvable memory
 It shows many cases where appropriate data structures have been

used to solve problems
 The principle counter example� where problem speci�c data

structures have not been provided� is PADO� where better than random performance has

been achieved on classi�cation problems with no obvious structure

It has often been argued� e
g
 Kinnear� Jr
� ����c� page ��!� that functional primitives

used with GP should be as powerful as possible� in these examples we have shown appro�

priate data structures are advantageous� that is GP can bene�t from data abstraction

These experiments have not provided evidence that existing GP can scale up and tackle

larger problems
 If they had shown GP solving problems by evolving the required data

structures �on the �y� as it needed them this would have been powerful evidence
 However

this was not demonstrated
 The failure of GP to solve the problems when provided with

the more general �i
e
 more powerful	 directly addressable memory data structure shows

that data structures should be chosen with care and it may not be su
cient to simply

over provide� with more powerful structures than are needed

���

Table �
�� Actions Performed by Terminals and Functions

Primitive Purpose

DIV�x�y	 if y
� � return x�y

else return �

SUBR�x�y	 DIVR�x�y	 As SUB and DIV except yield y�x and y�x� i
e
 operands reversed

max constant �� �� max input size	

PROG��t�u	 evaluate t� return u

ARG	
 arg	
 arg� arguments of current operation or ADF

aux	 an auxiliary variable �i
e
 in addition to indexed memory	

Set Aux	�x	 aux	 � x� return aux	

forwhile�s�e�l	 for i� � s� i� � e� i���

if timeout ����	 exit loop

if l returns zero exit loop

return i�

i� Yields value of loop control variable of most deeply nested loop or
zero if not in a loop in current tree
 NB loop control variable in
one tree cannot be accessed in another �e
g
 an ADF	

IFLTE�x�y�t��t�	 if x � y return t�

else return t�

Ifeq�x�y�t��t�	 if x � y return t�

else return t�

ifopen�x�t��t�	 if x � �� ��� �� or �� return t� ##i
e
 opening symbol

else return t�

ifmatch�x�y�t��t�	 if x � �� ��� �� or �� evaluate y ##i
e
 opening symbol

if �x�y	 � �����	� �������	� �������	 or �������	 return t�

else return t� ##x and y don�t match

else return t�

Makenull clear stack� return �

Empty if stack is empty return �� else return �

Top if stack is empty return �� else return top of stack

Pop if stack is empty return �� else pop stack and return popped
value

Push�x	 Evaluate x�

if � �� items on stack push x� return x

else return �

Indexed memory is held in store �l � � � �l !� where l � ��� i
e
 a total of ��� cells

read�x	 if jxj � l return store x!

else return �

write�x�d	 if jxj � l store x! � d� return original contents of store x!

else evaluate d� return �

swap�x�y	 if jxj � l and jyj � l exchange contents of store x! and store y!

if jxj � l and jyj � l store y! � �

if jxj � l and jyj � l store x! � �

return �

���

Chapter �

Evolution of GP Populations

In this chapter we investigate in detail what happens as GP populations evolve
 We start in

Section �
� by showing Price�s covariance and selection theorem can be applied to arti�cial

evolution
 Following the proof of the theorem with experimental justi�cation using the GP

runs on the stack problem described in Chapter �
 Section �
� brie�y describes Fisher�s

fundamental theorem of natural selection and shows in its normal interpretation it does

not apply to genetic algorithms
 The failure of most GP runs on the stack problem to

�nd programs which pass the whole �tness test is explained in Section �
� by the presence

of �deceptive� high scoring partial solutions in the population
 These cause a negative

correlation between necessary primitives and �tness
 As Price�s theorem predicts� their

frequency falls� eventually leading to their extinction and so to the impossibility of �nding

solutions like those that are evolved in successful runs

Section �
� investigates the evolution of variety in GP populations
 While simple

general models are developed they fail to predict in detail the evolution of variety in

the stack populations and instead detailed measurements reveal loss of diversity causing

crossover to produce o�spring which are copies of their parents
 Section �
� concludes with

measurements that show in the stack population crossover readily produces improvements

in performance initially but later no improvements at all are made by crossover

	�� Price�s Selection and Covariance Theorem

Price�s Covariance and Selection Theorem Price� ����! from population genetics relates

the change in frequency of a gene in a population from one generation to the next� to the

covariance of the gene�s frequency in the original population with the number of o�spring

produced by individuals in that population �see Equation �
�	
 The theorem holds �for

a single gene or for any linear combination of genes at any number of loci� holds for any

sort of dominance or epistasis �non�linear interaction between genes	� for sexual or asexual

���

���

reproduction� for random or non�random mating� for diploid� haploid or polyploid species�

and even for imaginary species with more than two sexes� Price� ����!
 In particular it

applies to genetic algorithms �GAs	 Altenberg� ����!

%Q �
Cov�z� q	

z
����	

Q � Frequency of given gene �or linear combinations of genes	 in the population

%Q � Change in Q from one generation to the next

qi � Frequency of gene in the individual i �more information is given in Section �
�
�
below	

zi � Number of o�spring produced by individual i

z � Mean number of children produced

Cov � Covariance

����� Proof of Price�s Theorem

In this section we follow the proof of Price�s Theorem given in Price� ����! �which assumes

sexual reproduction	 and show it applies to Genetic Algorithms
 In the next section ��
�
�	�

we extend the proof to cover asexual reproduction
 This more general proof also applies to

Genetic Algorithms� including GAs with asexual reproduction �i
e
 copying and mutation	

Firstly we de�ne the additional symbols we shall use

P� � Initial population

P� � Population at next generation �for purposes of the proof generations are assumed
to be separated	

N � Size of initial population

nz � �Zygotic ploidy of the species for the gene�
 E
g
 in natural species nz may be ��
i
e
 the gene can exist on two chromosomes

In traditional GAs chromosomes are not paired so nz is �
 In GP there is still only
one chromosome but the same gene �primitive	 can occur multiple times within it

For GP we de�ne nz to be unity

gi � Number of copies of gene in individual i

qi � Frequency of gene in the individual i
 That is the number of times the gene appears
in individual i divided by the �zygotic ploidy� of the species for the gene �i
e
 � if
haploid� � if diploid	

qi � gi�nz

When nz is unity �e
g
 most GAs and GP	 qi becomes the number of copies of the
gene in individual i �i
e
 qi � gi	
 So gene frequencies are de�ned to be relative to
number of individuals in the population rather than per available loci

q � Arithmetic mean of qi in population P�

���

Q� � Frequency of given gene �or linear combinations of genes	 in the population

I
e
 number of copies of gene in population divided by the number of chromo�
somes it could occupy

Q� � Frequency of gene in population P�

nG � �Gamete ploidy for the gene�
 In natural species nG is typically �� i
e
 the gene
can exist on one chromosome in the gamete �germ cell	

In traditional GAs there is no separate germ cell and whether the chromosome
fragment can contain the gene depends upon whether the locus of the gene is
present in the fragment or not

In GP there is still only one chromosome but there are no �xed loci and the same
gene �primitive	 can occur multiple times within a crossover fragment

zi � Number of o�spring produced by individual i
 Note this is the same as the number
of successful gametes it produces
 �In GA terminology the number of chromosome
fragments produced from i which occur in individuals in the next population	

z � Mean number of children produced

g
�

i � Number of copies of the gene in all the successful gametes produced by individual
i

In traditional linear chromosome GAs� g

�

i is the number of chromosome fragments
copied from individual i that are passed to the next generation which contain the
gene�s location and where the location contains the gene
 �NB the value at the
gene�s location has not been changed by mutation	

If a traditional GA� with zero mutation rate� the expected value of g

�

i is zi��

With mutation g

�

i is reduced proportionately to the gene mutation rate

In GP� g

�

i is the number of copies of the gene that are copied from i and passed
to the next generation

q
�

i � Frequency of gene in the o�spring produced by individual i
 De�ned by

q
�

i �
g
�

i

zinG
� if zi
� �

� qi � otherwise

%qi � q
�

i � qi

Proof of Price�s Theorem with Sexual Reproduction

We shall start with the frequency of the gene in the current population� Q�
 Then �nd

the frequency in the subsequent generation� Q�
 Subtracting them yields the change in

frequency� which we shall simplify to give Price�s Theorem

Q� �

P
gi

nzN

�

P
nzqi

nzN

� q

Each individual in the new population is created by joining one or more �gametes�

�in GAs and GP by joining crossover fragments	 and the number of each gene in the

individual is the sum of the number in each of the gametes from which it was formed

Thus the number of genes in the new population is equal to the number in the successful

gametes produced by the previous generation

���

Similarly the number of chromosomes in an individual is the sum of the number in

each of the gametes which formed it� nG
 Thus if nG is the same in all cases�

Q� �

P
g
�

iP
zinG

��
�	

�

P
zinGq

�

iP
zinG

�

P
ziq

�

i

Nz
��
�	

�

P
ziqi
Nz

�

P
zi%qi
Nz

�

P
��zi � z	�qi � q	 � z qi � ziq � z q	

Nz
�

P
zi%qi
Nz

�
�
N

P
�zi � z	�qi � q	 � z �

N

P
qi � q �

N

P
zi � �

N

P
z q

z
�

P
zi%qi
Nz

�
�
N

P
�zi � z	�qi � q	 � z q � q z � z q

z
�

P
zi%qi
Nz

�
�
N

P
�zi � z	�qi � q	 � q z

z
�

P
zi%qi
Nz

�
Cov�z� q	

z
� q �

P
zi%qi
Nz

%Q �
Cov�z� q	

z
�

P
zi%qi
Nz

�If meiosis and fertilization are random with respect to the gene� the summation term

at the right will be zero except for statistical sampling e�ects ��random drift�	� and these

will tend to average out to give equation �
�
� I
e
 the expected value of
P
zi%qi is zero

So while survival of an individual and the number of children it has may be related

to whether it carries the gene� it is assumed that the production of gametes �crossover

fragments	 and their fusing to form o�spring is random
 In GA terms selection for re�

production is dependent upon �tness and in general dependent on the presence of speci�c

genes but selection of crossover points is random and so independent of genes �Section

�
�
� discusses this further for GPs	

����� Proof of Price�s Theorem with Asexual Reproduction

The proof of Price�s theorem given in Price� ����! �reproduced above	 assumes sexual

reproduction
 For it to be applied to GAs and GP it needs to be extended to cover asexual

reproduction �i
e
 copying and mutation	
 Before doing so� we de�ne further symbols we

shall use

���

g
�

a i � Number of copies of the gene in the o�spring created asexually by individual i

g
�

x i � Number of copies of the gene in all the successful gametes �n
b
 sexual reproduc�
tion	 produced by individual i

ai � Proportion of o�spring of individual i created asexually �in GAs mutation or direct
copying	

ai � g
�

a i�g
�

i

a �
P
aizi�N z

xi � Proportion of o�spring of individual i created sexually� i
e
 by crossover

xi � g
�

x i�g
�

i

x �
P
xizi�N z

q
�

a i � Frequency of gene in the o�spring produced asexually by individual i
 De�ned by

q
�

a i �
g
�

a i

aizinz
� if aizi
� �

� qa i � otherwise

q
�

x i � Frequency of gene in the o�spring produced sexually by individual i
 De�ned by

q
�

x i �
g
�

x i

xizinG
� if xizi
� �

� qx i � otherwise

So Equation �
� becomes

Q� �

P
g
�

a i � g
�

x iP
aizinz � xizinG

�

P
aizinzq

�

a i � xizinGq
�

x iP
aizinz � xizinG

If reproduction type �sexual or asexual	 is independent of the gene then the expected

values of the gene frequencies� q
�

a i and q
�

x i will be equal �and equal to q
�

i	 and so in large

populations

Q� �

P
aizinzq

�

i � xizinGq
�

iP
aizinz � xizinG

�

P
aizinzq

�

i � xizinGq
�

i

N az nz � N xz nG

If reproduction type is independent of the gene then in large populations

Q� �

P
azinzq

�

i � xzinGq
�

i

N z�anz � xnG	

�

P
ziq

�

i

N z

The rest of the proof �i
e
 from Equation �
� onwards	 follows

���

����� Price�s Theorem for Genetic Algorithms

Where the population size is unchanged� as is usually the case in GAs and GP �and two

parents are required for each individual created by crossover	� z � pr � pm � �pc �where

pr � copy rate� pm � mutation rate and pc is the crossover rate
 Since pr � pm � pc � ��

the mean number of children z � � � pc and Equation �
� becomes�

%Q �
Cov�z� q	

� � pc
����	

����� Applicability of Price�s Theorem to GAs and GPs

The simplicity and wide scope of Price�s Theorem has lead Altenberg to suggest that

covariance between parental �tness and o�spring �tness distribution is fundamental to

the power of evolutionary algorithms
 Indeed Altenberg� ����! shows Holland�s schema

theorem Holland� ����� Holland� ����! can be derived from Price�s Theorem
 This and

other analysis� leads Altenberg� ����� page ��! to conclude �the Schema Theorem has no

implications for how well a GA is performing�

While the proof in Price� ����! assumes discrete generations the result �can be applied

to species with overlapping� inter�breeding generations�
 Thus the theorem can be applied

to steady state GAs Syswerda� ����� Syswerda� ����b! such as we use in Chapters �� �� �

and �

For the theorem to hold the genetic operations �crossover and mutation in GA terms	

must be independent of the gene
 That is on average there must be no relationship between

them and the gene
 In large populations random e�ects will be near zero on average but

in smaller populations their e�ect may not be negligible
 In GAs selection of crossover and

mutation points is usually done independently of the contents of the chromosome and so

Price�s theorem will hold �except in small GA populations where random �uctuations may

be signi�cant	
 In GP populations are normally bigger �and the number of generations

similar	 so random e�ects� �genetic drift�� are less important

In standard GP it is intended that the genetic operators should also be independent�

however in order to ensure the resultant o�spring are syntactically correct and not too

big� genetic operators must consider the chromosome�s contents
 This is normally limited

to just its structure in terms of tree branching factor �i
e
 the number of arguments a

function has	 and tree depth or size limits
 That is� they ignore the actual meaning of a

node in the tree �e
g
 whether it is MUL or ADD	 but do consider how many arguments

it has
 Thus a function with two arguments �e
g
 MUL	 and a terminal �e
g
 max	 may

���

be treated di�erently

It is common to bias the choice of crossover points in favour of internal nodes �e
g
 in

the GP experiments in this thesis internal points in program trees are deliberately chosen

��� of the time� the other ��� are randomly chosen through the whole tree� c
f
 Section

�
�
�	
 This reduces the proportion of crossover fragments which contain only a single

terminal
 Once again the genetic operators ignore the meaning of nodes within the tree

In a large diverse population these factors should have little e�ect and Price�s Theorem

should hold
 However when many programs are near the maximum allowed size a function

which has many arguments could be at a disadvantage since the potential o�spring con�

taining it have a higher chance of exceeding size limits
 Therefore restrictions on program

size may on average reduce the number of such functions in the next generation compared

to the number predicted by considering only �tness �i
e
 by Price�s Theorem	
 Altenberg�

����� page ��! argues Price�s theorem can be applied to genetic programming and we shall

show experimental evidence for it based on genes composed of a single GP primitive

����� Application of Price�s Theorem to the GP Stack Problem

In this section we experimentally test Price�s Theorem by comparing its predictions with

what actually happened using GP populations from the �� runs of the stack problem

described in Chapter �
 Firstly we consider the change in numbers of a single primitive

and then we examine the change in frequency versus �tness for all primitives in a typical

and in a successful run

In GAs the expected number of children each individual has is determined by its �tness

On average the expected number is equal to the actual number of o�spring z �as used in

Price�s theorem� i
e
 in Equations �
� and �
�	
 For example when using roulette wheel

selection the expected number of children is directly proportional to the parent�s �tness

When using tournament selection �as in Chapters � to �	 the expected number of children

is determined by the parent�s rank within the population and the tournament size �see

Section �
�
�	
 The remainder of this section uses the expected number of o�spring as

predicted by the parents �tness ranking within the current population in place of z

Price�s theorem predicts the properties of the next generation
 In a steady state popu�

lation it can be used to predict the average rate of change
 However in general subsequent

changes to the population will change the predicted rate of change
 For simplicity we

assume that during one generation equivalent �i
e
 the time taken to create as many new

individuals as there are in the population� cf
 Section �
�
�	 such e�ects are small and base

���

-200

-100

0

100

200

300

400

500

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
o
.

1

i
n

M
a
k
e
n
u
l
l

t
r
e
e

Number of Individuals Created

Number
Predicted change

Actual change

Figure �
�� Evolution of the number of the terminal ��� in the makenull tree plus predicted
change and actual change in next generation� in typical stack ���	 run

the predicted properties of the new population on linear extrapolation using the predicted

rate of change

The �� runs of the stack problem use identical parameters and di�er only in the

initial seed used by the Park and Miller� ����! pseudo random number generator
 For

convenience individual runs are numbered ��	 to ���	

The solid line in Figure �
� plots the evolution of the number of a particular primitive in

a particular tree in the population for a typical run
 �As there is no crossover between trees

of di�erent types� primitives of the same type but in di�erent trees are genetically isolated

from each other and so Equation �
� can be applied independently to each tree	
 The

change from one generation equivalent to the next is plotted by crosses which show good

agreement with the change predicted by linearly extrapolating the rate of change predicted

by Price�s theorem
 Some discrepancy between the actual change and the predicted change

is expected due to �noise�
 That is the number of children an individual has is a stochastic

function of its �tness �see Figure �
�	
 However non�random deviations from the prediction

are to be expected as linear extrapolation assumes the rate of change will not change

appreciably in the course of one generation equivalent �such as happens at generations �

and �	

Figures �
� to �
� plot the covariance of primitive frequency with normalised �tness

against the change in the primitives frequency in the subsequent generation �equivalent	

���

While these plots show signi�cant di�erences from the straight line predicted by Equa�

tion �
�� least squares regression yields best �t lines which pass very close to the origin

but �depending upon run and primitive	 have slopes signi�cantly less than � � pc � ���

�they lie in the range �
�� to �
��� see Table �
�	

Random deviations from the theory are expected but should have negligible e�ect

when averaged by �tting the regression lines
 The fact that regression coe
cients di�er

from �
� is explained by the fact that we are recording changes over a generation� during

this time it is possible for the population to change signi�cantly
 We would expect this

e�ect to be most noticeable for primitives with a high rate of change since these a�ect

the population$ A high rate of change may not be sustainable for a whole generation

and so the actual change will be less than predicted by extrapolating from its initial rate

of change
 However large changes have a large e�ect on least squares estimates so these

outliers can be expected to reduce the slope of the regression line

Regression coe
cients can be calculated after excluding large values leaving only the

smaller changes
 However this makes the calculation dependent on small values with high

noise
 This may be exacerbated if the primitive quickly became extinct as there are few

data points left
 �When considering a typical run ���	 of the stack problem and excluding

covariances outside the range ���� � � � � ��� regression coe
cients were often e�ected by

this noise and lie in the range ����� � � � ���� for the twelve primitives in the empty tree	

In conclusion Price�s Theorem gives quantitative predictions of the short term evolution

of practical GP populations� however such predictions are a�ected by sampling noise in

�nite populations and may be biased if predictions are extrapolated too far in rapidly

evolving populations
 The theorem can also be used to explain the e�ects of �tness

selection on GP populations

���

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

makenull
top
pop
push

empty
1.9*x

1.79*x
1.18*x

Figure �
�� Covariance of Primitive frequency and
�
Ri
N

����Ri��

N

��
v
 change in frequency

in next generation� in typical stack ���	 run
 Data collected every generation equivalent

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.1 -0.05 0 0.05 0.1

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure �
�� Covariance of Primitive frequency and
�
Ri
N

����Ri��

N

��
v
 change in frequency

in next generation� in typical stack ���	 run
 Only data near the origin shown

���

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

makenull
top
pop

push
empty
1.9*x

Figure �
�� Covariance of Primitive frequency and
�
Ri
N

����Ri��

N

��
v
 change in frequency

in next generation� in successful stack ��	 run
 Data collected every generation equivalent

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.1 -0.05 0 0.05 0.1

C
h
a
n
g
e

i
n

F
r
e
q
u
e
n
c
y

p
e
r

G
e
n
e
r
a
t
i
o
n

Covariance of Frequency with Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure �
�� Covariance of Primitive frequency and
�
Ri
N

����Ri��

N

��
v
 change in frequency

in next generation� in successful stack ��	 run
 Data near origin

���

Table �
�� Least squares regression coe
cients of covariance of primitive frequency and�
Ri
N

�� � �Ri��

N

��
with change in frequency in the next generation for a typical ���	 stack

run

Primitive makenull top pop push empty

% Frequency � Intercept � Gradient

ADD ��
��� � �
�� ��
��� � �
�� ��
��� � �
�� �
��� � �
�� �
��� � �
��

SUB ��
��� � �
�� ��
��� � �
�� �
��� � �
�� ��
��� � �
�� �
��� � �
��

� ��
��� � �
�� �
��� � �
�� �
��� � �
�� �
��� � �
�� ��
��� � �
��

� ��
��� � �
�� ��
��� � �
�� ��
��� � �
�� ��
��� � �
�� ��
��� � �
��

max �
��� � �
�� ��
��� � �
�� ��
��� � �
�� �
��� � �
�� ��
��� � �
��

arg� �
��� � �
�� ��
��� � �
�� �
��� � �
�� �
��� � �
�� �
��� � �
��

aux ��
��� � �
�� �
��� � �
�� ��
��� � �
�� �
��� � �
�� ��
��� � �
��

inc aux �
��� � �
�� �
��� � �
�� ��
��� � �
�� ��
��� � �
�� ��
��� � �
��

dec aux ��
��� � �
�� ��
��� � �
�� ��
��� � �
�� �
��� � �
�� ��
��� � �
��

read ��
��� � �
�� ��
��� � �
�� ��
��� � �
�� �
��� � �
�� ��
��� � �
��

write ��
��� � �
�� ��
��� � �
�� �
��� � �
�� �
��� � �
�� ��
��� � �
��

write Aux ��
��� � �
�� ��
��� � �
�� ��
��� � �
�� �
��� � �
�� �
��� � �
��

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
a
t
e

o
f

p
r
o
d
u
c
i
n
g

o
f
f
s
p
r
i
n
g

Rank(i)**4 - Rank(i-1)**4

y = 1.9 x

Figure �
�� Rate of producing o�spring v

�
Ri
N

����Ri��

N

��
in typical stack ���	 run
 Data

collected every generation equivalent

���

	�� Fisher�s Fundamental Theorem of Natural Selection

Fisher�s fundamental theorem of natural selection states �The rate of increase in �tness of

any organism at any time is equal to its genetic variance in �tness at that time� Fisher�

����� page ��!
 �Under the usual interpretation the theorem is believed to say that the

rate of increase in the mean �tness of a population is equal to the population�s additive

variance for �tness�
 Since the variance can never be negative �natural selection causes a

continual increase in mean �tness of a population
 This interpretation of the theorem is

only true when the population mates randomly and there is no dominance or epistasis�

 Frank� ����� page ���!

An example of this usage is given in Tackett� ����a� page ���! which claims �According

to Fisher�s fundamental theory� �emphasis added	 �of natural selection the ability of a

population to increase in �tness is proportional to the variance in �tness of the population

members
�

We would certainly expect epistasis �non�linear interaction between genes	 to occur in

most GAs and so would not expect this interpretation of the theorem to hold
 Figure �
�

shows the evolution of a stack population�s �tness for one run
 The error bars indicate

a standard deviation either side of the mean population �tness
 From Figure �
� we can

see the standard deviation through out the bulk of the run is consistently close to ��� i
e

the variance of the population�s �tness is near ��� ��� � ��	
 The usual interpretation of

Fisher�s theorem predicts the mean �tness will continually increase but obviously this is

not the case as it remains fairly constant throughout the run and even falls occasionally

We conclude that under the usual interpretation Fisher�s theorem does not normally

apply to GAs
 This is important because this interpretation of Fisher�s theorem has been

used as an argument in favour of GA selection schemes which produce a high variance in

population �tness Tackett� ����a� pages ��� and ���!
 �There may be other reasons for

preferring these selection methods
 A high �tness variance may indicate a high degree of

variation in the population� which might be bene�cial	

 Price� ����! makes the point that Fisher�s publications on his fundamental theorem

of natural selection �contains the most confusing published scienti�c writing I know of�

 page ���! leading to �forty years of bewilderment about what he meant� page ���!
 Price�

����! and Ewens� ����� Ewens� ����b� Ewens� ����a! argue that the usual interpretation of

Fisher�s theorem is incorrect and his ��tness� should be considered as just the component

of �tness which varies linearly with gene frequency
 All other e�ects� such as �dominance�

epistasis� population pressure� climate� and interactions with other species � he regarded

���

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

T
e
s
t
s

p
a
s
s
e
d

Number of Individuals Created

Mean & SD
Min

Best of Generation

Figure �
�� Evolution of Fitness in a typical stack run ���	

as a matter of the environment� Price� ����� page ���!
 Price and Ewens both give proofs

for this interpretation of Fisher�s theorem but conclude that it is �mathematically correct

but less important than he thought it to be� Price� ����� page ���!

	�� Evolution of Stack Problem Populations

In this section we return to the stack problem of Chapter � and investigate why most runs

failed to �nd a solution
 Investigation of the evolved solutions shows which primitives are

essential to the correct operation of all the evolved solutions and in most runs one or more

of these becomes extinct� thus preventing the evolution of a solution like those found
 The

loss of these primitive is explained using Price�s Theorem by the negative covariance of

their frequency with their �tness
 Similar covariances are found in successful runs and

we conclude success requires a solution to be found quickly� before extinction of critical

primitives occurs

Table �
� contains an entry for each of the �ve program trees �which each trial stack

data structure comprises	 and the primitives that the tree can use �see Sections �
�

and �
�	
 Where the primitive is essential to the operation of one of the four stack so�

lutions found� the entry contains the number�s	 of the solutions
 If the primitive is not

essential to the correct operation of any of the four evolved solutions �in the particular

tree	 the entry is blank
 Primitives ADD and max are omitted as they are always blank

���

Table �
�� Primitives Essential to the Operation of Evolved Stack Programs

Tree#Primitive Essential to Evolved Stack Solutions

Tree SUB � � arg� aux inc dec read write write

aux aux Aux

makenull � � � � � � � � � �

top � � � � � � � � �

pop � � � � � � � � � � � �

push � � � � � � � � � � � �

empty � � � � � �

Table �
�� Stack Primitives Essential to All Evolved Solutions

Tree Primitive Lost

makenul � ��

makenul write Aux �

top read ��

push arg� �

push write ��

Tree Alternative Primitives Both Lost

top aux or write Aux ��

pop inc aux or dec aux ��

pop read or write ��

push inc aux or dec aux ��

empty aux or write Aux �

�The essential primitives are shown within shaded boxes in Figures �
�� �
�� �
� and �
��

�pages �����	
 NB in the stack problem each tree can use all of the primitives	

From Table �
� we can identify �ve primitives which are essential to the operation of

all four evolved solutions and �ve pairs of primitives where one or other is required
 These

are shown in the two halves of Table �
� together with the number of runs where they

were removed from the population by �� generation equivalents �i
e
 by the point where

all four solutions had evolved	

After the equivalent of �� generations in �� of �� runs� the number of one or more of

the tree�primitives shown in the lefthand side of Table �
� had fallen to zero
 That is the

population no longer contained one or more primitives required to evolve a solution �like

the solutions that have been found	
 In �� of the remaining �� populations both of one or

more of the pairs of primitives shown on the right hand side of Table �
� had been removed

from the population
 Thus by generation �� in all but � of �� runs� the population no

longer contained primitives required to evolve solutions like those found
 In four of these

�ve cases solutions were evolved �in the remaining case one of the essential primitives was

already at a low concentration� which fell to zero by the end of the run at generation ���	

���

Figure �
� shows the evolution of six typical stack populations �runs ��� ��� ��� ���

�� and ��	
 For each run the �rst essential primitive �or pair or primitives	 that becomes

extinct is selected and its covariance of frequency with �tness in the population is plot�

ted
 Figure �
� shows the covariance is predominantly negative and thus Price�s theorem

predicts the primitives� frequencies will fall
 Figure �
�� con�rms this
 In most cases they

become extinct by generation nine

Figure �
� shows the evolution of frequency� �tness covariance for the same primitives

in a successful run ��	 �Figure �
�� shows the evolution of their frequency	
 While two of

the primitives �Push#arg� and Push#dec aux	 have large positive covariances for part of

the evolution the other four are much as the runs shown in Figure �
� where they were

the �rst essential primitive to become extinct
 That is� in terms of correlation between

population �tness ranking and essential primitives� successful and unsuccessful runs are

similar
 It appears there is a race between �nding high �tness partial solutions on which a

complete solution can evolve and the removal of essential primitives from the population

caused by �tness based selection
 I
e
 if �nding a critical building block had been delayed�

it might not have been found at all as one or more essential primitives might have become

extinct in the meantime

In successful stack run ��	 by generation �ve� a solution in which top� pop and push

e�ectively use aux� write Aux� inc aux and dec aux to maintain aux as a stack pointer has

been discovered �c
f
 Figure �
��	
 This is followed by the �tness of Pop#inc aux increasing

and whereas its frequency had been dropping it starts to increase preventing Pop#inc aux

from becoming extinct� which would have prevented a solution like the one found from

evolving
 This maintenance of aux as a stack pointer requires code in three trees to co�

operate
 An upper bound on the chance of this building block being disrupted in the

o�spring of the �rst program to contain it can be calculated by assuming any crossover

in any of the three trees containing part of the building block will disrupt it
 This yields

an upper bound of �pc�� � ���
 In other words on average at least pr � �pc�� � ���

of the o�spring produced by programs containing this building block will also contain

the building block and so it should spread rapidly through the population
 With many

individuals in the population containing functioning top� pop and push trees� evolution of

working makenull and empty trees rapidly followed and a complete solution was found

���

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
o
v
a
r
i
a
n
c
e

o
f

F
r
e
q
u
e
n
c
y

w
i
t
h

R
a
n
k

B
a
s
e
d

F
i
t
n
e
s
s

Number of Individuals Created

 40 Push dec_aux

Push & Pop inc & dec runs 20, 40
Push arg1 runs 00, 10
Makenull 1 runs 30, 51

Figure �
�� Evolution of the covariance of primitive frequency and
�
Ri
N

�� � �Ri��

N

��
for

the �rst critical primitive �or critical pair	 to become extinct
 Six typical stack runs

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

C
o
v
a
r
i
a
n
c
e

o
f

F
r
e
q
u
e
n
c
y

w
i
t
h

R
a
n
k

B
a
s
e
d

F
i
t
n
e
s
s

Number of Individuals Created

 Push dec_aux

 Pop inc_aux

Push & Pop inc & dec
Push arg1
Makenull 1

Figure �
�� Evolution of the covariance of primitive frequency and
�
Ri
N

�� � �Ri��

N

��
for

critical primitives
 Successful stack � run

���

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m
b
e
r

o
f

P
r
i
m
i
t
i
v
e
s

i
n

P
o
p
u
l
a
t
i
o
n

Number of Individuals Created

Push & Pop inc & dec runs 20, 40
Push arg1 runs 00, 10

Makenull 1 runs 30, 51

Figure �
��� Evolution of number of primitives in the population for �rst critical primitive
�or critical pair	 to become extinct
 Six typical stack runs

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

N
u
m
b
e
r

o
f

P
r
i
m
i
t
i
v
e
s

i
n

P
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 Push dec_aux

 Pop inc_aux

Push & Pop inc & dec
Push arg1

Makenull 1

Figure �
��� Evolution of number of primitives in the population for critical primitives

Successful stack � run

���

����� Discussion

The loss of some critical primitives in so many runs can be explained in many cases by the

existence of high scoring partial solutions which achieve a relatively high score by saving

only one item in aux
 In such programs write Aux� inc aux and dec aux may destroy the

contents of aux and are likely to be detrimental �i
e
 reduced �tness	
 As the number of

such partial solutions increases write Aux� inc aux and dec aux become more of a liability

in the current population and are progressively removed from it
 Thus trapping the

population at the partial solution
 This highlights the importance of the �tness function

throughout the whole of the GP run
 I
e
 it must guide the evolution of the population

toward the solution in the initial population� as well as later� when recognisable partial

solutions have evolved

Section �
�� has described similar loss of primitives in the list problem and discussed

potential solutions such as mutation� demes and �tness niches to allow multiple diverse

partial solutions within the population and potentially slow down the impact of �tness

selection on the population
 Other approaches include� improving the �tness function �so

it is no longer deceptive	 e
g
 by better design or using a dynamic �tness function which

changes as the population evolves
 A dynamic �tness function would aim to continually

stretch the population� keeping a carrot dangling in front of it
 �This is also known as

the �Red Queen� Carroll� ����! approach where the population must continually improve

itself	
 A dynamic �tness function could be pre�de�ned but dynamic GP �tness functions

are often produced by co�evolution Hillis� ����� Angeline and Pollack� ����� Angeline�

����� Angeline and Pollack� ����� Koza� ����� Jannink� ����� Reynolds� ����a� Ryan� �����

Davis� ����!
 Where it is felt certain characters will be required in the problem�s solution

the initial population and crossover can be controlled in order to ensure individuals within

the population have these properties �Sections �
��
� and �
�
� have described ways in

which this can be implemented	

An alternative approach is to avoid specialist high level primitives �particularly where

they interlock� so one requires another	 and use only a small number of general purpose

primitives
 Any partial solutions are likely to require all of them and so none will become

extinct
 This is contrary to established GP wisdom Kinnear� Jr
� ����c� page ��!� however

recently �at the fall ���� AAAI GP symposium	 Koza advocated the use of small function

sets containing only �ve functions �������� and a conditional branch	

���

	�� Loss of Variety

We de�ne variety as the number of unique individuals within the population
 For example

if a population contains three individuals A� B and C but A and B are identical �but

di�erent from C	 then the variety of the population is � �A and B counting as one unique

individual	
 � Koza� ����� page ��! de�nes variety as a ratio of the number of unique

individuals to population size	
 These de�nitions have the advantage of simplicity but

ignore several important issues�

� Individuals which are not identical may still be similar

� Individuals which are not identical may be totally di�erent� but variety makes no

distinction between this and the �rst case

� The di�erences between individuals may occur in �introns�
 That is in parts of the

program tree which have no e�ect upon the program�s behaviour� either because

that part of the tree is never executed or because its e�ects are always overridden

by other code in the program
 For example� the value of a particular subtree may

always be multiplied by zero which yields a result that is always zero no matter

what value the subtree had calculated
 Two such di�erent programs have identical

behaviour and �tness �but their o�spring may not be the same� even on average	

� Behaviour of di�erent program trees may be identical� either in general or in the

speci�c test cases used to assign �tness
 That is genetically diverse individuals may

behave similarly� or even identically

As Rosca� ����! points out� in the absence of side e�ects� diverse programs with

identical behaviour can be readily constructed if the function set contains functions

that are associative or commutative by simple reordering of function arguments

� Even if programs behave di�erently� in general or when evaluating the given test

cases� the �tness function may assign them the same �tness value
 E
g
 the �tness

function may be based upon the number of correct answers a program returns so

two programs which pass di�erent tests but the same number of tests will have the

same �tness

Faced with the above complexity we argue that variety has the advantage of simplicity

and forms a useful upper bound to the diversity of the population
 That is if the variety

is low then any other measures of genetic� phenotypic or �tness diversity must also be

���

low
 The opposite does not hold when it is high
 �Other de�nitions include �tness based

population entropy Rosca and Ballard� ����� Section �
�! and using the ratio of sum of

the sizes of every program in the population to the number of distinct subtrees within the

population Keijzer� ����!	

In this section we consider the variety of GP populations using the �� runs on the

stack problem as examples
 Firstly �Section �
�
�	 we show how the number of unique

individuals evolves and then in Section �
�
� we present simple but general models of the

evolution of variety
 While these give some explanation they don�t predict some important

features
 Detailed measurements of the stack population are presented in Section �
�
�

These are used to give better� but more problem speci�c� explanations of the populations�

behaviour
 The low variety of stack populations is shown to be primarily due to the

high number of �clones� �i
e
 o�spring which are identical to their parents	 produced by

crossover� which is itself a re�ection of the low variety
 Thus low variety reinforces itself

In one run ���	 variety collapses to near zero but in most cases it eventually hovers near

��� of the population size
 This is low compared to reports of ��� to ��� in Koza� �����

pages ���� ��� and ���! and Keijzer� ����!

����� Loss of Variety in Stack Populations

Measurements show variety starts in the initial population at its maximum value with

every member of the population being di�erent
 This is despite the fact there is no

uniqueness check to guarantee this
 Once evolution of the population starts variety falls

rapidly� but in most cases rises later to oscillate chaotically near a mean value of about

��� �see Figures �
�� to �
��	
 However in one run ���	 variety does not increase and the

population eventually converges to a single genotype and four of its o�spring �i
e
 of the

���� individuals in the population there are only �ve di�erent chromosomes� with about

��� copies of the �ttest of these �ve	

The number of duplicate individuals created by reproduction rises rapidly initially

but then hovers in the region of �
�� of the population size �see Figure �
�� on page

���	
 This means initially most duplicate individuals are created by reproduction but this

fraction falls rapidly as more duplicates are produced by crossover so after the seventh

generation only about a quarter of duplicate individuals in the population were created by

reproduction and the remaining three quarters are created by crossover �see Figure �
��	

In stack populations� crossover produces more duplicates shortly after each new improved

solution is found �see Figure �
�� on page ���	

���

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

 Mean of 60 runs

 Run 23 (5)

 Mean % xover * 10

 Typical (51) run

 Run 40
mean

solutions
typical runs

run 23
Mean % xover * 10

Figure �
��� Number of di�erent individuals in stack populations and proportion of sub�
sequent duplicates produced by crossover in stack selected runs

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

 Mean of 60 runs

 Run 23 (9)

 Mean % xover * 10

 Typical (51) run

 Exp(-0.1 G)

Figure �
��� Detail of above

���

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

0 20000 40000 60000 80000 100000

C
h
a
n
g
e

i
n

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

Run 40

mean
solutions

typical runs
run 23

Figure �
��� Change in number of di�erent individuals in stack populations

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

0 2000 4000 6000 8000 10000 12000 14000

C
h
a
n
g
e

i
n

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

mean
solutions

typical runs
run 23

Figure �
��� Detail of above

���

����� Evolution of Variety in a Steady State GA

The GA used in the experiments in this thesis is GP�QUICK Singleton� ����!� which im�

plements a steady�state GA Syswerda� ����� Syswerda� ����b!
 In GP�QUICK crossover

produces one o�spring at a time rather than two which is immediately inserted into the

population displacing another� rather than collecting o�spring until a complete replace�

ment population has been produced� i
e
 the generation gap is one De Jong and Sarma�

����!
 A separate tournament is held to decide which member of the population to remove

De�nitions

N � Population size

Ui � A unique chrome in population

v � Number of unique chromes in population

fi � Fitness of chrome Ui

Ci � Number of copies of Ui in population

Fi � Number of individuals in population with �tness fi �Fi � Ci	

g � Number of unique �tness values in population �g � v	

R� � �

Ri � Rank of Ui
 Thus

R� � F�

R� � F� � F�

Ri �
Pi

j�� Fj

Rg �
Pg

j�� Fj � N

t � Tournament size �� in the experiments presented in Chapters � to �	

k � Kill tournament size �also �	

pr � Proportion of o�spring created by reproduction ��
�	

pc � Proportion of o�spring created by crossover ��
�	

pr � pc � �

Tournament Selection in Steady State GA

The �tness distribution of individuals selected by tournament selection �Ri�N	t��Ri���N	t

can be derived following Blickle and Thiele� ����� page ��!�

� The chance the winner of a tournament will have �tness � fi is the same as the

chance all members of the tournament have �tness � fi �if any of them have a

�tness greater than fi then they would have won the tournament instead	

� The chance of selecting an individual with �tness � fi � Ri�N

� As each member of the tournament is selected at random and independently from

the others� the chance they all have �tness � fi � �Ri�N	t

���

� The chance the winner will have �tness � fi�� � �Ri���N	t

� Thus the chance the winner will have �tness fi � �Ri�N	t � �Ri���N	t

For the kill tournament�

� the chance the loser of a tournament will have �tness � fi is the same as the

chance all members of the tournament have �tness � fi
 The chance of selecting

an individual with �tness � fi is the number of such individuals divided by the

population size� i
e
 �N �Ri��	�N

� Thus the chance the loser of the kill tournament will have a �tness� fi �
�
N�Ri��

N

�k

� The chance the loser will have �tness � fi
� �
�
N�Ri
N

�k

� Thus the chance the loser will have �tness fi �
�
N�Ri��

N

�k � �N�RiN

�k
�

The extremes are interesting
 Provided the number of individuals with the highest

�tness value is small� i
e
 Fg � N � the chance of selecting an individual with the best �tness

is ��
�
N�Fg
N

�t � tFg
N �i
e
 t � random	 and the chance of breeding from an individual with

the worst �tness is
�
F�
N

�t
�i
e
 randomt	
 Similarly the chance of removing an individual

with the worst �tness value �assuming F� � N	 is ��
�
N�F�
N

�k � kF�
N �i
e
 k � random	

and the chance of removing an individual with the best �tness is
�
N�Rg��

N

�k
�
�
Fg
N

�k
�i
e
 randomk	
 Similarly when the proportion of individuals with the same �tness is

small� i
e
 Fi � Ri then �using the binomial expansion of �Ri�N � Fi�N	t and dropping

terms in �Fi�N	� and above	

�
Ri

N

�t
�
�
Ri��
N

�t
�

�
Ri

N

�t
�
�
Ri � Fi
N

�t

�
�
Ri

N

�t
�
�
Ri

N

�t
� t

�
Fi
N

��
Ri

N

�t��

� t

�
Fi
N

��
Ri

N

�t��

That is the chance the winner of a tournament will have �tness fi is approximately

�proportion of population with �tness fi	 �t�
�
Ri
N

�t��

 Similarly the chance the loser of

the kill tournament will have a �tness fi is approximately �the proportion of population

with �tness fi	 �k �
�
N�Ri
N

�k��

Figure �
� on page ��� shows the actual rate of producing o�spring �i
e
 the number

of children each individual has divided by its age	 for a typical stack run
 We see in most

cases the actual rate lies close to the expected rate
 �Data points are concentrated at either

���

end of the possible range since due to the convergence of the population most individuals

are either of the highest �tness or are of low rank
 Raising the rank to the third power

further concentrates low rank data points	

Loss of Variety

New individuals are created either by crossover or reproduction �mutation is not used in

the experiments described in Chapters � to �	
 In reproduction a new copy of an existing

individual is created and inserted into the population
 If the new individual replaces a

copy of itself then the population is unchanged� if it replaces a non�unique individual

�i
e
 one for which the population contains copies	 then the variety is unchanged
 However

if the deleted individual was unique then the variety falls by one
 NB reproduction can

never increase variety

The o�spring created by crossover can either be unique or they can be a copy of

individuals in the population
 If crossover produces a unique o�spring but the individual

it replaces is also unique then there is no change in the number of unique individuals in

the population� i
e
 the variety does not change
 However if the population contains one

or more copies of the deleted individual then its variety increases by one
 If crossover

produces an individual which is not unique then its e�ect is just as reproduction� i
e
 it

may reduce variety by one or leave it unchanged� depending upon whether the replaced

individual was unique or not

Loss of Variety � Due to reproduction

Expected
change in variety

� �p�%v � ��	

� �p�deleted unique	 � p�parent unique & replace self	 ��
�	

In large populations �which are not separated into smaller demes	 the chance of an indi�

vidual being selected both as a parent and as the individual to be replaced will be small

and so we can drop the second term
 Initially there will be no relationship between the

�tness of an individual and whether it is unique or not so

p�delete unique	 �
v

N
����	

As evolution proceeds we would expect the higher �tness individuals to have more

copies and those of lower �tness� which are more likely to be replaced� to have fewer copies�

i
e
 have a higher chance of being unique
 Thus Equation �
� should be an underestimate�

���

Table �
�� Change in Variety After Creating an Individual by Crossover

O�spring Deleted Individual

Unique Unique

no yes

��� v
N 	 v

N

no ��Xu � ��

yes Xu �� �

even so it should be a reasonable estimate unless the population becomes very anisotropic

�when v will be low	

p�%v � ��	 � pr
v

N
����	

I
e
 the expected change in v is approximately �pr v
N where N is large this discrete

case can be approximated by a di�erential equation which can be solved to yield expected

v � A exp��prG	 where A is the variety in the initial population and G is the number

of generation equivalents since the initial population was created
 As Figure �
�� shows

this formula �ts the measured variety well for a few generation
 However it is necessary

to consider crossover to explain later behaviour

Change in Variety � Due to Crossover

There are four distinct cases� the individual to be deleted is unique or not and the o�spring

created is unique or not �see Table �
�	
 We de�ne Xu to be the chance of crossover

producing a unique o�spring

Once again we assume the chance of an o�spring replacing one of its parents �which is

unique	 can be neglected so we can again ignore terms like the second one in Equation �
�

In a typical population we would expect it to be reasonable to treat the uniqueness of the

o�spring and that of the individual it is to replace as independent of each other so we

can approximate the probability of the two events occurring together with the product of

each�s probability �cf
 Equations �
� and �
�	

p�%v � ��	 � pc���Xu	
v

N
��
�	

p�%v � ��	 � pcXu��� v

N
	 ��
�	

���

Combining �
� and �
� with �
� yields the expected change in variety

%v � pcXu��� v

N
	� pc���Xu	

v

N
� pr

v

N

� pcXu � pcXu
v

N
� pc

v

N
� pcXu

v

N
� pr

v

N

� pcXu �
v

N
��pcXu � pc � pcXu � pr	

%v � pcXu � v

N
��
��	

Constant Chance of Crossover Producing a Unique O�spring

If we further assume that the chance of crossover producing a unique o�spring is constant

then we can integrate Equation �
�� and it predicts variety will fall exponentially to an

asymptotic value of pcXu and further that should variety fall below this limit then it will

rise exponentially to the same limit �see Equation �
��	

While this crude model does predict some aspects of variety�s behaviour it fails to

predict the �overshoot� as variety initially falls below its long term value and its collapse

in run ���	
 A slightly more sophisticated quadratic model is developed in the next section

Let x � pcXu � v
N then

%x � � �

N
%v � � �

N
x

For large N we can approximate this discrete case with a di�erential equation

dx � � �

N
xdg

Whose solutions are of the form

x � Ae�
g
N

x � pcXu � v

N

pcXu � v

N
� Ae�

g

N

v

N
� pcXu �Ae�

g
N

For simplicity de�ne g � � to be the start of the evolution of the population
 From

Figure �
�� we have v��	 � N
 So

� � pcXu �A

A � pcXu � �

v � N
�
pcXu � �pcXu � �	 e�

g

N

�
��
��	

���

It is obvious from Figure �
�� that the assumption that Xu is constant is not valid for

the stack populations
 However the initial fall in variety can be reasonably be predicted by

assuming Xu � �� in which case v � N�pc � pre
� g
N 	 and dv�dg � �pr�Ne�

g
N so initially

dv�dg � �pr�N
 However variety does not behave in the predicted exponential decay but

in many runs �overshoots� in the �rst �ve generations or so before recovering and climbing

back up
 Such overshooting also appears in Koza� ����� page ���! on the arti�cial ant and

on the six�multiplexor problems pages ��� and ���! and in a simple symbolic regression

in Keijzer� ����� Figures ��
� and ��
�! when hill climbing is used

Quadratic Chance of Crossover Producing a Unique O�spring

As an alternative to assuming the chance of crossover producing a unique o�spring is

constant this subsection investigates solutions of Equation �
�� assuming it depends upon

the variety
 As crossover uses two parents a quadratic model is tested

Analytic solutions to Equation �
�� are obtained which also predict asymptotic decay

but there are now two asymptotes� i
e
 the population can converge to two di�erent stable

variety levels
 These solutions predict variety will evolve to whichever asymptote is closest

to its current value
 The quadratic assumption can thus model the behaviour of variety

in run ���	� where it converges to near zero� by choosing appropriate constants
 However�

like the constant model� the quadratic model fails to predict the �overshoot� where variety

falls below its long term limit and then rises back towards it

The failure of the two models is perhaps primarily because of their very simplicity which

ignores the role of �tness in the evolution of the stack populations
 As Figure �
�� shows�

apart from the �rst few generations� the number of duplicate individuals produced by the

reproduction operator �copying	 in stack populations remains fairly constant at slightly

less than prN so the major source of changes in variety is crossover
 It appears that at

critical points in the evolution of stack populations crossover produces far fewer di�erent

individuals which are �t enough to be retained in the population and then gradually the

proportion of diverse high �tness individuals increases

Typically �see Figure �
��	 �nding a solution with a higher �tness is followed by a

large fall in variety
 However once the new solution has been spread� crossover produces

diverse individuals with the same high �tness which are thus retained in the population

and variety gradually rises again while the maximum �tness remains unchanged

���

0

20

40

60

80

100

120

140

160

180

200

0 20000 40000 60000 80000 100000N
o
.

d
u
p
l
i
c
a
t
e
s

i
n

p
o
p
u
l
a
t
i
o
n

p
r
o
d
u
c
e
d

b
y

r
e
p
r
o
d
u
c
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

mean
solutions

typical runs
run 23

pr N

Figure �
��� Number of duplicate individuals in stack populations that were produced by
reproduction in selected runs

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000

V
a
r
i
e
t
y
,

C
h
a
n
g
e

i
n

M
a
x

F
i
t
n
e
s
s

Number of Individuals Created

Variety
Increase in Max fitness * 100

Figure �
��� Number of di�erent individuals in stack populations and change in maximum
�tness in a typical stack run ���	

���

Let y � v
N and Xu � N

Pc

�
a �

�
b � �

N

�
y � c y�

�
so using Equation �
���

%y �
%v

N

�
pc

N
Pc

�
a � �b � ��N	 y � c y�

�� y

N

�
�
a � �b � ��N	 y � c y�

�
� y�N

� a � b y � c y�

dy � �a � by � cy�	 dg ��
��	

Provided b� � �ac �i
e
 there is at least one value of y at which dy � �	 then solutions to

Equation �
�� have the form

y �
�b�pb� � �ac tanh� �

p
b���ac���g�C��

�

�c
��
��	

where C� is an integration constant �xed by the boundary conditions
 Notice that �
��

gives two solutions for y
 As x� � or x� �� tanhx� �� so Equation �
�� predicts y

will converge to

lim
g�� y �

�b�pb� � �ac

�c
��
��	

If a � �� i
e
 when variety is very small most crossovers don�t produce unique o�spring�

then �
�� becomes

lim
g��� a��

y �
�b
c

and

lim
g��� a��

y �
�b �

q
b���� �ac

b� 	

�c

�
�b � b

q
��� �ac

b�
	

�c

� �b � b��� �ac
b� 	

�c

�
�a
b

Now from Figure �
�� we know v is initiallyN and v falls initially at a rate of about �
��

i
e
 y��	 � � and y���	 � �pr�N �Equation �
��	
 Note Equation �
�� is consistent with the

observation that initially almost all crossovers produce di�erent o�spring� i
e
 Xu��	 � �

���

Figure �
�� also shows that in most cases v tends towards ��� i
e
 limg�� y � ��� �Equa�

tion �
��	
 Also should the variety fall to a very low rate we would expect it would prove

more di
cult for crossover to create di�erent o�spring thus we expect a � � but a � �

�Equation �
��	

a � b � c � �pr�N ��
��	

�b
c

� ��� ��
��	

�b � ���c

a � � ��
��	

� �����c � c � �pr�N

���c � �pr�N

c � �pr����N

c � ����pr�N ��
��	

b � ���pr�N ��
��	

So Equation �
�� becomes

y �
����pr�N �p����p�r�N

� � ��apr�N tanh� �
p

����p�r�N
�
��apr�N���g�C��

�

��pr�N

y � ����
q

���� � ���aN�pr tanh��
p

����p�r�N
� � ��apr�N 	��g � C�	

�
��
��	

Equation �
�� predicts v will converge to either � ���N or � zero with a time constant

of ������p�r�N
� � ��apr�N	���� � ������p�r�N

�	���� � �����pr�N	�� � ����N

If we include insisting that crossover does not introduce variety into the population

once it has become homogeneous then Xu��	 � � and a � � and solutions to Equation

�
�� have the simpler form

y �
bebg

�cebg � bC�
or

y � �

Using the same initial gradient and limit values as before implies b and c have the

same values �i
e
 as given by ��
��	 and ��
��		 gives the following solutions

���

y �
����pr�N	e���prg�N

����pr�N	e���prg�N � C	

�
���e���prg�N

���e���prg�N � C�

�
���e���prg�N

e���prg�N � C�
or ��
��	

y � �

The integration constant C� can be �xed from the boundary conditions by de�ning

g � � at the start of the evolution of the population when V � N � i
e
 y��	 � �
 So

C� � ���� and the solutions ��
��	 become

y �
���e���prg�N

e���prg�N � ���
or ��
��	

y � �

In Figure �
�� the evolution of variety predicted by Equation ��
��	 is superimposed

on the actual variety for selected stack populations �cf
 Figure �
��	

0

200

400

600

800

1000

0 20000 40000 60000 80000 100000

N
o
.

d
i
f
f
e
r
e
n
t

i
n
d
i
v
i
d
u
a
l
s

i
n

p
o
p
u
l
a
t
i
o
n

Number of Individuals Created

 stack 2

 stack 3

 stack 1

 stack 4

 Mean of 60 runs

 Run 23 (5)

 Typical (51) run

 Run 40
mean

solutions
typical runs

run 23
Predicted

Figure �
��� Variety predicted by quadratic crossover model and actual variety in selected
stack runs

���

����� Measurements of GP Crossover�s E�ect on Variety

The poor performance at intermediate points in the evolution of the stack populations of

the general models described in the previous section leads to a detailed examination of

the role of crossover in reducing variety in the stack populations
 We discover there are

two main causes� crossover which just involves swapping terminals and crossover which

entails replacing whole trees
 Where variety is low both lead to further production of

clones of the �rst parent
 Quantitative models of these two e�ects are in close agreement

with measurements

Figure �
�� shows the proportion of cases where the o�spring produced by crossover

are identical to one or other of its parents
 �In a typical stack run all o�spring which are

duplicates of other members of the population are identical to one or other parent	
 In

a typical run of the stack problem about one third of crossovers produce o�spring which

are identical to their �rst parent
 Table �
� gives the total number of o�spring produced

by crossover during the run that are clones for various size of crossover fragments

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

Offspring = mum
Offspring = dad

mum = dad

Figure �
��� Proportion of crossovers that yield o�spring identical to one or other parents�
typical stack ���	 run �Also shows proportion where the two parents are identical	

For crossover to produce a clone of the �rst parent the fragment of code that is lost

must be identical to that copied from the second parent
 As crossover fragments which are

taller are generally larger we would expect the chance of this happening to reduce rapidly

with fragment height
 Whilst Table �
� shows this is generally true� it is de�nitely not the

���

Table �
�� Number of crossovers of each height of subtree inserted in a typical stack run
���	 and number of these crossovers which produced a non�unique o�spring

Fragment height Identical to

Total � mum dad both either �

� ������ �� ����� �� ��� ����� ��

� ������ �� ������ �� ��� ������ ��

� ������ �� ����� �� �� ����� �

� ����� � ��� �� � ��� �

�� ������ �� ��� �� �� ���
�

Totals ������ ��� ������ ��� ��� ������ ���

Percent ��
�
� ��

case for fragment height �

In stack run �� ������ individuals are produced by crossover which are identical to their

�rst parent and where the inserted subtree had a height of �� i
e
 fragments consisting of

one function and its arguments which are all terminals
 Of these ������� there were ������

individuals where the tree in which crossover occurred contained only one function and

so crossover entailed replacing the whole tree with another from the other parent� which

turned out to be identical to the �rst
 In this regard the stack problem is atypical� normally

trees or ADFs will have multiple functions and we would expect few clones to be produced

by crossover of trees with a of height �
 In this run of the stack problem most of the

clones are produced by crossover in trees which are short �height of �	 and identical in

both parents
 Thus we see clones �which reduce variety	 being caused by lack of diversity

in the population

Production of Clones by Crossover in Full Binary Trees

In a full binary tree of height h there are �h � � nodes of which �h�� are terminals and

�h�� � � are internal nodes
 Consider crossover between two identical trees where each

node is distinct
 For crossover to produce an individual which is identical to its parents the

crossover points selected in both parents must be the same
 The chance of this happening

would simply be ��h � �	�� if nodes were chosen at random
 However the parameter

pUnRestrictWt �cf
 Section �
�
�	 means only ��� of crossover points are chosen totally

at random
 In the remaining ��� of cases the chosen point must be an internal tree node

From Equation �
�� we see for large trees pUnRestrictWt�s e�ect is to increase the chance

of producing a clone by ��
 The probabilities for smaller trees are tabulated in Table �
�

���

p�clone	 � p�Tree� internal	� p�Tree� same internal	 �

p�Tree� external	� p�Tree� same external	

�

	
��� pany	 � pany

�h � �� �h��

�h � �

� p�Tree� same internal	 �

pany
�h��

�h � �
� p�Tree� same external	

�

	
��� pany	 � pany

�h�� � �

�h � �

� p�Tree� same internal	 �

pany
�h��

�h � �
� p�Tree� same external	

�

	
��� pany	 � pany

�h�� � �

�h � �

�
	

��� pany	 � pany
�h�� � �

�h � �

���h�� � �	 �

pany
�h��

�h � �
� pany

�h��

�h � �
��h��

�

�
��� pany	 � pany

�h����
�h��

��
��h�� � �	

�

�
pany

�h��

�h��

��
�h��

��
��	

As h increases

p�clone	 � ��� pany��	�

��h�� � �	
�
p�any��

�h��

� ��� pany��	�

�h��
�
p�any��

�h��

�
��� pany��	� � p�any��

�h��

�
�� pany � p�any�� � p�any��

�h��

�
�� pany � p�any��

�h��

Since pany � ��� for large h

� ���� ��h

p�clone	 � ���� ��h � �	�� ��
��	

The chance of producing a clone from two identical trees in a real GP population may

not be exactly as given by Equation �
��
 This is because� the trees may not be full binary

trees� i
e
 they will be smaller if there are terminals closer to the root than the maximum

height of the tree� or if functions have one argument rather than two
 Conversely trees can

be also be larger if functions have three or more arguments
 Also the chance of producing

a clone is increased if actual trees contain repeated subtrees

���

In the case of two identical trees of height two and crossover fragments of height two

the chance of producing a clone is equal to the chance of selecting the root in the �rst tree

which depends upon the number of arguments the tree has
 For n arguments� the chance

of producing a clone is ��� pany	 � pany��n� �	 � �� n pany��n� �	 which is ���� ����

��� and ��� for n � �� �� � and �
 In other words given a population where the best

solution found has a height of two and the inserted crossover fragment is also of height

two and there is a high chance of selecting �copies of	 the individual to be both parents we

expect the o�spring to be a clone between ��� and ��� of the time� which is consistent

with the �gure of ������ such clones produced in a typical stack run �cf
 page ���	

Thus one of the major causes of the fall in variety in the stack populations can be

traced to �nding partial solutions early in the evolution of the population with relatively

high �tness where trees within it are short
 As the whole individual is composed of �ve

trees� its total size need not be very small
 Figure �
�� �page ��	 provides additional

evidence for this as it shows on average stack individuals shrink early in the run to ��
�

at generation six
 I
e
 on average each tree contains �
� primitives and as there must be

many trees shorter than this� many trees must have a height of two or less

Production of Clones by Crossover Swapping Terminals

The other major reason for crossover to produce clones in the stack runs is crossover

fragments which contain a single terminal �cf
 Table �
�	
 The proportion of clones these

crossovers produce can be readily related to lack of diversity
 The proportion of crossover

fragments which are a single terminal depends upon the depth and bushiness of the trees

within the population� which in turn depends upon the number of arguments required

by each function in the function set and how the distribution of functions evolves
 The

Table �
�� Chance of o�spring being identical to parents when crossing two identical full
binary trees

Tree height Chance of clone pany � �

� � �
��� �
���

�
�
��� pany	 � pany

�
	

��
�

�pany �

�
	
�

� �
���
���

�
����pany�
pany �

�
	
�

	 �
�pany �

�
	
�

�
���
���

�
����pany�
pany �

��
	
�

� �
�pany �

��
	
�

���
���

�
����pany�
pany ��

��
	
�

�� �
�pany �	

��
	
�

��
���
���

���

Table �
�� Chance of selecting a terminal as a crossover fragment in a full binary tree

Height Both parents

� ��� � ��� �

� �� � �� �

� �� � �� �

� �� � �� �

� �� � ��
�� �

proportion of crossover fragments which are a single terminal is clearly problem dependent

and changes with run and generation within the run� however as a �rst approximation in

the stack problem it can be treated as a constant for each type of tree �cf
 Figure �
��	

For a full binary tree of height h the chance of selecting a terminal as a crossover

fragment is pany�h�����h � �	 and the chance of crossover swapping two terminals is�
pany�h�����h � �	

��

 Table �
� gives the numerical values for trees of di�erent heights

Note the chance of selecting a terminal converges rapidly to ��� for large trees

If parents were chosen at random the chance of selecting the same terminal in two

trees would be simply the sum of the squares of their proportions in the population
 Thus

if the terminals are equally likely �as would be expected in the initial population	 the

chance of selecting two the same is just the reciprocal of the number of terminals and this

rises as variety falls eventually reaching unity if all but one terminal are removed from

the population
 Figure �
�� shows how this measure evolves for each tree in a sample of

stack runs
 Note in run ���	 all �ve trees quickly converge on a single terminal
 In many

of the other runs the population concentrates on one or two terminals� so the chance of

an o�spring produced by changing a single terminal being a clone of one of its parents is

much increased

Typically ��
�� of crossovers replace one terminal with another terminal �cf
 Ta�

ble �
�	
 This is near the proportion expected for full binary trees with a height of three

or more
 Table �
� shows reasonable agreement between the predicted number of clones

produced by crossover inserting a single terminal and the actual number averaged over a

typical run of the stack problem

The second major source of crossover produced reduction in variety �cf
 Table �
�	 is

thus explained by the fall in terminal diversity� itself a product of the fall in variety
 So

again we see low variety being reinforced by crossover� i
e
 the reversal of its expected role

of creating new individuals

���

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

C
o
n
v
e
r
g
e
n
c
e

o
f

T
e
r
m
i
n
a
l
s

Number of Individuals Created

1/7

run 00

run 20

run 30
40

run 10 51

run 23

overall
makenull

top
pop

push
empty

Figure �
��� Evolution of �Terminal Concentration	� in each operation tree� for six typical
stack runs and run ���	

Table �
�� Number of clones produced by changing a terminal in run ���	 of the stack
problem

Tree No
 Crossovers Terminal Only
P

�term conc	� Predicted Actual

makenull ������ �����
������ �����
� �����

top ������ �����
������ �����
� �����

pop ������ �����
������ �����
� �����

push ������ �����
������ ���
� ���

empty ������ ���
������ ���
� ���

Totals ������ ������ �����
� �����

���

0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

 h=1

 h=2

 h=3
 h=4

Typical runs
Run 23

47%
40%
37%
35%

Figure �
��� Proportion of crossovers where a terminal is inserted for six typical stack
runs and run ���	 �averaged across all �ve trees within each individual	

	�� Measurements of GP Crossover�s E�ects

In this section we analyse how successful crossover is at �nding new solutions with higher

�tness and conclude in the case of the stack problem� crossover quickly tires and the rate

of �nding improvements slows rapidly so after generation eight very few are found and

typically no improvements are found after generation ��
 Note this includes all crossovers

not just those that produce o�spring that are better than anyone else in the population

Table �
� gives the number of crossovers which produced an o�spring �tter than both

its parents� for run ���	� six typical runs and the four successful runs
 The successful runs

produce about ��� more successful crossovers than typical runs
 The parents of success�

ful crossovers and their o�spring are plotted in Figures �
�� and �
�� for a typical and a

successful run respectively
 However the number of successful crossovers is more than the

number of di�erent �tness values� that is there are �tness values which have been �dis�

covered� by multiple successful crossovers
 Clusters of particularly popular �tness values

that were �rediscovered� many times can be seen in Figures �
�� and �
��
 E
g
 �tness

value ��� is discovered �� times in run ���	 ��� is ��� of all the successful crossovers	

The proportion of successful crossovers in six selected stack runs is shown in Fig�

ure �
��
 Note the number of crossovers that produce improved o�spring is small and

quickly falls so after generation �� there are almost no crossovers that improve on both

parents �or indeed improve on either	

���

Table �
�� No
 of Successful Crossovers� in Typical and Successful Stack Runs

Run Crossover point in Tree Total Best Fitness

Makenull Top Pop Push Empty

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

�� �� �� �� �� �� ��� ���

Figure �
�� shows the �tness of individuals selected to be crossover parents
 This shows

the convergence of the population with almost all parents having the maximum �tness

value
 �The asymmetry of the �tness function makes the mean �tness of the population

lower than the �tness of the median individual	

	�� Discussion

Natural evolution of species requires variation within a population of individuals as well as

selection for survival and reproduction
 In the previous sections we have seen how� even on

the most basic measure� variety in the stack populations falls to low levels primarily due

to crossover producing copies of the �rst parent at high rates
 Initially this is caused by

the discovery of relatively high �tness partial solutions containing very small trees which

dominate the population� reducing variety which causes feedback via crossover produced

clones so keeping variety low� in one case causing it to collapse entirely
 As we argued in

Section �
�� in most stack runs lack of variety with corresponding extinctions of primitives

prevents solutions like those found from evolving

In any genetic search a balance between searching the whole search space for an opti�

mum and concentrating the search in particular regions is required
 Some convergence of

the population is expected as the GA concentrates on particularly fruitful areas
 In most

stack runs partial solutions are found which act similarly to a stack of one item and so

receive a high relative �tness and the population begins to converge to them
 This would

���

80

90

100

110

120

130

140

150

160

0 2000 4000 6000 8000 10000 12000 14000 16000

F
i
t
n
e
s
s

Number of Individuals Created

Improve on both
Mean fitness

Figure �
��� All crossovers that produced o�spring �tter than both parents� typical stack
run ���	

80

90

100

110

120

130

140

150

160

0 2000 4000 6000 8000 10000 12000 14000 16000

F
i
t
n
e
s
s

Number of Individuals Created

Improve on both
Mean fitness

Figure �
��� All crossovers that produced o�spring �tter than both parents� successful run
���	

���

0.001

0.01

0.1

1

0 20000 40000 60000 80000 100000

P
r
o
p
o
r
t
i
o
n

o
f

t
o
t
a
l

c
r
o
s
s
o
v
e
r
s

Number of Individuals Created

Run 40

 Run 51

 Run 51

Improve on both parents
Worse than either

Within range of parents’ fitness

Figure �
��� Proportion of crossovers that produced o�spring �tter than both parents�
worse than both or neither
 Six typical stack runs

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

F
i
t
n
e
s
s

Number of Individuals Created

First parent in Crossover
Mean fitness

Figure �
��� Fitness of parents selected for crossover in typical stack ���	 run
 �Extrema
and �� of data for �rst parent only are plotted	

���

be �ne apart from two problems� �rstly the solutions contain short trees which causes

rapid production of clones but more seriously there is no straightforward path from their

implementation of a stack of one item to a general stack of many items
 These two prob�

lems are to some extent speci�c to the stack problem� the �ve tree architecture and the

terminal#function set used
 A smaller terminal#function set without special primitives to

manipulate �aux�� having only general primitives and indexed memory� might avoid the

trapping by �deceptive solutions� but partial solutions of any sort might then not evolve

in a reasonable time
 �Interestingly Bruce� ����! adopts a similar terminal#function set

in his experiments on the evolution of stacks and other data structures	
 In the stack

problem each terminal and function can appear in each of the �ve trees but crossover

acts only between like trees so each tree is genetically isolated from each other
 �This

is known as branch typing and is commonly used with ADFs Koza� ����� page ��!
 An

alternative point typing allows crossover to move genetic material between trees	
 Branch

typing means there are e�ectively � � �� � �� primitives in the stack problem
 Andre�

����! also reports GP runs with similar numbers of primitives where one or more functions

either evolved out of the population �i
e
 became extinct	 or became rare and suggests it

was a factor in the decision to use mutation �albeit at a low rate	
 However he cautions

that further experiments are required for con�rmation

The impact of deceptive partial solutions within the population might be reduced by

partitioning the population into �demes� �c
f
 Section �
�
�	� using �tness niches to ensure

diverse solutions are retained �c
f
 Section �
�
�	 or perhaps using co�evolution to reward

solutions to parts of the test case which most of the population is unable to solve

Mutation could also be used to increase population diversity �as discussed in Sec�

tion �
��	 but a high mutation rate might be required to escape from a deceptive local

optimum
 This would increase the degree of randomness in the search but might introduce

a bene�cial element of �hill climbing�

While other GPs may not su�er from lack of variety� convergence of some sort is re�

quired if the GP is not to be random search
 For example Keijzer� ����! shows convergence

in terms of subtrees with GP populations reusing subtrees in many individuals
 �GP may

take advantage of this by reducing the space taken to store the population in memory

 Keijzer� ����! and on disk �by using �le compression� see Section E
�	
 Where side�e�ects

are controlled� retaining information on the evaluation of common subtrees within the

population can also considerably reduce program execution time� c
f
 Section E
� and

 Handley� ����a!	

���

Existing GP systems could be modi�ed to�

�
 Increase variety by disabling the production of clones by the reproduction operator�

e
g
 by setting pr to zero

�
 Detect when an o�spring is identical to one of its parents
 This information can be

readily gathered and can be used either to�

�a	 reduce GP run time or

�b	 Increase variety

In many problems �a	 can be readily achieved by avoiding the �tness evaluation

of the o�spring and instead just copying the �tness value of its �identical	 parent

Variety can be kept high �b	 by preventing the duplicate o�spring from entering the

population
 Typically this would prevent all duplicates produced by crossover
 �It

would also be feasible to guarantee every member of the population is unique by

forbidding duplicates from entering the population
 Using hashing techniques this

can be done e
ciently	

Given current GP populations sizes it would appear to be sensible to ensure variety

remains high so the compromise between converging on good search location and exploring

untried areas retains a high degree of exploration
 Thus both changes �
 and �
b	 should

be tried

The use of pr � ��� in this thesis stems from the decision to use parameters as similar to

 Koza� ����! as possible
 It is also the supplied default value with GP�QUICK Singleton�

����!
 However the use of reproduction is not universal� for example the CGPS Nordin�

����a� Nordin and Banzhaf� ����a� Francone et al�� ����! does not implement it
 As far as

is known� GP systems do not currently detect that crossover has produced a child which is

identical to one of its parents for the purposes of either reducing run time ��
a	 or increasing

variety ��
b	
 Koza� ����� page ��! ensures every member of the initial population is

unique but allows duplicates in subsequent generations
 While hashing allows detection of

duplicates in the whole population to be done quickly� in these experiments most duplicates

were directly related to each other and so could be readily detected without comparison

with the whole population

It appears to be common practice for GP to �run out of steam� so after ����� gen�

erations no further improvement in the best �tness value in the population occurs or

improvement occurs at a very low rate
 Accordingly few GP runs are continued beyond

���

generation ��
 � Iba et al�� ����a!�s STROGANOFF system provides a counter example

with runs of ��� generations	
 It is suggested that failure of crossover to improve on the

best individual in the population may� as we saw in Section �
�� be accompanied by a

general failure of crossover to make any improvement
 This �death of crossover� means

further evolution of the population is due to unequal production of individuals with the

same �or worse	 �tness as their parents� in �tness terms �and possible also phenotypi�

cally	 at best they are copies of their parents
 Typically this serves only to increase the

convergence of the population

An number of attempts to �scale up� GP have been made based upon imposing func�

tional abstraction on individuals in the population Koza� ����� Angeline� ����� Rosca�

����!
 These have had a degree of success
 Another approach is to accept that complex

problems will require many generations to solve and look to the various mechanisms de�

scribed above and new techniques to allow long periods of GP evolution with controlled

convergence of the GP population and means to retain and reuse �partial	 solutions

	�	 Summary

In this chapter we discussed Price�s selection and covariance theorem and showed it can

be applied to genetic algorithms and applied it to genetic programming� where we used it

to explain the evolution of the frequency of various critical primitives in stack populations

including their rapid extinction in many cases
 These extinctions are seen as the main

reason why many runs of the stack problem �described in Chapter �	 failed
 In Section

�
� it was shown that the loss of these primitives was accompanied by a general loss in

variety and general models were developed to try and explain this
 While these predicted

the initial as well as the �nal evolution of the stack populations� they were less successful

at describing the middle portion
 Quantitatively successful models based upon full binary

trees of particular heights were developed
 Section �
� concludes by looking at just the

successful crossovers in the stack runs and concludes they are small in number� in many

cases they �rediscover� solutions that have already been found and convergence of the

population is accompanied by absence of crossovers that produce o�spring �tter than their

parents as well as none that are �tter than the best existing individuals in the population

To some extent these problems are fundamental
 Viewing GP as a search process there

is necessarily a trade�o� between concentrating the search in promising parts of the search

space which increases the chance of �nding local optima versus a wider ranging search

which may therefore be unsuccessful but may also �nd a more remote but better global

���

optimum
 In GA terms a local search corresponds to a more converged population
 The

stack experiments indicate� after the fact� that the search was too focused too early and

so the global optima were missed in many runs
 There are many techniques that can be

used to ensure population diversity remains high �and so the search is defocused	 such

as splitting the population into demes� �tness niches and mutation� some of which were

used in Chapters �� � and � and Appendix D
 Techniques based on biased mate selection

to preserve diversity are discussed in Ryan� ����!

Defocusing the search means the search is more random and will take longer� if indeed it

succeeds
 Other approaches to avoid getting trapped at local optima ��premature conver�

gence�	 change the search space� for example by changing the representation by changing

the primitives from which solutions are composed or changing the �tness function

Changing the primitives can easily be done by hand
 It would be interesting to discover

to what extend the problems are due to provision of the auxiliary registers which allow

the evolution of stacks but also allow ready formation of deceptive partial solutions
 If

these were not used� would stacks still evolve� It is interesting that Bruce� ����! uses very

similar additional memory in his work
 Alternatively perhaps cleverer genetic operations

could avoid the trap by changing programs from using one type of memory to another in

a consistent manner so new programs continue to work as before
 While strongly typed

GP can reduce the size of the search space Montana� ����!� it may also transform it so

that it is easier to search

There are a number of techniques which automatically change the representation
 The

following three techniques co�evolve the representation as the population itself evolves�

The Genetic Library Builder �GLiB	 Angeline� ����!� Automatically De�ned Functions

�ADFs	 Koza� ����! and Adaptive Representations Rosca� ����!
 Koza� ����� page ���!

argues ADFs and other representations provide a di�erent lens with which to view the

solution space and that ADFs may help solve a problem by providing a better lens
 ADFs

were used in Chapters �� � and �

The �tness function may be readily changed by hand
 For example provision of an

additional test case may �plug a gap� which GP populations are exploiting to achieve

high �tness on the test case but at the expense of not generalising to the problem as

a whole
 Co�evolution can provide an automatic means of dynamically changing the

�tness function Siegel� ����!
 There is increasing interest in using co�evolution Sen� �����

Reynolds� ����a� Ryan� ����! and improved performance has been claimed Hillis� ����!

However a more dynamic framework makes analysis of population behaviour harder

���

In GP runs the concentration of primitives and variety within the population should

be monitored �both can be done with little overhead	
 Should a primitive fall to low con�

centration �such as close to the background level provided by mutation	 or total extinction

this should be taken as an indication of possible problems and so worthy of further inves�

tigation
 Similarly if the number of unique individuals in the population falls below ���

this should also be investigated
 Keijzer� ����! provides a means to measure the concen�

tration of groups of primitives �sub trees	 but the implementation is not straightforward

for most existing GP systems and the interpretation of the results is more complex

Chapter �

Conclusions

The key to successful human produced software is using abstraction to control the complex�

ity of each task in hand
 I
e
 in each task� being able to use objects without considering in

detail how they interact
 The objects are abstractions of lower level code or data� which

are in turn abstractions of still lower levels
 Thus a programmer may use a �le while

knowing nothing about how to program the disk drive on which it is stored
 Indeed the

program can continue to work even if the �le is moved to another disk drive� even if it is of

a di�erent type� even a type which had not been designed when the program was written

Genetic programming� with its undirected random program creation� would appear to

be the anathema of highly organised software engineering
 It is an evolutionary technique�

using only information in its current population
 It does not plan ahead or use a global

top�down design but we have already seen� via ADFs and other techniques� it too can gain

considerable bene�t from functional abstraction

While GP work to date has concentrated on functional abstraction� we argue that

techniques which allow GP to take advantage of data abstraction will be essential to

enable it to scale up and tackle large real problems
 Chapters �� � and � show GP can

produce structured data types �stacks� queues and lists	
 In Chapter � we demonstrate GP

can use data abstraction� by solving three problems
 For the two more complex examples

we have shown a stack abstract data type is bene�cial
 While the �rst example does not

require a stack� a general solution was evolved which used the appropriate data structure

The failure of indexed memory to solve the two more complex problems� is disappointing�

but was expected
 While it is anticipated that it is possible to evolve solutions to the two

problems using indexed memory� e
g
 if increased resources are available� the richness of

interactions supported by indexed memory allows complex interactions to arise and these

complicate the search space making it harder to search
 This problem is a general one

The search e�ort increases rapidly with problem complexity
 While other research has

���

���

shown changes to the representation �e
g
 ADFs and more powerful primitives	 can help�

this work has shown that reducing the complexity of evolved programs through use of data

abstraction to control interactions within evolving programs can also be bene�cial

Appendices C and D have demonstrated that both the combination of a GA and hand

coded heuristic� and a GP using the same heuristics as seeds in the initial population

can produce low cost maintenance schedules for a real world electrical power transmission

network

In many of the problems in this thesis� general scalable solutions have been evolved

This is very encouraging
 Perhaps general algorithms are easier for GP to �nd� It may

be argued on the basis of the Minimum Description Length �MDL	 principle or Occam�s

Razor that general programs tend to be shorter than programs which are speci�c to the

test case and fail to generalise Iba et al�� ����b� Zhang and M"uhlenbein� ����b!
 Non�

general program may �memorise� the tests and need to be longer and more complex to

do this
 Perhaps solutions occur more frequently in the search space of shorter programs

or perhaps GP is less e�ective at searching for longer programs�

The idea that symbolic regression is compressing the training data into a program� can

be inverted
 If a required program�s size can be estimated� then so too can its information

content
 This gives a lower bound on the information content of the training data and

thus� a lower bound on the size of the training set
 This indicates that the volume of

training data will need to increase as we try and evolve more ambitious programs
 If we

continue to test all evolved programs on all the training set then GP machine resource

usage will grow at least quadratically with task complexity
 However techniques such as

co�evolution Angeline and Pollack� ����!� soft brood selection Tackett� ����a! and sparse

training sets Francone et al�� ����! indicate it may not be necessary to exhaustively test

every evolved program

��� Recommendations

A number of practical recommendations for GP work can be made
 To a large extent

the advice in Kinnear� Jr
� ����c! and Koza� ����! remains sound� however a number of

additional suggestions can be made�

�
 GP populations should be closely studied as they evolve
 There are several properties

that can be easily measure which give indication of problems�

���

�a	 Frequency of primitives
 Recognising when a primitive has been completely

lost from the population �or its frequency has fallen to a low level� consistent

with the mutation rate	 may help to diagnose problems

�b	 Population variety
 If the variety falls below ��� of the population size� this

indicates there may be a problem
 However a high variety does not indicate all

is well
 Measuring phenotypic variation �i
e
 diversity of behaviour	 may also

be useful

�
 Measures should be taken to encourage population diversity
 Panmictic steady state

populations with tournament selection and reproduction and crossover appear to

converge too readily
 The above metrics may indicate if this is happening in a

particular case
 Possible solutions include�

�a	 Removal of the reproduction operator

�b	 Addition of one or more mutation operators

�c	 Smaller tournament sizes and#or using uniform random selection to decide

which individuals to remove from the population
 NB the latter means the

selection scheme is no longer elitist
 It may be worthwhile forcing it to be

elitist

�d	 Splitting large populations� i
e
 above ����� into semi�isolated demes

�e	 Using �tness sharing to encourage the formation of many �tness niches

�
 Use of �tness caches �either when executing an individual or between ancestors and

children	 can reduce run time and may repay the additional work involved with using

them

�
 Where GP run time is long� periodically save the current state of the run
 Should

the system crash� the run can be restarted� from part way through rather than the

at the start
 Care should be taken to save the entire state� so restarting a run does

not introduce any unknown variation

The bulk of the state to be saved is the current population
 This can be compressed�

e
g
 using gzip
 While compression can add a few percent to run time� reductions in

disk space to less than one bit per primitive in the population have been achieved

���

��� Future work

There are many interesting questions raised by the work in this thesis
 There are a number

of techniques that have been introduced or which are fairly new to GP which warrant

further investigation to further explore their bene�ts or clarify the best circumstances in

which to use them
 Examples include�

� Multi�objective �tness functions

� Pareto �tness

� Fitness Niches

� Fitness Sharing

� Design of primitive sets and �tness functions �particularly concerning deceptive �t�

ness functions and representations	

� Semantic and syntactic restrictions on evolving programs or parts of programs

� Scoping rules

� Reducing run time via caching or inheriting partial �tness information from ances�

tors

However the failure of GP to evolve data structures �on the �y� is the most important

Aspects that could be investigated include� Is the failure speci�c to the problems tried� the

primitive sets used or insu
cient resources dedicated to the task� If the later how much

extra resources are required� While these are possible explanations� it is felt that this

failure is part of the general di
culty of scaling up GP to solve more complex problems

and so its solution would have a direct bearing on the fundamental scaling problem for

GP

The addition of data structures greatly extends the power of genetic programming

GP plus data structures should be evaluated on such problems
 The use of stack data

structures with other context free languages is an obvious �rst step

Bibliography

 Abbott� ����! R
 J
 Abbott
 Niches as a GA divide�and�conquer strategy
 In Art Chap�

man and Leonard Myers� editors� Proceedings of the Second Annual AI Symposium for

the California State University
 California State University� ����

 Aho and Ullman� ����! Alfred V
 Aho and Je�rey D
 Ullman
 Foundations of Computer

Science
 Computer Science Press� C edition� ����

 Aho et al�� ����! A V Aho� J E Hopcroft� and J D Ullman
 Data Structures and Algo�

rithms
 Addison�Wesley� ����

 Altenberg� ����! Lee Altenberg
 The evolution of evolvability in genetic programming

In Kenneth E
 Kinnear� Jr
� editor� Advances in Genetic Programming� pages �����

MIT Press� ����

 Altenberg� ����! Lee Altenberg
 The Schema Theorem and Price�s Theorem
 In L
 Darrell

Whitley and Michael D
 Vose� editors� Foundations of Genetic Algorithms 	� pages ���

��� Estes Park� Colorado� USA� �� July�� August ���� ����
 Morgan Kaufmann

 Andre and Koza� ����! David Andre and John R
 Koza
 Parallel genetic programming

on a network of transputers
 In Justinian P
 Rosca� editor� Proceedings of the Workshop

on Genetic Programming
 From Theory to Real�World Applications� pages ��������

Tahoe City� California� USA� � July ����

 Andre and Teller� ����! David Andre and Astro Teller
 A study in program response

and the negative e�ects of introns in genetic programming
 In John R
 Koza� David E

Goldberg� David B
 Fogel� and Rick L
 Riolo� editors� Genetic Programming ����

Proceedings of the First Annual Conference� pages ������ Stanford University� CA�

USA� ����� July ����
 MIT Press

 Andre� ����a! David Andre
 Automatically de�ned features� The simultaneous evolution

of ��dimensional feature detectors and an algorithm for using them
 In Kenneth E

���

���

Kinnear� Jr
� editor� Advances in Genetic Programming� chapter ��� pages �������

MIT Press� ����

 Andre� ����b! David Andre
 Evolution of mapmaking ability� Strategies for the evolution

of learning� planning� and memory using genetic programming
 In Proceedings of the

���
 IEEE World Congress on Computational Intelligence� volume �� pages ��������

Orlando� Florida� USA� ����� June ����
 IEEE Press

 Andre� ����c! David Andre
 Learning and upgrading rules for an OCR system using ge�

netic programming
 In Proceedings of the ���
 IEEE World Congress on Computational

Intelligence� Orlando� Florida� USA� ����� June ����
 IEEE Press

 Andre� ����a! David Andre
 The automatic programming of agents that learn mental

models and create simple plans of action
 In IJCAI��� Proceedings of the Fourteenth

International Joint Conference on Arti�cial Intelligence� volume �� pages �������� Mon�

treal� Quebec� Canada� ����� August ����
 Morgan Kaufmann

 Andre� ����b! David Andre
 The evolution of agents that build mental models and cre�

ate simple plans using genetic programming
 In L
 Eshelman� editor� Genetic Algo�

rithms
 Proceedings of the Sixth International Conference �ICGA���� pages ��������

Pittsburgh� PA� USA� ����� July ����
 Morgan Kaufmann

 Andre� ����! David Andre
 Personal communication� �� Jul ����

 Andrews and Prager� ����! Martin Andrews and Richard Prager
 Genetic programming

for the acquisition of double auction market strategies
 In Kenneth E
 Kinnear� Jr
�

editor� Advances in Genetic Programming� chapter ��� pages �������
 MIT Press� ����

 Angeline and Pollack� ����! Peter J
 Angeline and Jordan B
 Pollack
 Competitive envi�

ronments evolve better solutions for complex tasks
 In Stephanie Forrest� editor� Pro�

ceedings of the �th International Conference on Genetic Algorithms� ICGA��	� pages

�������� University of Illinois at Urbana�Champaign� ����� July ����
 Morgan Kauf�

mann

 Angeline and Pollack� ����! P
 J
 Angeline and J
 B
 Pollack
 Coevolving high�level rep�

resentations
 In Christopher G
 Langton� editor� Arti�cial Life III� volume XVII of SFI

Studies in the Sciences of Complexity� pages ������ Sante Fe� New Mexico� ����� June

���� ����
 Addison�Wesley

���

 Angeline� ����! Peter John Angeline
 Evolutionary Algorithms and Emergent Intelli�

gence
 PhD thesis� Ohio State University� ����

 Angeline� ����! Peter John Angeline
 Genetic programming and emergent intelligence

In Kenneth E
 Kinnear� Jr
� editor� Advances in Genetic Programming� chapter �� pages

�����
 MIT Press� ����

 Angeline� ����a! Peter J
 Angeline
 An investigation into the sensitivity of genetic pro�

gramming to the frequency of leaf selection during subtree crossover
 In John R
 Koza�

David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo� editors� Genetic Programming

����
 Proceedings of the First Annual Conference� pages ������ Stanford University�

CA� USA� ����� July ����
 MIT Press

 Angeline� ����b! Peter J
 Angeline
 Two self�adaptive crossover operators for genetic

programming
 In Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors� Advances in Genetic

Programming �� chapter �� pages ������
 MIT Press� Cambridge� MA� USA� ����

 Atlan et al�� ����! Laurent Atlan� Jerome Bonnet� and Martine Naillon
 Learning dis�

tributed reactive strategies by genetic programming for the general job shop problem

In Proceedings of the �th annual Florida Arti�cial Intelligence Research Symposium�

Pensacola� Florida� USA� May ����
 IEEE Press

 Back et al�� ����! Thomas Back� Frank Ho�meister� and Hans�Paul Schwefel
 A survey of

evolution strategies
 In Richard K
 Belew and Lashon B
 Booker� editors� Proceedings

of fourth International Conference on Genetic Algorithms� pages ����� University of

California � San Diego� La Jolla� CA� USA� ����� July ����
 Morgan Kaufmann

 Banzhaf� ����! Wolfgang Banzhaf
 Genetic programming for pedestrians
 In Stephanie

Forrest� editor� Proceedings of the �th International Conference on Genetic Algorithms�

ICGA��	� page ���� University of Illinois at Urbana�Champaign� ����� July ����
 Mor�

gan Kaufmann

 Beasley et al�� ����a! David Beasley� David R
 Bull� and Ralph R
 Martin
 Reducing

epistasis in combinatorial problems by expansive coding
 In Stephanie Forrest� edi�

tor� Proceedings of the �th International Conference on Genetic Algorithms� ICGA��	�

pages �������� University of Illinois at Urbana�Champaign� ����� July ����
 Morgan

Kaufmann

���

 Beasley et al�� ����b! David Beasley� David R
 Bull� and Ralph R
 Martin
 A sequen�

tial niche technique for multimodal function optimisation
 Evolutionary Computation�

���	��������� ����

 Bettenhausen et al�� ����! K
 D
 Bettenhausen� S
 Gehlen� P
 Marenbach� and H
 Tolle

BioX�� � New results and conceptions concerning the intelligent control of biotechno�

logical processes
 In A
 Munack and K
 Sch"ugerl� editors� �th International Conference

on Computer Applications in Biotechnology� pages �������
 Elsevier Science� ����

 Beyer� ����! Hans�Georg Beyer
 Towards a theory of evolution strategies� On the bene�ts

of sex� the �u#u�l	 theory
 Evolutionary Computation� ���	�������� ����

 Blickle and Thiele� ����! Tobias Blickle and Lothar Thiele
 Genetic programming and

redundancy
 In J
 Hopf� editor� Genetic Algorithms within the Framework of Evolu�

tionary Computation �Workshop at KI��
� Saarbr�ucken�� pages ������ Im Stadtwald�

Building ��� D������ Saarbr"ucken� Germany� ����
 Max�Planck�Institut f"ur Informatik

�MPI�I�������	

 Blickle and Thiele� ����! Tobias Blickle and Lothar Thiele
 A comparison of selection

schemes used in genetic algorithms
 TIK�Report ��� TIK Institut fur Technische In�

formatik und Kommunikationsnetze� Computer Engineering and Networks Laboratory�

ETH� Swiss Federal Institute of Technology� Gloriastrasse ��� ���� Zurich� Switzerland�

December ����

 Blickle� ����! Tobias Blickle
 Evolving compact solutions in genetic programming� A case

study
 In Hans�Michael Voigt� Werner Ebeling� Ingo Rechenberg� and Hans�Paul Schwe�

fel� editors� Parallel Problem Solving From Nature IV� Proceedings of the International

Conference on Evolutionary Computation� volume ���� of LNCS� Berlin� Germany� ���

�� September ����
 Springer�Verlag

 Bohm and Geyer�Schulz� ����! Walter Bohm and Andreas Geyer�Schulz
 Exact uniform

initialization for genetic programming
 In Richard K
 Belew and Michael Vose� editors�

Foundations of Genetic Algorithms IV� University of San Diego� CA� USA� ��� August

����

 Brave� ����! Scott Brave
 Using genetic programming to evolve mental models
 In

S
 Louis� editor� Fourth Golden West Conference on Intelligent Systems� pages �����

International Society for Computers and their Applications � ISCA� ����� June ����

���

 Brave� ����a! Scott Brave
 The evolution of memory and mental models using genetic

programming
 In John R
 Koza� David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo�

editors� Genetic Programming ����
 Proceedings of the First Annual Conference� pages

�������� Stanford University� CA� USA� ����� July ����
 MIT Press

 Brave� ����b! Scott Brave
 Evolving deterministic �nite automata using cellular encod�

ing
 In John R
 Koza� David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo� editors�

Genetic Programming ����
 Proceedings of the First Annual Conference� pages ������

Stanford University� CA� USA� ����� July ����
 MIT Press

 Brave� ����c! Scott Brave
 Evolving recursive programs for tree search
 In Peter J
 An�

geline and K
 E
 Kinnear� Jr
� editors� Advances in Genetic Programming �� chapter ���

pages �������
 MIT Press� Cambridge� MA� USA� ����

 Brooks� ����! Rodney A
 Brooks
 Intelligence without reason
 Technical report� MIT AI

Lab� Apr ����
 AI Memo no ����� Prepared for Computers and Thought

 Bruce� ����! Wilker Shane Bruce
 The Application of Genetic Programming to the Au�

tomatic Generation of Object�Oriented Programs
 PhD thesis� School of Computer and

Information Sciences� Nova Southeastern University� ���� SW �th Avenue� Fort Laud�

erdale� Florida ������ USA� December ����

 Bruce� ����! Wilker Shane Bruce
 Automatic generation of object�oriented programs

using genetic programming
 In John R
 Koza� David E
 Goldberg� David B
 Fogel�

and Rick L
 Riolo� editors� Genetic Programming ����
 Proceedings of the First Annual

Conference� pages �������� Stanford University� CA� USA� ����� July ����
 MIT Press

 Carroll� ����! Lewis Carroll
 Through the Looking�Glass� and What Alice Found There

Macmillan� ����

 Cartwright and Harris� ����! Hugh M
 Cartwright and Stephen P
 Harris
 Analysis of the

distribution of airborne pollution using genetic algorithms
 Atmospheric Environment�

��A���	����������� ����

 Collins� ����! Robert J
 Collins
 Studies in Arti�cial Evolution
 PhD thesis� UCLA�

Arti�cial Life Laboratory� Department of Computer Science� University of California�

Los Angeles� LA CA ������ USA� ����

 Cramer� ����! Nichael Lynn Cramer
 A representation for the adaptive generation of

simple sequential programs
 In John J
 Grefenstette� editor� Proceedings of an In�

���

ternational Conference on Genetic Algorithms and the Applications� pages ��������

Carnegie�Mellon University� Pittsburgh� PA� USA� ����� July ����

 Crepeau� ����! Ronald L
 Crepeau
 Genetic evolution of machine language software
 In

Justinian P
 Rosca� editor� Proceedings of the Workshop on Genetic Programming
 From

Theory to Real�World Applications� pages �������� Tahoe City� California� USA� � July

����

 Daida et al�� ����! Jason M
 Daida� Tommaso F
 Bersano�Begey� Steven J
 Ross� and

John F
 Vesecky
 Computer�assisted design of image classi�cation algorithms� Dynamic

and static �tness evaluations in a sca�olded genetic programming environment
 In

John R
 Koza� David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo� editors� Ge�

netic Programming ����
 Proceedings of the First Annual Conference� pages ��������

Stanford University� CA� USA� ����� July ����
 MIT Press

 Das et al�� ����! Sumit Das� Terry Franguidakis� Michael Papka� Thomas A
 DeFanti�

and Daniel J
 Sandin
 A genetic programming application in virtual reality
 In Pro�

ceedings of the �rst IEEE Conference on Evolutionary Computation� volume �� pages

�������� Orlando� Florida� USA� ����� June ����
 IEEE Press
 Part of ���� IEEE

World Congress on Computational Intelligence� Orlando� Florida

 Davis� ����! Lawrence Davis� editor
 Handbook of Genetic Algorithms
 Van Nostrand

Reinhold� New York� ����

 Davis� ����! James Davis
 Single populations v
 co�evolution
 In John R
 Koza� editor�

Arti�cial Life at Stanford ���
� pages �����
 Stanford Bookstore� Stanford� California�

���������� USA� June ����

 Dawkins� ����! Richard Dawkins
 The blind Watchmaker
 Harlow � Longman Scienti�c

and Technical� ����

 De Jong and Sarma� ����! Kenneth A
 De Jong and Jayshree Sarma
 Generation gaps

revisited
 In L
 Darrell Whitley� editor� Foundations of Genetic Algorithms �� Vail�

Colorado� USA� ����� July ���� ����
 Morgan Kaufmann

 De Jong� ����! Kenneth De Jong
 On using genetic algorithms to search program spaces

In John J
 Grefenstette� editor� Genetic Algorithms and their Applications
 Proceedings

of the second international conference on Genetic Algorithms� pages �������� MIT�

Cambridge� MA� USA� ����� July ����
 Lawrence Erlbaum Associates

���

 Deakin and Yates� ����! Anthony G
 Deakin and Derek F
 Yates
 Genetic programming

tools available on the web� A �rst encounter
 In John R
 Koza� David E
 Goldberg�

David B
 Fogel� and Rick L
 Riolo� editors� Genetic Programming ����
 Proceedings

of the First Annual Conference� page ���� Stanford University� CA� USA� ����� July

����
 MIT Press

 D�haeseleer and Bluming� ����! Patrik D�haeseleer and Jason Bluming
 E�ects of locality

in individual and population evolution
 In Kenneth E
 Kinnear� Jr
� editor� Advances

in Genetic Programming� chapter �� pages �������
 MIT Press� ����

 D�haeseleer� ����! Patrik D�haeseleer
 Context preserving crossover in genetic program�

ming
 In Proceedings of the ���
 IEEE World Congress on Computational Intelligence�

volume �� pages �������� Orlando� Florida� USA� ����� June ����
 IEEE Press

 Dunay and Petry� ����! Bertrand Daniel Dunay and Frederic E
 Petry
 Solving complex

problems with genetic algorithms
 In L
 Eshelman� editor� Genetic Algorithms
 Pro�

ceedings of the Sixth International Conference �ICGA���� pages �������� Pittsburgh�

PA� USA� ����� July ����
 Morgan Kaufmann

 Dunay et al�� ����! B
 D
 Dunay� F
 E
 Petry� and W
 P Buckles
 Regular language

induction with genetic programming
 In Proceedings of the ���
 IEEE World Congress

on Computational Intelligence� pages �������� Orlando� Florida� USA� ����� June ����

IEEE Press

 Dunnett� ����! R
 M
 Dunnett
 A proposal to use a genetic algorithm for maintenance

planning
 PSBM note� National Grid� Technology and Science Laboratories� July ����

Private communication

 Dunning and Davis� ����! Ted E
 Dunning and Mark W
 Davis
 Evolutionary algorithms

for natural language processing
 In John R
 Koza� editor� Late Breaking Papers at the

Genetic Programming ���� Conference Stanford University July ���	�� ����� pages

������ Stanford University� CA� USA� ����� July ����
 Stanford Bookstore

 Esparcia Alcazar and Sharman� ����! Anna I
 Esparcia Alcazar and Ken C
 Sharman

Some applications of genetic programming in digital signal processing
 In John R
 Koza�

editor� Late Breaking Papers at the Genetic Programming ���� Conference Stanford

University July ���	�� ����� pages ������ Stanford University� CA� USA� ����� July

����
 Stanford Bookstore

���

 Ewens� ����! W
 J
 Ewens
 An interpretation and proof of the fundamental theorem of

natural selection
 Theoretical Population Biology� ����	��������� ����

 Ewens� ����a! W
 J
 Ewens
 Addendum to �The fundamental theorem of natural selection

in Ewens� sense �case of many loci	� by Catilloux and Lessard
 Theoretical Population

Biology� ����	��������� ����

 Ewens� ����b! W
 J
 Ewens
 An optimizing principle of natural selection in evolutionary

population genetics
 Theoretical Population Biology� ����	��������� ����

 Fang et al�� ����! Hsiao�Lan Fang� Peter Ross� and Dave Corne
 A promising genetic al�

gorithm approach to job�shop scheduling� rescheduling and open�shop scheduling prob�

lems
 In Stephanie Forrest� editor� Proceedings of the �th International Conference

on Genetic Algorithms� ICGA��	� pages �������� University of Illinois at Urbana�

Champaign� ����� July ����
 Morgan Kaufmann

 Fang et al�� ����! Hsiao�Lan Fang� Peter Ross� and Dave Corne
 A promising hybrid

GA#heuristic approach for open�shop scheduling problems
 In A
 Cohn� editor� ECAI

�
 Proceedings of the ��th European Conference on Arti�cial Intelligence� pages ����

���� Amsterdam� The Netherlands� August ���� ����
 John Wiley & Sons� Ltd

 Feldman� ����! David S
 Feldman
 Fuzzy network synthesis with genetic algorithms
 In

Stephanie Forrest� editor� Proceedings of the �th International Conference on Genetic

Algorithms� ICGA��	� pages �������� University of Illinois at Urbana�Champaign� ���

�� July ����
 Morgan Kaufmann

 Ferrer and Martin� ����! Gabriel J
 Ferrer and Worthy N
 Martin
 Using genetic pro�

gramming to evolve board evaluation functions for a boardgame
 In ���� IEEE Confer�

ence on Evolutionary Computation� volume �� page ���� Perth� Australia� �� November

� � December ����
 IEEE Press

 Fisher� ����! Ronald A
 Fisher
 The Genetical Theory of Natural Selection
 Dover� ����

Revision of �rst edition published ����� OUP

 Fonseca and Fleming� ����! Carlos M
 Fonseca and Peter J
 Fleming
 Genetic algo�

rithms for multiobjective optimization� Formulation� discussion and generalization
 In

Stephanie Forrest� editor� Proceedings of the �th International Conference on Genetic

Algorithms� ICGA��	� pages �������� University of Illinois at Urbana�Champaign� ���

�� July ����
 Morgan Kaufmann

���

 Fonseca and Fleming� ����! Carlos M
 Fonseca and Peter J
 Fleming
 An overview of evo�

lutionary algorithms in multiobjective optimization
 Evolutionary Computation� ���	���

��� ����

 Forsyth� ����! Richard Forsyth
 BEAGLE A darwinian approach to pattern recognition

Kybernetes� ����������� ����

 Francone et al�� ����! Frank D
 Francone� Peter Nordin� and Wolfgang Banzhaf
 Bench�

marking the generalization capabilities of a compiling genetic programming system using

sparse data sets
 In John R
 Koza� David E
 Goldberg� David B
 Fogel� and Rick L

Riolo� editors� Genetic Programming ����
 Proceedings of the First Annual Conference�

pages ������ Stanford University� CA� USA� ����� July ����
 MIT Press

 Frank� ����! S
 A
 Frank
 George Price�s contributions to evolutionary genetics
 Journal

of Theoretical Biology� ������������ ����

 Fukunaga and Kahng� ����! Alex S
 Fukunaga and Andrew B
 Kahng
 Improving the

performance of evolutionary optimization by dynamically scaling the evolution function

In ���� IEEE Conference on Evolutionary Computation� volume �� pages ��������

Perth� Australia� �� November � � December ����
 IEEE Press

 Gathercole and Ross� ����! Chris Gathercole and Peter Ross
 An adverse interaction

between crossover and restricted tree depth in genetic programming
 In John R
 Koza�

David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo� editors� Genetic Programming

����
 Proceedings of the First Annual Conference� pages �������� Stanford University�

CA� USA� ����� July ����
 MIT Press

 Goldberg et al�� ����! David E
 Goldberg� Kalyanmoy Deb� and James H
 Clark
 Genetic

algorithms� noise and the sizing of populations
 IlliGAL ������ Department of General

Engineering� University of Illinois� ��� Transportation Building� ��� South Mathews

Avenue� Urbana� Illinois ������ USA� Dec ����

 Goldberg et al�� ����! David E
 Goldberg� Kalyanmoy Deb� and Je�rey Horn
 Massive

multimodality� deception and genetic algorithms
 In R Manner and B Manderick� ed�

itors� Parallel Problem Solving from Nature �� pages ������ Brussels� Belgium� ����

Elsevier Science

 Goldberg� ����! David E
 Goldberg
 Genetic Algorithms in Search Optimization and

Machine Learning
 Addison�Wesley� ����

���

 Gordon� ����! T
 G
 W
 Gordon
 Schedule optimisation using genetic algorithms
 Mas�

ter�s thesis� University College� London� October ����

 Grefenstette� ����! John J Grefenstette
 Deception considered harmful
 In L
 Darrell

Whitley� editor� Foundations of Genetic Algorithms �� Vail� Colorado� USA� ����� July

���� ����
 Morgan Kaufmann

 Grimes� ����! C
 A
 Grimes
 Application of genetic techniques to the planning of railway

track maintenance work
 In A
 M
 S
 Zalzala� editor� First International Conference on

Genetic Algorithms in Engineering Systems
 Innovations and Applications� GALESIA�

volume ���� pages �������� She
eld� UK� ����� September ����
 IEE

 Gruau and Quatramaran� ����! Frederic Gruau and Kameel Quatramaran
 Cellular en�

coding for interactive evolutionary robotics
 Cognitive Science Research Paper ����

School of Cognitive and Computing Sciences� University of Sussex� Falmer� Brighton�

Sussex� UK� ����

 Gruau� ����! Frederic Gruau
 Genetic synthesis of modular neural networks
 In Stephanie

Forrest� editor� Proceedings of the �th International Conference on Genetic Algorithms�

ICGA��	� pages �������� University of Illinois at Urbana�Champaign� ����� July ����

Morgan Kaufmann

 Gruau� ����! Frederic Gruau
 On using syntactic constraints with genetic programming

In Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors� Advances in Genetic Programming

�� chapter ��� pages �������
 MIT Press� Cambridge� MA� USA� ����

 Hampo et al�� ����! Richard J
 Hampo� Bruce D
 Bryant� and Kenneth A
 Marko
 IC

engine mis�re detection algorithm generation using genetic programming
 In EUFIT��
�

pages ���������� Promenade �� D������� Aachen� Germany� ����� September ����

ELITE�Foundation

 Handley� ����! Simon Handley
 Automatic learning of a detector for alpha�helices in

protein sequences via genetic programming
 In Stephanie Forrest� editor� Proceedings

of the �th International Conference on Genetic Algorithms� ICGA��	� pages ��������

University of Illinois at Urbana�Champaign� ����� July ����
 Morgan Kaufmann

 Handley� ����a! S
 Handley
 On the use of a directed acyclic graph to represent a pop�

ulation of computer programs
 In Proceedings of the ���
 IEEE World Congress on

���

Computational Intelligence� pages �������� Orlando� Florida� USA� ����� June ����

IEEE Press

 Handley� ����b! Simon G
 Handley
 The automatic generations of plans for a mobile

robot via genetic programming with automatically de�ned functions
 In Kenneth E

Kinnear� Jr
� editor� Advances in Genetic Programming� chapter ��� pages �������

MIT Press� ����

 Harvey et al�� ����! Inman Harvey� Philip Husbands� and Dave Cli�
 Genetic conver�

gence in a species of evolved robot control architectures
 In Stephanie Forrest� editor�

Proceedings of the �th International Conference on Genetic Algorithms� ICGA��	� page

���� University of Illinois at Urbana�Champaign� ����� July ����
 Morgan Kaufmann

 Harvey� ����! Inman Harvey
 Species adaptation genetic algorithms� A basis for a contin�

uing SAGA
 In F
 J
 Varela and P
 Bourgine� editors� Toward a Practice of Autonomous

Systems� Proceeding of the �rst European Conference on Arti�cial Life �ECAL�� pages

�������
 MIT Press� ����

 Haynes and Wainwright� ����! Thomas D
 Haynes and Roger L
 Wainwright
 A simu�

lation of adaptive agents in hostile environment
 In K
 M
 George� Janice H
 Carroll�

Ed Deaton� Dave Oppenheim� and Jim Hightower� editors� Proceedings of the ���� ACM

Symposium on Applied Computing� pages �������� Nashville� USA� ����
 ACM Press

 Haynes et al�� ����a! Thomas Haynes� Sandip Sen� Dale Schoenefeld� and Roger Wain�

wright
 Evolving a team
 In E
 S
 Siegel and J
 R
 Koza� editors� Working Notes for the

AAAI Symposium on Genetic Programming� pages ������ MIT� Cambridge� MA� USA�

����� November ����
 AAAI

 Haynes et al�� ����b! Thomas Haynes� Roger Wainwright� Sandip Sen� and Dale Schoene�

feld
 Strongly typed genetic programming in evolving cooperation strategies
 In L
 Es�

helman� editor� Genetic Algorithms
 Proceedings of the Sixth International Conference

�ICGA���� pages �������� Pittsburgh� PA� USA� ����� July ����
 Morgan Kaufmann

 Haynes et al�� ����! Thomas D
 Haynes� Dale A
 Schoenefeld� and Roger L
 Wainwright

Type inheritance in strongly typed genetic programming
 In Peter J
 Angeline and K
 E

Kinnear� Jr
� editors� Advances in Genetic Programming �� chapter ��� pages �������

MIT Press� Cambridge� MA� USA� ����

���

 Hillis� ����! W
 Daniel Hillis
 Co�evolving parasites improve simulated evolution as an

optimization procedure
 In Christopher G
 Langton� Charles Taylor� J
 Doyne Farmer�

and Steen Rasmussen� editors� Arti�cial Life II� volume X of Sante Fe Institute Studies

in the Sciences of Complexity� pages �������
 Addison�Wesley� Santa Fe Institute� New

Mexico� USA� February ���� ����

 Holland et al�� ����! John H
 Holland� Keith J
 Holyoak� Richard E
 Nisbett� and Paul R

Thagard
 Induction Processes of Inference� Learning� and Discovery
 MIT Press� ����

 Holland� ����! John H
 Holland
 Genetic algorithms and the optimal allocation of trials

SIAM Journal on Computation� ��������� ����

 Holland� ����! John H
 Holland
 Adaptation in Natural and Arti�cial Systems
 An Intro�

ductory Analysis with Applications to Biology� Control and Arti�cial Intelligence
 MIT

Press� ����
 First Published by University of Michigan Press ����

 Hondo et al�� ����a! Naohiro Hondo� Hitoshi Iba� and Yukinori Kakazu
 COAST� An

approach to robustness and reusability in genetic programming
 In John R
 Koza�

David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo� editors� Genetic Programming

����
 Proceedings of the First Annual Conference� page ���� Stanford University� CA�

USA� ����� July ����
 MIT Press

 Hondo et al�� ����b! Naohiro Hondo� Hitoshi Iba� and Yukinori Kakazu
 Sharing and

re�nement for reusable subroutines of genetic programming
 In Proceedings of the ����

IEEE International Conference on Evolutionary Computation� volume �� pages ��������

Nagoya� Japan� ����� May ����

 Horn et al�� ����! Je�rey Horn� Nicholas Nafpliotis� and David E
 Goldberg
 Multiobjec�

tive optimization using the niched pareto genetic algorithm
 IlliGAL Report no
 ������

Illinois Genetic Algorithm Laboratory� University of Illinois at Urbana�Champaign� ���

Transportation Building� ��� South Mathews Avenue� Urbana� IL ����������� July

����

 Huelsbergen� ����! Lorenz Huelsbergen
 Toward simulated evolution of machine language

iteration
 In John R
 Koza� David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo�

editors� Genetic Programming ����
 Proceedings of the First Annual Conference� pages

�������� Stanford University� CA� USA� ����� July ����
 MIT Press

���

 Iba and de Garis� ����! Hitoshi Iba and Hugo de Garis
 Extending genetic programming

with recombinative guidance
 In Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors�

Advances in Genetic Programming �� chapter �� pages �����
 MIT Press� Cambridge�

MA� USA� ����

 Iba et al�� ����! Hitoshi Iba� Takio Karita� Hugo de Garis� and Taisuke Sato
 System

identi�cation using structured genetic algorithms
 In Stephanie Forrest� editor� Pro�

ceedings of the �th International Conference on Genetic Algorithms� ICGA��	� pages

�������� University of Illinois at Urbana�Champaign� ����� July ����
 Morgan Kauf�

mann

 Iba et al�� ����a! H
 Iba� T
 Sato� and H
 de Garis
 System identi�cation approach to

genetic programming
 In Proceedings of the ���
 IEEE World Congress on Computa�

tional Intelligence� volume �� pages �������� Orlando� Florida� USA� ����� June ����

IEEE Press

 Iba et al�� ����b! Hitoshi Iba� Hugo de Garis� and Taisuke Sato
 Genetic programming

using a minimum description length principle
 In Kenneth E
 Kinnear� Jr
� editor�

Advances in Genetic Programming� chapter ��� pages �������
 MIT Press� ����

 Iba et al�� ����c! Hitoshi Iba� Hugo de Garis� and Taisuke Sato
 Genetic programming

with local hill�climbing
 In Yuval Davidor� Hans�Paul Schwefel� and Reinhard M"anner�

editors� Parallel Problem Solving from Nature III� pages �������� Jerusalem� ���� Oc�

tober ����
 Springer�Verlag

 Iba et al�� ����! Hitoshi Iba� Hugo de Garis� and Taisuke Sato
 Temporal data processing

using genetic programming
 In L
 Eshelman� editor� Genetic Algorithms
 Proceedings

of the Sixth International Conference �ICGA���� pages �������� Pittsburgh� PA� USA�

����� July ����
 Morgan Kaufmann

 Iba� ����a! Hitoshi Iba
 Emergent cooperation for multiple agents using genetic program�

ming
 In John R
 Koza� editor� Late Breaking Papers at the Genetic Programming ����

Conference Stanford University July ���	�� ����� pages ������ Stanford University� CA�

USA� ����� July ����
 Stanford Bookstore

 Iba� ����b! Hitoshi Iba
 Random tree generation of genetic programming
 In Hans�

Michael Voigt� Werner Ebeling� Ingo Rechenberg� and Hans�Paul Schwefel� editors�

Parallel Problem Solving from Nature IV� Proceedings of the International Conference

���

on Evolutionary Computation� volume ���� of LNCS� Berlin� germany� ����� September

����
 Springer Verlag

 Jannink� ����! Jan Jannink
 Cracking and co�evolving randomizers
 In Kenneth E
 Kin�

near� Jr
� editor� Advances in Genetic Programming� chapter ��� pages �������
 MIT

Press� ����

 Juille and Pollack� ����! Hugues Juille and Jordan B
 Pollack
 Parallel genetic program�

ming and �ne�grained SIMD architecture
 In E
 S
 Siegel and J
 R
 Koza� editors�

Working Notes for the AAAI Symposium on Genetic Programming� pages ������ MIT�

Cambridge� MA� USA� ����� November ����
 AAAI

 Keijzer� ����! Maarten Keijzer
 E
ciently representing populations in genetic program�

ming
 In Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors� Advances in Genetic Pro�

gramming �� chapter ��� pages �������
 MIT Press� Cambridge� MA� USA� ����

 Keith and Martin� ����! Mike J
 Keith and Martin C
 Martin
 Genetic programming in

C��� Implementation issues
 In Kenneth E
 Kinnear� Jr
� editor� Advances in Genetic

Programming� chapter ��� pages �������
 MIT Press� ����

 Kernighan and Ritchie� ����! Brian W
 Kernighan and Dennis M
 Ritchie
 The C Pro�

gramming Language
 Prentice�Hall� Englewood Cli�s� NJ ������ USA� second edition�

����

 Kinnear� Jr
� ����a! Kenneth E
 Kinnear� Jr
 Evolving a sort� Lessons in genetic pro�

gramming
 In Proceedings of the ���	 International Conference on Neural Networks�

volume �� San Francisco� USA� ����
 IEEE Press

 Kinnear� Jr
� ����b! Kenneth E
 Kinnear� Jr
 Generality and di
culty in genetic pro�

gramming� Evolving a sort
 In Stephanie Forrest� editor� Proceedings of the �th In�

ternational Conference on Genetic Algorithms� ICGA��	� pages �������� University of

Illinois at Urbana�Champaign� ����� July ����
 Morgan Kaufmann

 Kinnear� Jr
� ����a! Kenneth E
 Kinnear� Jr
 Alternatives in automatic function de�ni�

tion� A comparison of performance
 In Kenneth E
 Kinnear� Jr
� editor� Advances in

Genetic Programming� chapter �� pages �������
 MIT Press� ����

 Kinnear� Jr
� ����b! Kenneth E
 Kinnear� Jr
 Fitness landscapes and di
culty in genetic

programming
 In Proceedings of the ���
 IEEE World Conference on Computational

���

Intelligence� volume �� pages �������� Orlando� Florida� USA� ����� June ����
 IEEE

Press

 Kinnear� Jr
� ����c! Kenneth E
 Kinnear� Jr
 A perspective on the work in this book
 In

Kenneth E
 Kinnear� Jr
� editor� Advances in Genetic Programming� chapter �� pages

����
 MIT Press� ����

 Kirkpatrick et al�� ����! S
 Kirkpatrick� C
 D
 Gelatt Jr
� and M
 P
 Vecchi
 Optimization

by simulated annealing
 Science� ��������	��������� �� May ����

 Kodjabachian and Meyer� ����! Jerome Kodjabachian and Jean�Arcady Meyer
 Devel�

opment� learning and evolution in animats
 In P
 Gaussier and J�D Nicoud� editors�

Perceptions to Action� pages ������� Lausanne Switzerland� Sep ����
 IEEE Computer

Society Press

 Koza and Andre� ����a! John R
 Koza and David Andre
 Evolution of both the archi�

tecture and the sequence of work�performing steps of a computer program using genetic

programming with architecture�altering operations
 In E
 S
 Siegel and J
 R
 Koza� ed�

itors� Working Notes for the AAAI Symposium on Genetic Programming� pages ������

MIT� Cambridge� MA� USA� ����� November ����
 AAAI

 Koza and Andre� ����b! John R
 Koza and David Andre
 Parallel genetic programming

on a network of transputers
 Technical Report CS�TR��������� Stanford University�

Department of Computer Science� January ����

 Koza et al�� ����a! John R
 Koza� David Andre� Forrest H
 Bennett III� and Martin A

Keane
 Use of automatically de�ned functions and architecture�altering operations in

automated circuit synthesis using genetic programming
 In John R
 Koza� David E

Goldberg� David B
 Fogel� and Rick L
 Riolo� editors� Genetic Programming ����

Proceedings of the First Annual Conference� pages �������� Stanford University� CA�

USA� ����� July ����
 MIT Press

 Koza et al�� ����b! John R
 Koza� Forrest H
 Bennett III David Andre� and Martin A

Keane
 Automated WYWIWYG design of both the topology and component values

of electrical circuits using genetic programming
 In John R
 Koza� David E
 Goldberg�

David B
 Fogel� and Rick L
 Riolo� editors� Genetic Programming ����
 Proceedings of

the First Annual Conference� pages �������� Stanford University� CA� USA� ����� July

����
 MIT Press

���

 Koza et al�� ����c! John R
 Koza� Forrest H
 Bennett III� David Andre� and Martin A

Keane
 Four problems for which a computer program evolved by genetic programming

is competitive with human performance
 In Proceedings of the ���� IEEE International

Conference on Evolutionary Computation� volume �� pages ����
 IEEE Press� ����

 Koza� ����! John R
 Koza
 Genetic evolution and co�evolution of computer programs
 In

Christopher Taylor Charles Langton� J
 Doyne Farmer� and Steen Rasmussen� editors�

Arti�cial Life II� volume X of SFI Studies in the Sciences of Complexity� pages �������

Addison�Wesley� Santa Fe Institute� New Mexico� USA� February ���� ����

 Koza� ����! John R
 Koza
 Genetic Programming
 On the Programming of Computers

by Natural Selection
 MIT Press� Cambridge� MA� USA� ����

 Koza� ����! John R
 Koza
 Genetic Programming II
 Automatic Discovery of Reusable

Programs
 MIT Press� Cambridge Massachusetts� May ����

 Kraft et al�� ����! D
 H
 Kraft� F
 E
 Petry� W
 P
 Buckles� and T
 Sadasivan
 The use

of genetic programming to build queries for information retrieval
 In Proceedings of the

���
 IEEE World Congress on Computational Intelligence� pages �������� Orlando�

Florida� USA� ����� June ����
 IEEE Press

 Langdon� ����a! W
 B
 Langdon
 Directed crossover within genetic programming
 Re�

search Note RN#��#��� University College London� Gower Street� London WC�E �BT�

UK� September ����

 Langdon� ����b! W
 B
 Langdon
 Evolving data structures using genetic programming

In L
 Eshelman� editor� Genetic Algorithms
 Proceedings of the Sixth International

Conference �ICGA���� pages �������� Pittsburgh� PA� USA� ����� July ����
 Morgan

Kaufmann

 Langdon� ����c! W
 B
 Langdon
 Evolving data structures using genetic programming

Research Note RN#��#�� UCL� Gower Street� London� WC�E �BT� UK� January ����

 Langdon� ����d! W
 B
 Langdon
 Scheduling planned maintenance of the national grid

In Terence C
 Fogarty� editor� Evolutionary Computing� number ��� in Lecture Notes

in Computer Science� pages �������
 Springer�Verlag� ����

 Langdon� ����a! W
 B
 Langdon
 Scheduling maintenance of electrical power transmis�

sion networks using genetic programming
 In John Koza� editor� Late Breaking Papers

���

at the GP��� Conference� pages �������� Stanford� CA� USA� ����� July ����
 Stanford

Bookstore

 Langdon� ����b! W
 B
 Langdon
 Using data structures within genetic programming

In John R
 Koza� David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo� editors�

Genetic Programming ����
 Proceedings of the First Annual Conference� pages ����

���� Stanford University� CA� USA� ����� July ����
 MIT Press

 Langdon� ����c! William B
 Langdon
 A bibliography for genetic programming
 In Pe�

ter J
 Angeline and K
 E
 Kinnear� Jr
� editors� Advances in Genetic Programming ��

chapter B� pages �������
 MIT Press� Cambridge� MA� USA� ����

 Langdon� ����d! William B
 Langdon
 Data structures and genetic programming
 In

Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors� Advances in Genetic Programming ��

chapter ��� pages �������
 MIT Press� Cambridge� MA� USA� ����

 Lankhorst� ����! Marc M
 Lankhorst
 A genetic algorithm for the induction of pushdown

automata
 In ���� IEEE Conference on Evolutionary Computation� volume �� pages

�������� Perth� Australia� �� November � � December ����
 IEEE Press

 Levine� ����! David Levine
 A Parallel Genetic Algorithm for the Set Partitioning Prob�

lem
 PhD thesis� Illinois Institute of Technology� Mathematics and Computer Science

Division� Argonne National Laboratory� ���� South Cass Avenue� Argonne� IL ������

USA� May ����

 Louis and Rawlins� ����! Sushil J
 Louis and Gregory J
 E
 Rawlins
 Pareto optimality�

GA�easiness and deception
 In Stephanie Forrest� editor� Proceedings of the �th In�

ternational Conference on Genetic Algorithms� ICGA��	� pages �������� University of

Illinois at Urbana�Champaign� ����� July ����
 Morgan Kaufmann

 Lucas� ����! Simon Lucas
 Structuring chromosomes for context�free grammar evolution

In ICEC��

 Proceedings of The IEEE Conference on Evolutionary Computation� IEEE

World Congress on Computational Intelligence� volume �� pages �������� Walt Disney

World Dolphin Hotel� Orlando� Florida� USA� ����� June ����
 IEEE

 Luke and Spector� ����! Sean Luke and Lee Spector
 Evolving teamwork and coordina�

tion with genetic programming
 In John R
 Koza� David E
 Goldberg� David B
 Fogel�

and Rick L
 Riolo� editors� Genetic Programming ����
 Proceedings of the First Annual

Conference� pages �������� Stanford University� CA� USA� ����� July ����
 MIT Press

���

 Maher and Kundu� ����! M
 L
 Maher and S
 Kundu
 Adaptive design using a genetic

algorithm
 In John S
 Gero and Fay Sudweeks� editors� Formal design methods for

computer�aided design� pages �������� University of Sydney� NSW� Australia� Jun ����

Key Center of Design Computing� University of Sydney

 Manela� ����! Mauro Manela
 Contributions to the Theory and Applications of Genetic

Algorithms
 PhD thesis� University College� London� December ����

 Masand� ����! Brij Masand
 Optimising con�dence of text classi�cation by evolution of

symbolic expressions
 In Kenneth E
 Kinnear� Jr
� editor� Advances in Genetic Pro�

gramming� chapter ��� pages �������
 MIT Press� ����

 Maxwell III� ����! Sidney R
 Maxwell III
 Experiments with a coroutine model for genetic

programming
 In Proceedings of the ���
 IEEE World Congress on Computational

Intelligence� Orlando� Florida� USA� volume �� pages �������a� Orlando� Florida� USA�

����� June ����
 IEEE Press

 Maxwell� ����! S
 R
 Maxwell
 Why might some problems be di
cult for genetic pro�

gramming to �nd solutions� In John R
 Koza� editor� Late Breaking Papers at the

Genetic Programming ���� Conference Stanford University July ���	�� ����� pages

�������� Stanford University� CA� USA� ����� July ����
 Stanford Bookstore

 McKay et al�� ����! Ben McKay� Mark J
 Willis� and Geo�rey W
 Barton
 Using a tree

structured genetic algorithm to perform symbolic regression
 In A
 M
 S
 Zalzala� editor�

First International Conference on Genetic Algorithms in Engineering Systems
 Inno�

vations and Applications� GALESIA� volume ���� pages �������� She
eld� UK� �����

September ����
 IEE

 Montana� ����! David J
 Montana
 Strongly typed genetic programming
 BBN Technical

Report '����� Bolt Beranek and Newman� Inc
� �� Moulton Street� Cambridge� MA

������ USA� � May ����

 Montana� ����! David J
 Montana
 Strongly typed genetic programming
 BBN Technical

Report '����� Bolt Beranek and Newman� Inc
� �� Moulton Street� Cambridge� MA

������ USA� March ����

 Montana� ����! David J
 Montana
 Strongly typed genetic programming
 Evolutionary

Computation� ���	��������� ����

���

 Nachbar� ����! Robert B
 Nachbar
 Genetic programming
 The Mathematica Journal�

���	������� ����

 Nguyen and Huang� ����! Thang Nguyen and Thomas Huang
 Evolvable �D modeling for

model�based object recognition systems
 In Kenneth E
 Kinnear� Jr
� editor� Advances

in Genetic Programming� chapter ��� pages �������
 MIT Press� ����

 Nordin and Banzhaf� ����a! Peter Nordin and Wolfgang Banzhaf
 Evolving turing�

complete programs for a register machine with self�modifying code
 In L
 Eshelman� ed�

itor� Genetic Algorithms
 Proceedings of the Sixth International Conference �ICGA����

pages �������� Pittsburgh� PA� USA� ����� July ����
 Morgan Kaufmann

 Nordin and Banzhaf� ����b! Peter Nordin and Wolfgang Banzhaf
 Genetic programming

controlling a miniature robot
 In E
 S
 Siegel and J
 R
 Koza� editors� Working Notes for

the AAAI Symposium on Genetic Programming� pages ������ MIT� Cambridge� MA�

USA� ����� November ����
 AAAI

 Nordin and Banzhaf� ����! Peter Nordin and Wolfgang Banzhaf
 Programmatic com�

pression of images and sound
 In John R
 Koza� David E
 Goldberg� David B
 Fogel�

and Rick L
 Riolo� editors� Genetic Programming ����
 Proceedings of the First Annual

Conference� pages �������� Stanford University� CA� USA� ����� July ����
 MIT Press

 Nordin et al�� ����! Peter Nordin� Frank Francone� and Wolfgang Banzhaf
 Explicitly

de�ned introns and destructive crossover in genetic programming
 In Justinian P
 Rosca�

editor� Proceedings of the Workshop on Genetic Programming
 From Theory to Real�

World Applications� pages ����� Tahoe City� California� USA� � July ����

 Nordin et al�� ����! Peter Nordin� Frank Francone� and Wolfgang Banzhaf
 Explicitly

de�ned introns and destructive crossover in genetic programming
 In Peter J
 Angeline

and K
 E
 Kinnear� Jr
� editors� Advances in Genetic Programming �� chapter �� pages

�������
 MIT Press� Cambridge� MA� USA� ����

 Nordin� ����a! Peter Nordin
 A compiling genetic programming system that directly

manipulates the machine code
 In Kenneth E
 Kinnear� Jr
� editor� Advances in Genetic

Programming� chapter ��� pages �������
 MIT Press� ����

 Nordin� ����b! Peter Nordin
 Two stage genetic programming using prolog
 Electronic

Correspondence� ����

���

 Oakley� ����! Howard Oakley
 Two scienti�c applications of genetic programming� Stack

�lters and non�linear equation �tting to chaotic data
 In Kenneth E
 Kinnear� Jr
�

editor� Advances in Genetic Programming� chapter ��� pages �������
 MIT Press� ����

 Oei et al�� ����! Christopher K
 Oei� David E
 Goldberg� and Shau�Jin Chang
 Tourna�

ment selection� niching� and the preservation of diversity
 IlliGAL Report No
 ������

University of Illinois at Urbana�Champaign� Urbana� Il ������ USA� December ����

 Openshaw and Turton� ����! S
 Openshaw and I
 Turton
 Building new spatial interac�

tion models using genetic programming
 In T
 C
 Fogarty� editor� Evolutionary Comput�

ing� Lecture Notes in Computer Science� Leeds� UK� ����� April ����
 Springer�Verlag

 O�Reilly and Oppacher� ����! Una�May O�Reilly and Franz Oppacher
 Program search

with a hierarchical variable length representation� Genetic programming� simulated an�

nealing and hill climbing
 In Yuval Davidor� Hans�Paul Schwefel� and Reinhard Manner�

editors� Parallel Problem Solving from Nature � PPSN III� number ��� in Lecture Notes

in Computer Science� pages �������� Jerusalem� ���� October ����
 Springer�Verlag

 O�Reilly and Oppacher� ����! Una�May O�Reilly and Franz Oppacher
 The troubling

aspects of a building block hypothesis for genetic programming
 In L
 Darrell Whitley

and Michael D
 Vose� editors� Foundations of Genetic Algorithms 	� pages ������ Estes

Park� Colorado� USA� �� July�� August ���� ����
 Morgan Kaufmann

 O�Reilly and Oppacher� ����! Una�May O�Reilly and Franz Oppacher
 A comparative

analysis of GP
 In Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors� Advances in

Genetic Programming �� chapter �� pages �����
 MIT Press� Cambridge� MA� USA�

����

 O�Reilly� ����! Una�May O�Reilly
 An Analysis of Genetic Programming
 PhD thesis�

Carleton University� Ottawa�Carleton Institute for Computer Science� Ottawa� Ontario�

Canada� �� September ����

 O�Reilly� ����! Una�May O�Reilly
 Investigating the generality of automatically de�ned

functions
 In John R
 Koza� David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo�

editors� Genetic Programming ����
 Proceedings of the First Annual Conference� pages

�������� Stanford University� CA� USA� ����� July ����
 MIT Press

���

 Park and Miller� ����! Stephen K
 Park and Keith W
 Miller
 Random number genera�

tors� Good ones are hard to �nd
 Communications of the ACM� �����	����������� Oct

����

 Perkis� ����! Tim Perkis
 Stack�based genetic programming
 In Proceedings of the ���

IEEE World Congress on Computational Intelligence� pages �������� Orlando� Florida�

USA� ����� June ����
 IEEE Press

 Perry� ����! J
 E
 Perry
 The e�ect of population enrichment in genetic programming

In Proceedings of the ���
 IEEE World Congress on Computational Intelligence� pages

�������� Orlando� Florida� USA� ����� June ����
 IEEE Press

 Petry and Dunay� ����! Frederick E
 Petry and Bertrand Daniel Dunay
 Automatic pro�

gramming and program maintenance with genetic programming
 International Journal

of Software Engineering and Knowledge Engineering� ���	��������� ����

 Polani and Uthmann� ����! Daniel Polani and Thomas Uthmann
 Training kohonen fea�

ture maps in di�erent topologies� an analysis using genetic algorithms
 In Stephanie

Forrest� editor� Proceedings of the �th International Conference on Genetic Algorithms�

ICGA��	� pages �������� University of Illinois at Urbana�Champaign� ����� July ����

Morgan Kaufmann

 Price� ����! George R
 Price
 Selection and covariance
 Nature� ���� August ����������

����

 Price� ����! George R
 Price
 Fisher�s �fundamental theorem� made clear
 Annals of

Human Genetics� ����������� ����

 Qureshi� ����! Adil Qureshi
 Evolving agents
 In John R
 Koza� David E
 Goldberg�

David B
 Fogel� and Rick L
 Riolo� editors� Genetic Programming ����
 Proceedings of

the First Annual Conference� pages �������� Stanford University� CA� USA� ����� July

����
 MIT Press

 Raik and Browne� ����! Simon E
 Raik and David G
 Browne
 Implicit versus explicit�

A comparison of state in genetic programming
 In John R
 Koza� editor� Late Breaking

Papers at the Genetic Programming ���� Conference Stanford University July ���	��

����� pages �������� Stanford University� CA� USA� ����� July ����
 Stanford Book�

store

���

 Raik and Durnota� ����! Simon Raik and Bohdan Durnota
 The evolution of sporting

strategies
 In Russel J
 Stonier and Xing Huo Yu� editors� Complex Systems
 Mecha�

nisms of Adaption� pages �����
 IOS Press� ����

 Ray� ����! Thomas S
 Ray
 Is it alive or is it GA
 In Richard K
 Belew and Lashon B

Booker� editors� Proceedings of the Fourth International Conference on Genetic Algo�

rithms� pages �������� University of California � San Diego� La Jolla� CA� USA� �����

July ����
 Morgan Kaufmann

 Reynolds� ����! Craig W
 Reynolds
 An evolved� vision�based behavioral model of co�

ordinated group motion
 In Meyer and Wilson� editors� From Animals to Animats

�Proceedings of Simulation of Adaptive Behaviour�
 MIT Press� ����

 Reynolds� ����a! Craig W
 Reynolds
 Competition� coevolution and the game of tag
 In

Rodney A
 Brooks and Pattie Maes� editors� Proceedings of the Fourth International

Workshop on the Synthesis and Simulation of Living Systems� pages ������ MIT� Cam�

bridge� MA� USA� ��� July ����
 MIT Press

 Reynolds� ����b! Craig W
 Reynolds
 Evolution of obstacle avoidance behaviour�using

noise to promote robust solutions
 In Kenneth E
 Kinnear� Jr
� editor� Advances in

Genetic Programming� chapter ��� pages �������
 MIT Press� ����

 Reynolds� ����c! Craig W
 Reynolds
 An evolved� vision�based behavioral model of obsta�

cle avoidance behaviour
 In Christopher G
 Langton� editor� Arti�cial Life III� volume

XVII of SFI Studies in the Sciences of Complexity� pages �������
 Addison�Wesley�

Santa Fe Institute� New Mexico� USA� ����� June ���� ����

 Reynolds� ����! Craig Reynolds
 Boids
 WWW home page� �� August ����

http�##reality
sgi
com#craig#boids
html

 Ribeiro Filho and Treleaven� ����! J
 L
 Ribeiro Filho and P
 Treleaven
 GAME� A

framework for programming genetic algorithms applications
 In Proceedings of the First

IEEE Conference on Evolutionary Computing � Proceedings of the ���
 IEEE World

Congress on Computational Intelligence� volume �� pages �������� Orlando� USA� ��

June�� July ����
 IEEE Press

 Ribeiro Filho et al�� ����! Jose L
 Ribeiro Filho� Philip C
 Treleaven� and Cesare Alippi

Genetic�algorithm programming environments
 Computer� ����	���� June ����

���

 Romaniak� ����! Steve G
 Romaniak
 Evolutionary growth perceptrons
 In Stephanie

Forrest� editor� Proceedings of the �th International Conference on Genetic Algorithms�

ICGA��	� pages �������� University of Illinois at Urbana�Champaign� ����� July ����

Morgan Kaufmann

 Rosca and Ballard� ����! Justinian P
 Rosca and Dana H
 Ballard
 Discovery of subrou�

tines in genetic programming
 In Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors�

Advances in Genetic Programming �� chapter �� pages �������
 MIT Press� Cambridge�

MA� USA� ����

 Rosca� ����! Justinian P
 Rosca
 Genetic programming exploratory power and the dis�

covery of functions
 In John Robert McDonnell� Robert G
 Reynolds� and David B

Fogel� editors� Evolutionary Programming IV Proceedings of the Fourth Annual Confer�

ence on Evolutionary Programming� pages �������� San Diego� CA� USA� ��� March

����
 MIT Press

 Rosca� ����! Justinian Rosca
 GP population variety
 GP electronic mailing list� �� Jun

����

 Ross� ����! Peter Ross
 About PGA ���� ����
 Available via ftp ftp�dai�ed�ac�uk

directory pub
pga����

 Ryan� ����! Conor Ryan
 Pygmies and civil servants
 In Kenneth E
 Kinnear� Jr
� editor�

Advances in Genetic Programming� chapter ��� pages �������
 MIT Press� ����

 Ryan� ����! Conor Ryan
 GPRobots and GPTeams � competition� co�evolution and co�

operation in genetic programming
 In E
 S
 Siegel and J
 R
 Koza� editors� Working Notes

for the AAAI Symposium on Genetic Programming� pages ������ MIT� Cambridge� MA�

USA� ����� November ����
 AAAI

 Schoenauer et al�� ����! Marc Schoenauer� Bertrand Lamy� and Francois Jouve
 Identi�

�cation of mechanical behaviour by genetic programming part II� Energy formulation

Technical report� Ecole Polytechnique� ����� Palaiseau� France� ����

 Self� ����! Steven Self
 On the origin of e�ective procedures by means of arti�cial selec�

tion
 Master�s thesis� Birkbeck College� University of London� UK� September ����

 Sen� ����! Sandip Sen
 Adaptation� coevolution and learning in multiagent systems

Technical Report SS������� AAAI Press� Stanford� CA� March ����

���

 Shannon and Weaver� ����! Claude E
 Shannon and Warren Weaver
 The Mathematical

Theory of Communication
 The University of Illinois Press� Urbana� ����

 Sharman and Esparcia�Alcazar� ����! Ken C
 Sharman and Anna I
 Esparcia�Alcazar

Genetic evolution of symbolic signal models
 In Proceedings of the Second International

Conference on Natural Algorithms in Signal Processing� NASP��	� Essex University�

����� November ����

 Sharman et al�� ����! Ken C
 Sharman� Anna I
 Esparcia Alcazar� and Yun Li
 Evolv�

ing signal processing algorithms by genetic programming
 In A
 M
 S
 Zalzala� editor�

First International Conference on Genetic Algorithms in Engineering Systems
 Inno�

vations and Applications� GALESIA� volume ���� pages �������� She
eld� UK� �����

September ����
 IEE

 Shaw� ����! Jane Shaw
 References on the application of genetic algorithms to pro�

duction scheduling� June ����
 Available via anonymous ftp site cs�ucl�ac�uk �le

genetic
biblio
ga�js�shed�bibliography�txt

 Siegel� ����! Eric V
 Siegel
 Competitively evolving decision trees against �xed training

cases for natural language processing
 In Kenneth E
 Kinnear� Jr
� editor� Advances in

Genetic Programming� chapter ��� pages �������
 MIT Press� ����

 Sims� ����! Karl Sims
 Evolving �D morphology and behaviour by competition
 In

R
 Brooks and P
 Maes� editors� Arti�cial Life IV Proceedings� pages ������ MIT�

Cambridge� MA� USA� ��� July ����
 MIT Press

 Singleton� ����! Andrew Singleton
 Meta GA� desktop supercomputing and object�

orientated GP
 Notes from Genetic Programming Workshop at ICGA���� ����

 Singleton� ����! Andy Singleton
 Genetic programming with C��
 BYTE� pages ����

���� February ����

 Spector and Alpern� ����! Lee Spector and Adam Alpern
 Criticism� culture� and the

automatic generation of artworks
 In Proceedings of Twelfth National Conference on

Arti�cial Intelligence� pages ���� Seattle� Washington� USA� ����
 AAAI Press#MIT

Press

 Spector and Alpern� ����! Lee Spector and Adam Alpern
 Induction and recapitulation

of deep musical structure
 In Proceedings of International Joint Conference on Arti�cial

���

Intelligence� IJCAI��� Workshop on Music and AI� Montreal� Quebec� Canada� �����

August ����

 Spector and Luke� ����! Lee Spector and Sean Luke
 Cultural transmission of informa�

tion in genetic programming
 In John R
 Koza� David E
 Goldberg� David B
 Fogel�

and Rick L
 Riolo� editors� Genetic Programming ����
 Proceedings of the First Annual

Conference� pages �������� Stanford University� CA� USA� ����� July ����
 MIT Press

 Spector� ����! Lee Spector
 Evolving control structures with automatically de�ned

macros
 In E
 S
 Siegel and J
 R
 Koza� editors� Working Notes for the AAAI Sym�

posium on Genetic Programming� pages ������� MIT� Cambridge� MA� USA� �����

November ����
 AAAI

 Spencer� ����! Graham F
 Spencer
 Automatic generation of programs for crawling and

walking
 In Kenneth E
 Kinnear� Jr
� editor� Advances in Genetic Programming� chap�

ter ��� pages �������
 MIT Press� ����

 Starkweather et al�� ����! T
 Starkweather� S
 McDaniel� K
 Mathias� D
 Whitley� and

C
 Whitley
 A comparison of genetic sequencing operators
 In Richard K
 Belew and

Lashon B
 Booker� editors� Proceedings of the fourth international conference on Genetic

Algorithms� pages ������ University of California � San Diego� La Jolla� CA� USA� �����

July ����
 Morgan Kaufmann

 Stender� ����! Joachim Stender� editor
 Parallel Genetic Algorithms
 Theory and Appli�

cations
 IOS press� ����

 Sun et al�� ����! G
 Z
 Sun� H
 H
 Chen� C
 L
 Giles� Y
 C
 Lee� and D
 Chen
 Con�

nectionist pushdown automata that learn context�free grammars
 In Proceedings of

the International Joint Conference on Neural Networks ����� volume I� pages ��������

Washington� DC� USA� ����� January ����
 Lawrence Erlbaum

 Syswerda� ����! Gilbert Syswerda
 Uniform crossover in genetic algorithms
 In J
 David

Scha�er� editor� Proceedings of the third international conference on Genetic Algorithms�

pages ���� George Mason University� ��� June ����
 Morgan Kaufmann

 Syswerda� ����a! Gilbert Syswerda
 Schedule optimization using genetic algorithms
 In

Lawrence Davis� editor� Handbook of Genetic Algorithms� pages �������
 Van Nostrand

Reinhold� New York� ����

���

 Syswerda� ����b! Gilbert Syswerda
 A study of reproduction in generational and steady

state genetic algorithms
 In Gregory J
 E
 Rawlings� editor� Foundations of genetic

algorithms� pages ������
 Morgan Kaufmann� Indiana University� ����� July ���� ����

 Tackett and Carmi� ����! Walter Alden Tackett and Aviram Carmi
 The donut problem�

Scalability and generalization in genetic programming
 In Kenneth E
 Kinnear� Jr
�

editor� Advances in Genetic Programming� chapter �� pages �������
 MIT Press� ����

 Tackett� ����! Walter Alden Tackett
 Genetic programming for feature discovery and

image discrimination
 In Stephanie Forrest� editor� Proceedings of the �th International

Conference on Genetic Algorithms� ICGA��	� pages �������� University of Illinois at

Urbana�Champaign� ����� July ����
 Morgan Kaufmann

 Tackett� ����! Walter Alden Tackett
 Recombination� Selection� and the Genetic Con�

struction of Computer Programs
 PhD thesis� University of Southern California� De�

partment of Electrical Engineering Systems� ����

 Tackett� ����a! Walter Alden Tackett
 Greedy recombination and genetic search on the

space of computer programs
 In L
 Darrell Whitley and Michael D
 Vose� editors�

Foundations of Genetic Algorithms 	� pages �������� Estes Park� Colorado� USA� ��

July�� August ���� ����
 Morgan Kaufmann

 Tackett� ����b! Walter Alden Tackett
 Mining the genetic program
 IEEE Expert�

����	������� June ����

 Taylor� ����! Stewart N
 Taylor
 Evolution by genetic programming of a spatial robot

juggling control algorithm
 In Justinian P
 Rosca� editor� Proceedings of the Workshop

on Genetic Programming
 From Theory to Real�World Applications� pages ��������

Tahoe City� California� USA� � July ����

 Teller and Veloso� ����a! Astro Teller and Manuela Veloso
 Algorithm evolution for face

recognition� What makes a picture di
cult
 In International Conference on Evolution�

ary Computation� pages �������� Perth� Australia� ��� December ����
 IEEE Press

 Teller and Veloso� ����b! Astro Teller and Manuela Veloso
 A controlled experiment�

Evolution for learning di
cult image classi�cation
 In Seventh Portuguese Conference

On Arti�cial Intelligence� volume ��� of Lecture Notes in Computer Science� pages

�������� Funchal� Madeira Island� Portugal� October ��� ����
 Springer�Verlag

���

 Teller and Veloso� ����c! Astro Teller and Manuela Veloso
 PADO� Learning tree struc�

tured algorithms for orchestration into an object recognition system
 Technical Report

CMU�CS�������� Department of Computer Science� Carnegie Mellon University� Pitts�

burgh� PA� USA� ����

 Teller and Veloso� ����d! Astro Teller and Manuela Veloso
 Program evolution for data

mining
 The International Journal of Expert Systems� ���	� ����

 Teller and Veloso� ����! Astro Teller and Manuela Veloso
 PADO� A new learning ar�

chitecture for object recognition
 In Katsushi Ikeuchi and Manuela Veloso� editors�

Symbolic Visual Learning� pages ������
 Oxford University Press� ����

 Teller� ����! A
 Teller
 Learning mental models
 In Proceedings of the Fifth Workshop on

Neural Networks
 An International Conference on Computational Intelligence
 Neural

Networks� Fuzzy Systems� Evolutionary Programming� and Virtual Reality� ����

 Teller� ����a! Astro Teller
 The evolution of mental models
 In Kenneth E
 Kinnear� Jr
�

editor� Advances in Genetic Programming� chapter �� pages �������
 MIT Press� ����

 Teller� ����b! Astro Teller
 Genetic programming� indexed memory� the halting problem�

and other curiosities
 In Proceedings of the �th annual Florida Arti�cial Intelligence

Research Symposium� pages �������� Pensacola� Florida� USA� May ����
 IEEE Press

 Teller� ����c! Astro Teller
 Turing completeness in the language of genetic programming

with indexed memory
 In Proceedings of the ���
 IEEE World Congress on Computa�

tional Intelligence� volume �� pages �������� Orlando� Florida� USA� ����� June ����

IEEE Press

 Teller� ����a! Astro Teller
 The discovery of algorithms for automatic database retrieval

In Justinian P
 Rosca� editor� Proceedings of the Workshop on Genetic Programming

From Theory to Real�World Applications� pages ������ Tahoe City� California� USA� �

July ����

 Teller� ����b! Astro Teller
 Language representation progression in genetic programming

In E
 S
 Siegel and J
 R
 Koza� editors� Working Notes for the AAAI Symposium on

Genetic Programming� pages �������� MIT� Cambridge� MA� USA� ����� November

����
 AAAI

 Teller� ����! Astro Teller
 Evolving programmers� The co�evolution of intelligent recom�

bination operators
 In Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors� Advances in

���

Genetic Programming �� chapter �� pages �����
 MIT Press� Cambridge� MA� USA�

����

 Tettamanzi� ����! Andrea G
 B
 Tettamanzi
 Genetic programming without �tness
 In

John R
 Koza� editor� Late Breaking Papers at the Genetic Programming ���� Con�

ference Stanford University July ���	�� ����� pages �������� Stanford University� CA�

USA� ����� July ����
 Stanford Bookstore

 Tufts� ����! Patrick Tufts
 Genetic programming resources on the world�wide web
 In

Peter J
 Angeline and K
 E
 Kinnear� Jr
� editors� Advances in Genetic Programming ��

chapter A� pages �������
 MIT Press� Cambridge� MA� USA� ����

 Uiterwijk et al�� ����! J
 W
 H
 M
 Uiterwijk� H
 J
 van den Herik� and L
 V
 Allis
 A

knowledge�based approach to connect�four
 In David Levy and Don Beals� editors�

Heuristic Programming in Arti�cial Intelligence
 The First Computer Olympiad� pages

�������
 Ellis Harwood� John Wiley� ����

 Valenzuela and Jones� ����! Christine L
 Valenzuela and Antonia J
 Jones
 Evolutionary

divide and conquer �I	� novel genetic approach to the TSP
 Evolutionary Computation�

���	��������� ����

 Whigham and McKay� ����! P
 A
 Whigham and R
 I
 McKay
 Genetic approaches to

learning recursive relations
 In X
 Yao� editor� Progress in Evolutionary Computation�

volume ��� of Lecture Notes in Arti�cial Intelligence� pages �����
 Springer�Verlag�

����

 Whigham� ����a! P
 A
 Whigham
 Grammatically�based genetic programming
 In Jus�

tinian P
 Rosca� editor� Proceedings of the Workshop on Genetic Programming
 From

Theory to Real�World Applications� pages ������ Tahoe City� California� USA� � July

����

 Whigham� ����b! P
 A
 Whigham
 Inductive bias and genetic programming
 In A
 M
 S

Zalzala� editor� First International Conference on Genetic Algorithms in Engineer�

ing Systems
 Innovations and Applications� GALESIA� volume ���� pages ��������

She
eld� UK� ����� September ����
 IEE

 Whigham� ����! P
 A
 Whigham
 Search bias� language bias� and genetic programming

In John R
 Koza� David E
 Goldberg� David B
 Fogel� and Rick L
 Riolo� editors�

���

Genetic Programming ����
 Proceedings of the First Annual Conference� pages ����

���� Stanford University� CA� USA� ����� July ����
 MIT Press

 Whitley� ����! L
 Darrell Whitley
 Fundamental principles of deception in genetic search

In Gregory J
 E
 Rawlings� editor� Foundations of genetic algorithms� pages �������

Morgan Kaufmann� Indiana University� ����� July ���� ����

 Wineberg and Oppacher� ����! Mark Wineberg and Franz Oppacher
 A representation

scheme to perform program induction in a canonical genetic algorithm
 In Yuval Davi�

dor� Hans�Paul Schwefel� and Reinhard M"anner� editors� Parallel Problem Solving from

Nature III� pages �������� Jerusalem� ���� October ����
 Springer�Verlag

 Wineberg and Oppacher� ����! Mark Wineberg and Franz Oppacher
 The bene�ts of

computing with introns
 In John R
 Koza� David E
 Goldberg� David B
 Fogel� and

Rick L
 Riolo� editors� Genetic Programming ����
 Proceedings of the First Annual

Conference� pages �������� Stanford University� CA� USA� ����� July ����
 MIT Press

 Wong and Leung� ����! Man Leung Wong and Kwong Sak Leung
 Applying logic gram�

mars to induce sub�functions in genetic programming
 In ���� IEEE Conference on

Evolutionary Computation� volume �� pages �������� Perth� Australia� �� November �

� December ����
 IEEE Press

 Wong and Leung� ����! Man Leung Wong and Kwong Sak Leung
 Evolving recursive

functions for the even�parity problem using genetic programming
 In Peter J
 Angeline

and K
 E
 Kinnear� Jr
� editors� Advances in Genetic Programming �� chapter ��� pages

�������
 MIT Press� Cambridge� MA� USA� ����

 Wyard� ����! P
 Wyard
 Context free grammar induction using genetic algorithms
 In

Richard K
 Belew and Lashon B
 Booker� editors� Procceedings of the Fourth Interna�

tional Conference on Genetic Algorithms� pages �������� University of California � San

Diego� La Jolla� CA� USA� ����� July ����
 Morgan Kaufmann

 Wyard� ����! Peter Wyard
 Representational issues for context free grammar induction

using genetic algorithms
 In Rafael C
 Carrasco and Jose Oncina� editors� Grammatical

Inference and Applications� Second International Colloquium� ICGI��
� volume ��� of

Lecture Notes in Arti�cial Intelligence� pages �������� Pueblo Acantilado� Alicante�

Spain� ����� September ����
 Springer�Verlag

���

 Yamada and Nakano� ����! Takeshi Yamada and Ryohei Nakano
 A genetic algorithm

applicable to large�scale job�shop problems
 In R Manner and B Manderick� editors�

Parallel Problem Solving from Nature �� pages �������� Brussels� Belgium� ����
 Else�

vier Science

 Yang and Flockton� ����! Dekun Yang and Stuart J
 Flockton
 An evolutionary algo�

rithm for parametric array signal processing
 In Terence C
 Fogarty� editor� Evolu�

tionary Computing� number ��� in Lecture Notes in Computer Science� pages �������

Springer�Verlag� ����

 Zhang and M"uhlenbein� ����! Byoung�Tak Zhang and Heinz M"uhlenbein
 Genetic pro�

gramming of minimal neural nets using Occam�s razor
 In Stephanie Forrest� editor�

Proceedings of the �th International Conference on Genetic Algorithms� ICGA��	� pages

�������� University of Illinois at Urbana�Champaign� ����� July ����
 Morgan Kauf�

mann

 Zhang and M"uhlenbein� ����a! Byoung�Tak Zhang and Heinz M"uhlenbein
 Balancing

accuracy and parsimony in genetic programming
 Evolutionary Computation� ���	����

��� ����

 Zhang and M"uhlenbein� ����b! Byoung�Tak Zhang and Heinz M"uhlenbein
 Bayesian in�

ference� minimum description length principle� and learning by genetic programming

In Justinian P
 Rosca� editor� Proceedings of the Workshop on Genetic Programming

From Theory to Real�World Applications� pages ���� Tahoe City� California� USA� �

July ����

 Zhang and M"uhlenbein� ����c! Byoung�Tak Zhang and Heinz M"uhlenbein
 MDL�based

�tness functions for learning parsimonious programs
 In E
 S
 Siegel and J
 R
 Koza�

editors� Working Notes for the AAAI Symposium on Genetic Programming� pages ����

���� MIT� Cambridge� MA� USA� ����� November ����
 AAAI

 Zhang et al�� ����! Byoung�Tak Zhang� Ju�Hyun Kwak� and Chang�Hoon Lee
 Building

software agents for information �ltering on the internet� A genetic programming ap�

proach
 In John R
 Koza� editor� Late Breaking Papers at the Genetic Programming

���� Conference Stanford University July ���	�� ����� page ���� Stanford University�

CA� USA� ����� July ����
 Stanford Bookstore

 Zomorodian� ����! Afra Zomorodian
 Context�free language induction by evolution of

deterministic push�down automata using genetic programming
 In E
 S
 Siegel and

���

J
 R
 Koza� editors� Working Notes for the AAAI Symposium on Genetic Programming�

pages �������� MIT� Cambridge� MA� USA� ����� November ����
 AAAI

���

Appendix A

Number of Fitness Evaluations

Required

Table A
� summarises the estimated e�ort� in terms of the number of trial solutions

evaluated� required to solve �with at least ��� assurance	 the problems presented in this

thesis
 Where problems were not solved a lower bound has been calculated based on

assuming the very next run would have succeeded by generation ��

The number of program executions required �for ��� probability of solving the prob�

lem	 is estimated by multiplying the number of trial solutions by the mean number of

times each was run during its �tness testing
 Where the mean number of program execu�

tions per program tested is not available� the maximum is used to give an estimated upper

bound
 Run time reductions via� ancestor �tness re�use �cf
 Section E
�	� ADF caching

�cf
 Section E
�	 and avoiding �tness evaluation of individuals produced by reproduction�

are excluded

���

���

Table A
�� Number of trial programs that must be generated to solve problems
�with � ��� assurance	 and the corresponding total number of program executions

Problem Name Parameters E�ort Runs#Eval Executions

Table Page ����		 Max Mean �����	

Stack �
� �� ��� ��� � ���

Queue� shu�er �
� �� ������� ��� � �������

Given Modulus Increment �
� ��� ����� ��� ��� �����

Evolving Modulus Increment �
�� ��� ������ ��� ��� ������

List �
� ��� ������� ��� ��� ������

List in two parts �Section �
�	 �
� ��� ����� ��� ��� �����

Nested Brackets �register	 �
� ��� ��� ����� ����� ���

Dyck Language

�stack given	 �
� ��� ��� ����� ��� ���

�indexed memory	 �
� ��� � ��� ��� ����� ��� � ��� ���

Reverse Polish Expressions

�stack given	 �
� ��� ����� ��� ��� �����

�indexed memory	 �
� ��� � ��� ��� ��� ��� � ��� ���

Appendix B

Genetic Programming �

Computers using �Natural

Selection� to generate programs

ABSTRACT

Computers that �program themselves�� science fact or �ction� Genetic Programming uses

novel optimisation techniques to �evolve� simple programs� mimicking the way humans

construct programs by progressively re�writing them
 Trial programs are repeatedly modi�

�ed in the search for �better#�tter� solutions
 The underlying basis is Genetic Algorithms

�GAs	

Genetic Algorithms� pioneered by Holland� ����!� Goldberg� ����! and others� is the

evolutionary search technique inspired by natural selection �i
e survival of the �ttest	
 GAs

work with a �population� of trial solutions to a problem� frequently encoded as strings�

and repeatedly select the ��tter� solutions� attempting to evolve better ones
 The power

of GAs is being demonstrated for an increasing range of applications� �nancial� imaging�

VLSI circuit layout� gas pipeline control and production scheduling Davis� ����!
 But

one of the most intriguing uses of GAs � launched by Koza Koza� ����! � is automatic

program generation

Genetic Programming applies GAs to a �population� of programs � typically encoded

as tree�structures
 Trial programs perhaps in LISP� or even C� are evaluated against

a ��tness function� and the best solutions selected for modi�cation and re�evaluation

This modi�cation�evaluation cycle is repeated until a �correct� program is produced
 GP

has demonstrated its potential by evolving simple programs for medical signal �lters�

modelling complex chemical reactions� performing optical character recognition� and for

target identi�cation

���

���

This appendix surveys the exciting �eld of Genetic Programming
 As a basis it re�

views Genetic Algorithms and automatic program generation
 Next it introduces Genetic

Programming� describing its history and describing the technique via a worked example

in C
 Then using a taxonomy for GP research� it surveys recent work with sections on

each of the �ve GP steps �Primitives� Fitness measure� Control Parameters� Termination

criterion and Architecture	 and lists some of the GP development tools
 Finally we sur�

vey pioneering GP applications with sections on Prediction and Classi�cation� Image and

Signal Processing� Optimisation� Trading� Robots� Arti�cial Life and Artistic uses of GP

A glossary is also included �page ���	

Keywords � Automatic Programming� Machine Learning� Genetic Algorithms� Genetic

Programming

���

B�� Introduction

Genetic programming is a technique which enables computers to solve problems with�

out being explicitly programmed
 It works by using genetic algorithms to automatically

generate computer programs

Genetic algorithms were devised by John Holland as a way of harnessing the power of

natural evolution for use within computers
 Natural evolution has seen the development of

complex organisms �e
g
 plants and animals	 from simpler single celled life forms
 Holland�s

GAs are simple models of the essentials of natural evolution and inheritance

The growth of plants and animals from seeds or eggs is primarily controlled by the

genes they inherited from their parents
 The genes are stored on one or more strands of

DNA
 In asexual reproduction the DNA is a copy of the parent�s DNA� possibly with some

random changes� known as mutations
 In sexual reproduction� DNA from both parents is

inherited by the new individual
 Often about half of each parent�s DNA is copied to the

child where it joins with DNA copied from the other parent
 The child�s DNA is usually

di�erent from that in either parent

Natural evolution arises as only the �ttest individuals survive to reproduce and so pass

on their DNA to subsequent generations
 That is DNA which produces �tter individuals

is likely to increase in proportion in the population
 As the DNA within the population

changes� the species as a whole changes� i
e
 it evolves as a result of selective survival of

the individuals of which it is composed

Genetic algorithms contain a �population� of trial solutions to a problem� typically

each individual in the population is modelled by a string representing its DNA
 This

population is �evolved� by repeatedly selecting the ��tter� solutions and producing new

solution from them �cf
 �survival of the �ttest�	� the new solutions replacing existing

solutions in the population
 New individuals are created either asexually �i
e
 copying the

string	 or sexually �i
e
 creating a new string from parts of two parent strings	

In genetic programming the individuals in the population are computer programs
 To

ease the process of creating new programs from two parent programs� the programs are

written as trees
 New programs are produced by removing branches from one tree and

inserting them into another
 This simple process ensures that the new program is also a

tree and so is also syntactically valid

As an example� suppose we wish a genetic program to calculate y � x�
 Our population

of programs might contain a program which calculates y � �x � x �see Figure B
�	 and

���

-

x+

xx

Figure B
�� Mum� �tness
������ �x� x

*

x x

/

x

x

x *

x

x

-

/

-

Figure B
�� Dad� �tness
������ x
x

x�x�
� x

another which calculates y � x
x

x�x�
�x �Figure B
�	
 Both are selected from the population

because they produce answers similar to y � x� �Figure B
�	� i
e
 they are of high �tness

When a selected branch �shown shaded	 is moved from the father program and inserted in

the mother �displacing the existing branch� also shown shaded	 a new program is produced

which may have even high �tness
 In this case the resulting program �Figure B
�	 actually

calculates y � x� and so this program is the output of our GP

The remainder of this appendix describes genetic algorithms in more detail� placing

them in the context of search techniques� then explains genetic programming� its history�

the �ve steps to GP� shows these steps being used in our example and gives a taxonomy

of current GP research and applications� which are presented in some detail

-

x+

x *

x x

Figure B
�� Correct Program� �tness �
�� x � x� � x

���

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

Figure B
�� x� �solid	� test points �dots	� values returned by mum ��x � x� dashed	 and
dad � x

x

x�x�
� x� small dashed	

B�� Genetic Algorithms

Genetic algorithms are perhaps the closest computation model to natural evolution
 Their

success at searching complex non�linear spaces and general robustness has led to their use

in a number of practical problems such as scheduling� �nancial modeling and optimisation

The inventor of genetic algorithms� John Holland Holland� ����!� took his inspiration

for them from nature
 Genetic algorithms contain a population of individuals� each of

which has a known �tness
 The population is evolved through successive generations� the

individuals in each new generation are bred from the �tter individuals of the previous

generation
 The process continues through successive generations until we decide to stop

it
 As with the breeding of domestic animals� we choose the individuals to breed from

�using a �tness function	 to drive the population�s evolution in the direction we want it to

go
 As with domestic animals� it may take many generations to produce individuals with

the required characteristics

Inside a computer an individual�s �tness is usually calculated directly from its DNA

�i
e
 without the need to grow it	 and so only the DNA need be represented
 Usually

genetic algorithms represent DNA by a �xed length vector
 Where a genetic algorithm is

���

Parent 00 1 1 0 11

Child 0 1 1 0 111

Figure B
�� Genetic Algorithms � Mutation

Parents 1 0 1 0 11 1

.

.

0 01 1 0 10

Child 00 11 00 11 0 0 1

Figure B
�� Genetic Algorithms � Crossover

being used for optimisation� each individual is a point in the search space and is evaluated

by the �tness function to yield a number indicating how good that point is
 If any point

is good enough� the genetic algorithm stops and the solution is simply this point
 If not

then a new population� containing the next generation� is bred

The breeding of a new generation is inspired by nature� new vectors are bred from the

�tter vectors in the current generation� using either asexual or sexual reproduction
 In

asexual reproduction� the parent vector is simply copied �possibly with random changes�

i
e
 mutations	
 Figure B
� shows a child vector being created by mutating a single gene

�in this case each gene is represented by a single bit	
 With sexual reproduction� two of the

�tter vectors are chosen and the new vector is created by sequentially copying sequences

alternately from each parent
 Typically only two or three sequences are used� and the

point�s	 where the copying crosses over to the other parent is chosen at random
 This is

known as crossover
 Figure B
� shows a child being formed �rstly by copying four genes

from the lefthand parent then the three remaining genes are copied from the righthand

parent
 Figure B
� shows the genetic algorithm cycle

Holland in his paper �Genetic Algorithms and the Optimal Allocation of Trials� Hol�

land� ����! shows� via his schemata theorem� that in certain circumstances genetic algo�

rithms make good use of information from the search so far to guide the choice of new

points to search
 Goldberg� ����! gives a less mathematical treatment of the schemata

theorem

Holland argues that the elements of the vector should be as simple as possible� in many

cases single bits are used
 Nature seems to agree� as it constructs DNA from only four

�rather than two	 components

���

Fitness

Calculate

Select Parents

in Proportion to

their Fitness

Population

Create new indivuals

1 0 0 1 1 0 1

1 0 11 0 10

1 0 0 1 0 10

Figure B
�� The Genetic Algorithm Cycle

The schemata theorem requires the vector representation and �tness function be de�

signed so that the required solution can be composed of short fragments of vectors which�

if present in a vector� give it a relatively high �tness regardless of the contents of the rest

of the vector
 These are known as building blocks
 They can be thought of as collections

of genes which work well together

Given building blocks exist� genetic algorithms� even starting from a random collection

of vectors� can progressively select the vectors with building blocks and using the crossover

operator gradually splice these together until the population contains vectors which are

substantially correct

B���� Search Techniques

There are a large number of well established search techniques in use within the information

technology industry� Figure B
� categorises them

Enumerative techniques� in principle� search every possible point one point at a time

They can be simple to implement but the number of possible points may be too large for

direct search
 In some cases� e
g
 game playing Uiterwijk et al�� ����!� it is possible to

curtail the search so that points in regions which cannot contain the solution are not

checked

���

CALCULUS

BASED

ENUMERATIVE

Dynamic

Programming

Direct

Fibonacci Newton

Indirect Simulated

Annealing

STOCHASTIC

Evolutionary

Algorithms

Genetic

Algorithms

Evolution

Strategies

Genetic Programming

SEARCH TECHNIQUES

Figure B
�� Search Techniques

Calculus based techniques treat the search space as a continuous multi�dimensional

function and look for maxima �or minima	 using its derivative
 Indirect methods use that

fact that at the extrema the function�s derivative is zero
 Where the function is smooth

the volume of space where its derivative is zero can be a very small sample of the whole

search space

Direct calculus techniques such as Fibonacci and Newton use the gradient#function

values to estimate the location of nearby extrema
 These techniques� and others� are known

as Hill Climbing techniques because they estimate where a maximum �i
e
 hill top	 lies�

move to that point� make a new estimate� move to it and so on until they reach the top of

the hill
 These techniques can be used upon �well behaved� problems or problems which

can be transformed to become �well behaved�

Stochastic search techniques use information from the search so far to guide the

probabilistic choice of the next point�s	 to try
 They are general in their scope� being able

to solve some very complex problems that are beyond the abilities of either enumerative or

calculus techniques
 Simulated annealing searches for minimum energy states using an

analogy based upon the physical annealing process� where large soft low energy crystals

can be formed in some metals �e
g
 copper	 by heating and then slow cooling Kirkpatrick

et al�� ����!

���

Evolutionary algorithms are based upon Darwin�s Natural Selection theory of evo�

lution� where a population is progressively improved by selectively discarding the worse

and breeding new children from the better
 In Evolutionary Strategies points in the

search space are represented by a vector of real values
 Each new point is created by

adding random noise to the current one
 If the new point is better search proceeds from

it� if not the older point is retained
 �Historically Evolutionary Strategies search only one

point at a time but more recently they have become more like genetic algorithms by using

a population of points Back et al�� ����!	
 In contrast� a genetic algorithm represents

points in the search space by a vector of discrete �typically	 bit values
 Each new child is

produced by combining parts of the bit vector from each parent
 This is analogous to the

way chromosomes of DNA �which contains the inherited genetic material	 are passed to

children in natural systems

B���� Automatic Program Generation

A computer program can be thought of as a particular point within a search space of all

such programs and so computer programming can be thought of as searching this space

for a suitable program
 Human programmers exercise their skills to direct their search so

they �nd a suitable program as quickly as possible
 There are many tools �such as high

level languages and code generators	 which transform the search space to make it easier

for the human navigator to �nd his goal

When programming neural networks� calculus based search techniques such as back

propagation are often used
 �Simulated Annealing� Evolution Strategy and Genetic algo�

rithms have also been used to program arti�cial neural networks	
 Calculus based search

techniques are possible because the search space has been transformed �and simpli�ed	

so that it is smooth
 When the search has succeeded the neural network is said to have

been trained� i
e
 a suitable combination of connection weights has been found
 Note that

a program �a neural network	 has been automatically generated by searching for it

An alternative to implementing a general transformation that converts the vast discrete

space of possible programs into a continuous one �which is su
ciently well behaved as to

allow it to be searched by calculus based techniques	 is to search the original space itself

The discrete nature of this space prevents the use of calculus based techniques and the

vast number of possible programs make enumerative search infeasible� however there has

been some success with some stochastic search techniques

Table B
� lists the stochastic search techniques used with the classes of programming

���

languages
 It appears work has been concentrated on using genetic algorithms
 The re�

mainder of the appendix concentrates on the recent success achieved by combining genetic

algorithms with traditional programming
 The term genetic programming was suggested

by David Goldberg to describe the automatic production of programs by using a hierar�

chical genetic algorithm to search the space of possible programs

B���� GA Representation and Execution

The normal use of the term genetic programming implies the data structures being evolved

can be run as computer programs
 The term has also been applied to using a genetic

algorithm to evolve data structures which must be translated into another form before

they can be executed
 Both linear and tree �or hierarchical	 data structures have been

used
 This process can be likened to an individual �the executable program	 growing

according to the instructions held in its DNA �the genetic algorithm�s data structures	

The �nal form is often a neural network
 Many ways of representing a network using

a genetic algorithm have been used Polani and Uthmann� ����� Romaniak� ����� Zhang

and M"uhlenbein� ����� Harvey et al�� ����!
 An especially powerful way of representing

a network is cellular encoding Gruau� ����!
 Gruau� ����! shows cellular encoding�

inconjunction with a hierarchical genetic algorithm� can automatically produce complex

neural networks with a high degree of modularity
 Cellular encoding has also been used

to specify �nite state automata Brave� ����b! and electronic circuits Koza et al�� ����b�

Koza et al�� ����a!
 Kodjabachian and Meyer� ����! summaries various approaches to

evolving arti�cial nervous systems

B�� Genetic Programming

B���� History

The idea of combining genetic algorithms �GAs	 and computer programs is not new� it

was considered in the early days of genetic algorithms
 However John Holland�s work on

combining genetic algorithms and production languages� rather than tradition computer

languages� was more actively pursued
 This work led to classi�ers

Richard Forsyth�s BEAGLE Forsyth� ����! evolves programs �rules	 using a �GA

like	 algorithm
 The rules are tree structured boolean expressions� including arithmetic

operations and comparisons
 BEAGLE�s rules use its own speci�c language� however

Forsyth did suggest at some point in the future Lisp might be used
 BEAGLE is now

commercially available as an expert system �see Section B
�
�	

���

Table B
�� Automatic Programming using Stochastic Search

Class of Programming Language

Search Technique Traditional Logic �e
g

Prolog	

Expert
Systems
�Rule based	

Finite State
Machines

Simulated Annealing �

Evolution Strategy Evolution
Program

Genetic Algorithms Genetic
Programming

�
 BEAGLE
Classi�ers �

�

While the above table shows most work on automatically producing programs by applying
stochastic search to programming languages has been on genetic programming� classi�ers
or evolutionary programming� some work has been carried out in other areas
 The numbers
in the following list refer to those in cells in the above table

�
 Andrews and Prager� ����� O�Reilly and Oppacher� ����! show some problems can
be solved using simulated annealing �SA	 and stochastic iterated hill climbing search
techniques with a GP �i
e
 tree	 representation
 While O�Reilly� ����! suggests
SA can be advantageous in program search� Sharman and Esparcia�Alcazar� ����!

suggest a hybrid where SA is used to tune numerical constants within GP programs

�
 Nachbar has demonstrated evolving programs written in Mathematica Nachbar�
����! and some work has been done on using genetic programming with Prolog
 Nordin� ����b!

�
 In Classi�ers Holland et al�� ����! a genetic algorithm� plus other techniques� is
used to automatically generate both a rule base and its interconnections
 Feldman�
����!� amongst others� has used genetic algorithms to evolve aspects of Fuzzy Logic
systems

�
 Dunay et al�� ����! evolved �nite state automata which recognised simple reg�
ular languages
 Later work Dunay and Petry� ����� Petry and Dunay� ����!

evolved Turing Machines which recognised simple regular and context free languages�
while Zomorodian� ����! evolved push down automata for recognising the balanced
bracket context free language
 Self demonstrated a genetic algorithm evolving a
Turing Machine which recognised three bit even parity but had less success with
other more complex problems Self� ����!

���

Nichael Cramer also applied genetic algorithms directly to special computer program�

ming languages Cramer� ����! but it was John Koza Koza� ����! who successfully applied

genetic algorithms to Lisp and showed that in this form genetic algorithms are applicable

to a range of problems
 Techniques like his have come to be known as �genetic program�

ming�
 Koza claims Koza� ����� page ���! genetic programming to be the most general

machine learning paradigm

A simple approach of breeding machine code and even FORTRAN source code which

ignores the syntax fails because the programs produced are highly unlikely to compile or

run� let alone approach the required solution De Jong� ����! �however see Section B
�
�	

There are countless examples of apparently minor syntax errors causing programs to mis�

behave in a dramatic fashion
 These two facts foster the common belief that all computer

programs are fragile
 In fact this is not true� many programs are used and yield economic

bene�t despite the fact that they are subject to many minor changes� introduced during

maintenance or version upgrades
 Almost all programs are produced by people making

progressive improvements

Genetic programming allows the machine to emulate� to some extent� what a person

does� i
e
 to make progressive improvements
 It does this by repeatedly combining pairs of

existing programs to produce new ones� and does so in a way as to ensure the new programs

are syntactically correct and executable
 Progressive improvement is made by testing each

change and only keeping the better changes
 Again this is similar to how people program�

however people exercise considerable skill and knowledge in choosing where to change a

program and how� genetic programming� at present� has no such knowledge and must rely

on chance and a great deal more trial and error

Many variations of the basic genetic algorithm have been tried� in genetic program�

ming the �xed length vectors are replaced by programs
 Usually� a tree �or structured or

hierarchical	 representation of the program is used and individuals in the population are

of di�erent sizes
 Given the new representation� the new genetic operators such as tree

crossover must be used
 As Figure B
� shows tree crossover acts within branches of the

tree to ensure that the the programs it produces are still trees and have a legal syntax

Thus genetic programming is fundamentally di�erent from simply shu�ing lines of For�

tran or machine code
 The sequence of operations in genetic programming is essentially

as that for other genetic algorithms �see Figure B
��	

���

x x

+

x x

*

*

x

*

x x

x

Parents

Child

-

*

x x

+

+

x

*

+

+

xxx

Figure B
��
Genetic Programming Crossover�
x� � �x � �x� x		 crossed with �x� to produce �x� � x

���

Population
 of
 Programs

Test

Programs

x

-

x+

x

xx

x
*

*

-

x+

x *

x x

Create new Programs

Select Parents

in Proportion to

their Fitness

Figure B
��� Genetic Programming Cycle

���

B���� Basic Choices

Koza says there are �ve preliminary steps to solving a problem using genetic program�

ming� choosing the terminals ��	� the functions ��	� the �tness function ��	� the control

parameters ��	 and the termination criterion ��	
 �In his later work Koza� ����!� Koza

adds a sixth step� determining the architecture in terms of the program�s automatically

de�ned functions �ADFs	
 However he also shows that it can be possible �but not neces�

sarily easy	 for correct programs to be evolved even with arbitrary choices for his sixth

step
 ADFs are discussed in Sections B
�
� and �
�
�	

In Koza�s terminology� the terminals ��	 and the functions ��	 are the components of

the programs
 In Figure B
� functions �� � and � are used� they form the junctions in

the tree
 In Figure B
� the only terminal is x which forms the end leafs
 The connections

between the terminals and functions indicate the order in which operations are to be

performed
 For example the top left tree in Figure B
� shows a program which calculates

�x � x	 � �x � �x � x		
 Note how the brackets� which denote the order of evaluation�

correspond to the structure of the tree

The choice of components of the program �i
e
 terminals and functions	 and the �tness

function ��	 largely determine the space which genetic programming searches� consequently

how di
cult that search is and ultimately how successful it will be

The control parameters ��	 include the size of the population� the rate of crossover

and mutation etc
 The termination criterion ��	 is simply a rule for stopping
 Typically

the rule is to stop either on �nding a program which solves the problem or after a given

number of generations� e
g
 ��

B���� Example

In this subsection we will outline a very simple example of genetic programming
 We will

use it to perform symbolic regression on a set of test values
 That is we will �nd a formula

�symbolic expression� program	 whose result matches the output of the test values

One use of symbolic regression is prediction� for once such a formula has been found�

it can be used to predict the output given a new set of inputs
 E
g
 given a history of

stock prices� symbolic regression may �nd a formula relating the price on the next day to

earlier ones� so allowing us to predict the price tomorrow

In our very simple example the test values are related by the formula y � x�
 �The

C code for this example is available via anonymous ftp from cs
ucl
ac
uk� directory genetic

The interested reader is invited to copy this code and try their own examples
 Similar

���

polynomials e
g
 x	� x�x�� x��x	 �x��x may be produced by changing the test values

and possibly population size	

Following the �ve steps outlined in the previous section�

�
 The leafs �terminals	 on our programming trees will be the input value� x

�
 Our program will use the four �oating point arithmetic operators �� �� � and �

Our choice is guided by the expectation that output will be a simple polynomial of

x
 If we guess wrongly then it may not be possible to devise a correct program given

our functions and terminals
 We can add others but this will increase the number

of possible programs to search� which might slow down the search

The terminals and functions are chosen so that any function can have as any of its

arguments any terminal or any function call
 This allows programs to be assembled

from any mixture of terminals and functions �this property is known as closure� see

also Section B
�
�	
 In our case all terminals and functions are of type �float�

To avoid divide by zero errors� we de�ne divide by zero to be unity
 Note as all

the functions have two operands� the programs evolved will each have the form of a

binary tree

�
 Fitness is calculate by executing each program with each of nine x values and com�

paring each answer with the corresponding y value
 The nine �x� y	 pairs are chosen

so that y � x�
 They are shown as dots in Figure B
��
 To yield a number which

increases as the program�s answer gets closer to the y value� �
� is added to the ab�

solute di�erence between the programs value and the corresponding y and the result

is inverted
 �Adding �
� avoids the possibility of divide by zero	
 The �nal �tness is

the mean of all nine calculations

If the program is within either �
�� or �����y we call this a hit� indicating that this

is close enough

�
 We chose control parameters so that�

� there are �� individuals in the population�

� on average ��� of new individuals are created by crossover�

� of the other ���� ��� are direct copies from the previous generation and

� �� �i
e

���	 are mutated copies�

���

-

x+

xx

Figure B
��� Mum� �tness
������ �x� x

*

x x

/

x

x

x *

x

x

-

/

-

Figure B
��� Dad� �tness
������ x
x

x�x�
� x

� our programs contain no more than �� nodes �i
e
 no more than �� functions

and �� terminals	

�
 We stop when we have a found a program that correctly matches all nine test points

�i
e
 there are nine hits	 or when we reach �� generations

On one run the following ���� correct code was generated�

float gp� float x �

�

return ��x��x���x����x���

�

By noting x�x is zero and removing excessive brackets it can be seen that the return

statement is equivalent to return �x�x�� i
e
 C code to calculate x�

This ���� correct program is shown in Figure B
��
 It was produced by crossover

between the two programs shown in Figures B
�� and B
��� both of which were of above

average �tness
 The subtrees a�ected by the crossover are shown shaded
 It can be seen

that the net e�ect of crossover is to replace the middle x with a subtree which calculates

x� and this yields a program which is exactly equivalent to x�

���

-

x+

x *

x x

Figure B
��� Correct Program� x � x� � x

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

Figure B
��� x� �solid	� test points �dots	� values returned by mum ��x � x� dashed	 and
dad � x

x

x�x�
� x� small dashed	

Figure B
�� shows the values calculated by the two parent programs against the test

points �which their o�spring calculates exactly	

B���� Taxonomy

Table B
� shows how the �eld of genetic programming is expanding
 Several strands can

be seen�

�
 The adoption of exotic genetic algorithm techniques by genetic programming �Sec�

tion B
�
�	

�
 Various changes to the syntax of the programs to be evolved �Section B
�
�	

�
 Incorporating state or database information within a genetic program �Section B
�
�	

���

Table B
�� Taxonomy of Genetic Programming

Active Topics in Genetic Programming

Adopting
Exotic GA
techniques

Program
Syntax

Incorpor�
ating
State
Information

Evolving
Program
Modules

Program
Size and
E
ciency

More
Implement�
ations

Increasing
numbers
of Applic�
ations

�
 Measures to allow programs to be evolved from program modules and to simultane�

ously evolve the modules �Section B
�
�	

�
 Measures aimed at either reducing the size of the evolved programs or increasing

their e
ciency or a combination of both �Section B
�
�	

�
 An increasing number of implementations� many of them in the public domain �Sec�

tion B
�
�	

�
 An increasing number of applications �Section B
�	

Section B
� draws together some conclusions and guesses as to where genetic program�

ming may lead

B�� GP Research

B���� Program Representation

In most genetic programming work the programs being evolved are represented by a pre�x

tree structured syntax
 For the most part the LISP language is used
 This section describes

experiments with other syntax

 Keith and Martin� ����! considered pre�x� post�x and hybrid �mix�x	 languages but

conclude that their linear pre�x language and its jump table interpreter are the more

e
cient
 �The GP�QUICK interpretter used in this thesis� implements their linear pre�x

jump table approach	

 Perkis� ����! uses a linear post�x language and claims some advantages over the

more standard tree approach
 Banzhaf� ����! also uses a linear approach but various

operations convert this to a tree shaped program which is executed
 However of the linear

chromosome approachs perhaps the most surprising and successful is Nordin� ����a! in

which the representation is a small �up to ���� bytes	 machine code program
 Enormous

�more than thousand fold	 speed ups in comparsion with LISP are claimed
 The success

of Nordin�s approach may be due to the use of a simple machine architecture �SUN RISC	

���

which is further restricted so only some machine operations are allowed
 In Nordin� ����a!

there was considerable loss of generality� there is no branching or looping� the program is of

�xed length ��� instructions	� the program is speci�c to the SUN SPARK RISC instruction

set and only a few instructions are used
 Later work Nordin and Banzhaf� ����a! extended

the system so that it was fully Turing complete� however this full functionality need not

be used Francone et al�� ����� Nordin and Banzhaf� ����!

Extended Closure

In almost all genetic programming work the terminals and functions are chosen so that

they can be used with each other without restriction
 This is achieved by requiring that

the system be closed so that all terminals are of one type and all functions can operate

on this type and always yield a result also of this type
 For example measures are taken

to protect against divide by zero errors

In Montana�s Strongly Typed Genetic Programming �STGP	 Montana� ����! a genetic

program can contain multiple di�erent types simultaneously
 When manipulating the

program �e
g
 using crossover	 care is taken that not only are there the correct number

of arguments for each function but that they are of the expected type
 This leads to an

increase in the complexity of the rules that must be followed when selecting crossover

points
 However Montana shows that tight type checking can considerably reduce the size

of the search space� which he says will reduce the e�ort to �nd the solution
 Generic types

are allowed in order to reduce the number of functions which must be explicitly speci�ed

Other� more active� ways of using program syntax or run time behaviour have been

discussed in Section �
�
�

Genetic Programming and State Information

Most computer programs make extensive use of storage� yet in almost all genetic pro�

gramming examples� each genetic program is a function of its inputs and almost all stor�

age requirements are dealt with by the framework used to support the genetic programs

Some of Koza�s examples include limited storage which is used via side e�ects
 This is in

contrast with Cramer�s work where a small number of global integers within the evolving

program form the framework for input and output but are also available for storage

 Teller� ����a! includes explicitly �� small integer storage cells
 The programs he

evolves may freely use them
 This problem� a mobile robot simulation problem� was

chosen because it has not been solved �either by genetic or human programming	 without

���

some form of storage
 He states that this allows genetic programming to tackle all cases

of machine learning which are turing computable
 Teller�s read and write primitives have

also been used by Andre� ����b! and Jannink� ����!

Montana uses a similar approach in STGP �cf
 previous subsection	
 In STGP primi�

tives SET�VAR�i and GET�VAR�i are used to set and read a particular variable�s �i	 value

The variable may be of a complex type� e
g
 a vector

B���� Fitness Measure

Most genetic programming work uses a single �tness criterion namely the functionality of

the program� ignoring issues such as size and run time
 There has been some interest in

using Pareto scoring Goldberg� ����� Fonseca and Fleming� ����!� which allows members

of the population to be scored or compared using multiple criteria� such as functionality

and run time
 Scoring systems which combine several criteria �such as functionality and

e
ciency	 to yield a single �tness score have been tried with some success

Program Size

Many examples attach no importance to the e
ciency or size �parsimony	 of the programs

produced� the only important factor is how close the result given by the program is to

being correct
 Perhaps as a consequence many of the evolved programs are large �i
e
 non�

parsimonious	
 However in some cases� such as classi�cation� the size of the program is

important in itself� rather than as an indicator of wasteful coding
 In such cases the size

of the program gives an indication of lack of generality or over�tting training data
 The

next subsection presents one approach to this problem

 Koza� ����! and Kinnear� Jr
� ����b! have combined program size with how well it

works to yield a composite �tness
 In Koza�s example a functionally correct program was

evolved of near theoretically minimum size
 However more e�ort� that is more �tness

evaluations� were required to evolve the correct program than when program size was

ignored
 Kinnear found he could evolve more general solutions by adding a term inversely

proportional to program length to its �tness

Minium Description Length

One of De Jong�s arguments against the combination of traditional general purpose com�

puter programming languages and genetic algorithms De Jong� ����! was that the be�

haviour of program statements written in such languages depend upon statements before

���

it
 Iba et al�� ����b! have considered the problems of symbolic regression and classi�cation

using problem speci�c languages which are better behaved with respect to changes in the

order of statements
 In one case �GMDH	 they show that earlier statements cannot reduce

the value of latter ones
 Such languages �t well with the schema theorem if we view good

subtrees like good schema
 These languages ensure that good overall individuals can be

constructed of good schema� thus we should expect a genetic algorithm to perform well

Iba etal use Quinlan�s �decision trees�� which are designed to classify sets of inputs

They allocate �tness based upon Quinlan�s �Minimum Description Length� �MDL	 which

gives a natural means of basing �tness not just upon how well the program �or decision

tree� in this case	 performs but also on its size
 Other investigators have used arbitrary

combinations of program size and score to calculate a composite �tness
 MDL is calculated

by considering how many bits are needed to code the program and how many to code a

description of its error� i
e
 those cases where it returns the wrong answer

MDL � Tree Coding Length � Exception Coding Length

where

Tree Coding Length � �nt � nf 	 � nt log� T � nf log� F

nt is the total number of terminals and nf is the total number of function calls in the

tree
 T is the number of terminals in the terminal set and similarly F is the size of the

function set

Exception Coding Length �
P

x�Terminals L�nx� wx� nx	

The summation is taken over all leafs in the program
 nx is the number of cases

represented by the particular leaf� x� and wx is the number of such cases which are wrongly

classi�ed
 L�n� k� b	 is the total number of bits required to encode n bits given k are �s

and b is an upper bound on k�

L�n� k� b	 � log��b � �	 � log��

	
n

k

	

Iba etal�s STROGANOFF system is used to perform symbolic regression �i
e
 to �nd

formulae� or programs� that adequately match the output associated with a given set of

inputs	
 STOGANOFF uses an MDL based �tness together with program trees composed

of GMDH primitives
 The GMDH terminals are the inputs on which we wish to perform

symbolic regression
 The GMDH functions each have a two inputs� their output is a

quadratic function of the two inputs�

Gz��z��z�� z�	 � a� � a�z� � a�z� � a	z�z� � a�z
�
� � a�z

�
�

Good results have been obtained with both decision trees and STROGANOFF using

small populations �e
g
 ��	

���

Program E�ciency

Genetic programming determines the �tness of an individual by running it
 This makes

it� compared to other genetic algorithms� particularly susceptible to badly behaving indi�

viduals
 Badly behaved programs can be produced where there are recursive or iterative

features� as these promote very long or even in�nite loops
 The presence of only one such

program in the population e�ectively halts the whole genetic programming system
 Where

a program may be expected not to halt �or take a very long time	 Koza� ����! implements

ad�hoc loop limits which time out badly behaving individuals and give them poor �tness

scores

A more general mechanism to ensure programs which loop in�nitely do not hang up

the system has been suggested by Maxwell III� ����!
 This applies an external time

limit after which programs are interrupted if they are still running� thus allowing other

members of the population to be run
 The interrupted program is not aborted but is given

a partial �tness
 The partial �tness is used when selecting which programs to breed from

and which are to be replaced by the new programs created
 Programs which remain in

the population are allowed to run for another time interval
 Looping programs are given

low partial �tness and so are eventually removed from the population� as new programs

are bred
 Maxwell claims his technique �e�ectively removes arbitrary limits on execution

time �e
g
 iteration limits	 and yet still produces solutions in �nite time� and often it will

require �less e�ort� and produce solutions of �greater e
ciency�
 Teller�s PADO system

takes an �anytime approach� which gives each program a �xed time to execute
 When this

expires the program is stopped and the results are extracted from it whether the program

had �nished or not Teller and Veloso� ����b� Section �
�!

B���� Control Parameters

Whilst there are many possible control parameters the one of most direct interest is the

population size
 Whilst Goldberg et al�� ����! gives a population sizing rule for certain

genetic algorithms� it would appear that most GP populations are smaller than their

optimum being constrained by the available machine resources Koza� ����!
 With the

increasing use of large memory parallel machines we can expect population sizes to increase

and so consideration of what is the optimum population size will be required

���

B���� Termination Criterion

The most common termination criterion is to stop the evolution of genetic program when

either an exact or approximate solution is reached or �� generations �or generation equiv�

alents	 is reached
 This was used in most of Koza�s original work Koza� ����! and has

been adopted widely� an exception is the work described in Section B
�
� on MDL where

many more generation have been used
 As with population size� the number of maximum

number of generation allowed has a large e�ect upon the machine resources used
 Koza�

����! argues that in many cases it is more e�ective to run a GP several times rather than

increase the number of generations used by any one run

B���� Architecture

The problems on which genetic programming has been successfully demonstrated have� in

the main been small
 A common technique that people use when tackling any complex

problem is to decompose it into smaller problems and to tackle each of these independently

In computer programming� the separate solutions or modules are combined to yield a large

program which� all being well� solves the original problem
 A high degree of skill is needed

in choosing how to decompose the problem
 Genetic programming has� of course� no

such skill� however despite this there has been some success with incorporating a degree

of modularity into genetic programming
 Two distinct approaches have been tried to

introduce modularity� Automatically De�ned Functions �ADF	 and Encapsulation� both

with a measure of success

Automatically De�ned Functions

ADFs are evolvable functions �subroutines	 within an evolving genetic program� which the

main routine of the program can call
 Typically each ADF is a separate tree� consisting of

its arguments �which are the terminals	 and the same functions as the main program tree

�possibly plus calls to other ADFs	
 If side e�ects are prohibited� ADFs act as functional

building blocks
 Crossover acting on the main program can then rearrange these building

blocks within the program
 ADFs can also be evolved� e
g
 when crossover acts upon them

The overall format of the program is preserved by ensuring crossover and other genetic

operations acts only within each ADF
 That is code cannot be exchanged by crossover

between ADFs and the main program
 �Koza has demonstrated that it is possible to relax

this restriction allowing crossover between program branches but the rules required to

ensure the resulting o�spring are still syntactically correct are much more complex Koza�

���

����!	
 The main program�s function set is extended to allow �but not require	 it to call

the ADFs

ADFs have been successfully used on problems that proved too di
cult for genetic

programming without ADFs

Encapsulation

The Genetic Library Builder �GLiB	 Angeline� ����! implements encapsulation by adding

a complementary pair of genetic operators� compression �encapsulation	 and decompres�

sion which are applied to any point in the genetic program chosen at random
 Compression

takes �part of	 the subtree at the given point and converts it in to a function which is

stored in a library
 Those parts of the subtree not included in the function become its

arguments
 The original code is replaced by the function call
 Decompression is the re�

placement of a function with its de�nition� i
e
 it reverses the compression operator
 Once

code is encapsulated in a function it is protected from dissociation by crossover or other

operators
 The functions produced may be any mixture of functions� terminals and its

own arguments
 Thus they need not be modular in the software engineering sense
 In

one comparison Kinnear� Jr
� ����a!� it was found the ADF approach was superior to the

standard non�ADF approach whereas no improvement was seen with encapsulation

Rosca�s ARL approach is similar to GLiB but considerably more �intelligence� is used

in deciding what is placed in the library� when this is done and what is removed from it

 Rosca and Ballard� ����!

B���	 GP Mutation

Mutation was not used in Koza� ����! and Koza� ����!� as Koza wished to demonstrate

mutation was not necessary and GP was not performing a simple random search
 This has

in�uenced the �eld so mutation is often omitted from GP runs
 E
g
 mutation is not used

in this thesis� except in Appendix D
 While mutation is not necessary for GP to solve

many problems� O�Reilly� ����! argues that� in some cases� mutation �in combination with

simulated annealing �see Section B
�
� page ���	 or stochastic iterated hill climbing	 can

perform as well as GP using crossover
 Mutation is increasingly used in GP� especially in

modelling applications and Koza now advises use of a low level of mutation
 For example

mutation is used in Koza et al�� ����c!

With linear bit string GAs� mutation usually consists of random changes in bit values

In contrast� in GP there are many mutation operators in use

���

Subtree mutation replaces a randomly selected subtree with another randomly created

subtree Koza� ����� page ���!

 Kinnear� Jr
� ����a! de�nes a similar mutation operator but with a restriction that

prevents the o�spring�s depth being more then ��� larger than its parent

Node replacement mutation is similar to bit string mutation in that it randomly changes

a point in the individual
 In linear GAs the change would be a bit but in GP a node

in the tree is randomly selected and randomly changed
 To ensure the tree remains

legal� the replacement tree has the same number of arguments as the node it is

replacing� e
g
 McKay et al�� ����� page ���!

Hoist creates a new o�spring individual which is copy of a randomly chosen subtree of

the parent
 Thus the o�spring will be smaller than the parent and have a di�erent

root node Kinnear� Jr
� ����b!

Shrink replaces a randomly chosen subtree with a randomly created terminal Angeline�

����a!
 This is a special case of subtree mutation where the replacement tree is a

terminal
 As with hoist� it is motivated by the desire to reduce program size

Permutation Koza� ����! does not used permutation page ���!� except for one experi�

ment page ���! which shows it having little e�ect
 In contrast Maxwell� ����! has

more success with a mutation operator swap �which is a special case of pemutation�

in that it swaps the order of arguments of binary non�commutative functions� rather

than acting on any function	

Mutating Constants at Random Schoenauer et al�� ����! mutates constants by adding

gaussianly distributed random noise to them
 NB each change to a constant is a sep�

arate mutation

Mutating Constants Systematically McKay et al�� ����� page ���! uses a mutation

operator that operates on terminals� replacing input variables by constants �and vice

versa	
 However �Whenever a new constant is introduced� � � � �a non�linear least

squares optimisation is performed to obtain the �best� value of the constant�s	�

 Schoenauer et al�� ����! also uses a mutation operator that e�ects all constants in

an individual using �a numerical partial gradient ascent is achieved to reach the

nearest local optimum�

While Sharman et al�� ����! uses simulated annealing to update numerical values

�which represent signal ampli�cation gains	 within individuals

���

Multiple types of mutation are often used simultaneously e
g
 Kraft et al�� ����! and

 Angeline� ����a!

B���� GA Techniques used in GP

Some genetic programming researchers have adopted a number of exotic techniques from

the genetic algorithms world
 Table B
� �based on Goldberg� ����!	 lists exotic genetic

algorithm techniques and indicates which have been considered or adopted by genetic

programming researchers
 As Table B
� shows� many of these have been tried but some

have yet to be explored

Table B
�� Exotic GA Techniques Applied to Genetic Programming

Genetic Algorithms Technique Genetic Programming Reference Thesis

Fitness Scaling Iba et al�� ����b!

Rank and Tournament Selection Angeline� ����! Koza� ����!
p

Coevolution Angeline and Pollack� ����! Siegel�
����! Koza� ����!

Steady State Populations Reynolds� ����! Tackett and Carmi�
����! Koza� ����!

p

Parallel processors Singleton� ����! Openshaw and Tur�
ton� ����! Andre and Koza� ����!
 Juille and Pollack� ����!

Inversion and Permutation Koza� ����! Maxwell� ����!

Diplodity� Dominance and Abeyance Angeline� ����!

Introns� Segregation� Translocation
and Multiple Chromosomes

 Angeline� ����! Wineberg and Op�
pacher� ����! Nordin et al�� ����! An�
dre and Teller� ����!

Duplication and Deletion

Sexual Determination and
Di�erentiation

Speciation� Restrictive Mating�
Demes and Niches

 Tackett and Carmi� ����!
 D�haeseleer and Bluming� ����! Ab�
bott� ����! Ryan� ����!

p

Multiobjectives
p

Hybrids Zhang and M"uhlenbein� ����!
 Gruau� ����!

Knowledge�augmentation

Approximate function evaluation Koza� ����!

���

Table B
�� Some Public Domain Genetic Programming Implementations

Name Author Language Notes

Implementation Evolved

Koza Lisp Lisp Code from
 Koza� ����! & Koza�
����!� widely copied

SGPC Tackett
and Carmi

C own Can import#export
Lisp

GPSRegress Nguyen Mathematica Mathematica Package to do sym�
bolic regression

CEREBRUM Dudey Lisp ANN �in Lisp	 Framework for genetic
programming of neural
networks

gpcplus� Fraser C�� own

gepetto Glowacki C own Similar to SGPC but
with enhancements

GP�QUICK Singleton C�� own Described in Single�
ton� ����!

GPEIST White Smalltalk ��

lilgp Punch C Supports ADFs and
multiple populations

B���
 GP Development Tools

Almost all of the genetic programming experiments described in this appendix have used

implementations either written or adapted by the experimenter
 Table B
� lists the general

purpose genetic programming implementations that have been placed in the public domain�

Table B
� list others that have been described
 Deakin and Yates� ����! brie�y describes

an evaluation of some of these tools� additionally Tufts� ����! may be useful

B�� GP Applications

This section brie�y lists real applications where genetic programming has been tried

Although these are real world applications the claims for genetic programming should not

be over stated� i
e
 the success of genetic programming should not be taken as implying

there are no better techniques available for the particular application

���

Table B
�� Some other Genetic Programming Implementations

Name Author Language Notes

Implementation Evolved

STGP Montana C�� Ada#Lisp Section B
�
�

STROGA�
NOFF

Iba� de Garis�
Sato

Decision Trees
GMDH

Section B
�
�

Section B
�
�

GLiB Angeline Section B
�
�

SSGP Craig
Reynolds

Steady State GP

GP�GIM Andrew
Singleton

C�� ��� distributed
network desk top
supercomputing

DGPC David Andre C Used in recent ex�
periments by Koza
and his students

B���� Prediction and Classi
cation

Although developed before the term genetic programming was coined� BEAGLE Forsyth�

����! may be classi�ed as a genetic programming system in that it evolves tree structured

programs
 BEAGLE is a rule��nder program that uses a database of case histories to guide

the evolution of a set of decision rules �programs	 for classifying those examples
 Once

found the rule base �knowledge base	 can be used to classify new examples
 BEAGLE is

commercially available and has been widely applied� e
g
 in insurance� weather forecasting�

�nance and forensic science Ribeiro Filho et al�� ����!
 Another modelling system is BioX

 Bettenhausen et al�� ����!� which has been used to model chemical reactions and river

�ows

 Handley� ����! uses genetic programming to predict the shape of proteins
 He was able

to evolve programs which� using the protein�s chemical composition� were able to predict

whether each part of a protein would have a particular geometric shape �an ��helix	 or

not
 Genetic programming was able to do this broadly as well as other techniques but

all su�ered from the fact that the structure depends upon more than local composition

 Koza� ����! reports similar success on other protein geometry problems

 Iba et al�� ����! use genetic programming to �t chaotic time series data� see Sec�

tion B
�
�

 Masand� ����! has demonstrated a genetic programming system that learned which

news stories an automatic technique would have di
culty classifying �so that they could

���

be classi�ed manually	
 On a de�ned set of test news stories� the best genetically produced

program was better than the best human coded program at specifying con�dence values

for the automatically classi�ed news stories

Andre has successfully used genetic programming in optical character recognition prob�

lems �OCR	
 In Andre� ����a! he combines genetic programming with a two dimensional

genetic algorithm to produce an OCR program from scratch
 In Andre� ����c! he shows

genetic programming can be used to maintain existing hand coded programs
 He shows

genetic programming automatically extending an existing manually written OCR pro�

gram so that it can be used with an additional font
 It is perhaps on routine maintenance

problems� such as this� that genetic programming will �nd most immediate commercial

application

B���� Image and Signal Processing

 Tackett� ����! describes the use of genetic programming to extract targets from low

contrast noisy pictures
 Various ����	 standard metrics are abstracted from the image

using standard techniques� which are then processed by a genetic program to yield target

details

 Oakley� ����! describes obtaining blood �ow rates within human toes using laser

Doppler measurement
 These measurements are both noisy and chaotic
 He compares

the e�ectiveness �at removing noise but preserving the underlying signal	 of special �l�

ters evolved by genetic programming and various standard �lters
 He concludes that a

combination of genetic programming and heuristics is the most e�ective

B���� Optimisation

 Koza et al�� ����b! shows the automatic design of electrical circuits to meet onerous design

requirements

 Nguyen and Huang� ����! have used genetic programming to evolve ��D jet aircraft

models� however the determination of which models are �tter is done manually
 This work

is similar to that in Section B
�
�� however the aircraft models are more complex

B���� Trading

 Andrews and Prager� ����! used genetic programming to create strategies which have

traded in simulated commodity and futures markets �the double auction tournaments

held by the Santa�Fe Institute� Arizona� USA	
 Their automatically evolved strategies

have proved superior to many hand�coded strategies

���

A number of commercial �rms are also active in this area

B���� Robots

One the current active strands in robot research is the development of independent mobile

robots which are programmed to react to their environment rather than to follow a global

plan Brooks� ����!
 Until recently such robots had been hand coded however Spencer

has been able to use genetic programming to automatically generate a control program

enabling a simulated six legged robot to walk Spencer� ����!
 Gruau and Quatramaran�

����! and Nordin and Banzhaf� ����b! have evolved control programs and run them on

real robots using GP

B���	 Arti
cial Life

Arti�cial Life is the study of natural life by using computer simulations of it
 There is

a ready connection to autonomous robots
 For example� evolving a program to control a

robot�s leg may be considered either as an engineering problem or as a simulation of a real

insect�s leg

One aspect of Arti�cial Life is the study of natural evolution using computer simula�

tion
 Early simulations Ray� ����! relied heavily upon mutation but genetic algorithms

�e
g
 Sims� ����! and genetic programming using crossover have also been used more re�

cently
 For example Reynolds� ����! describes a simulation of herding behaviour based

upon genetic programming Reynolds� ����c� Reynolds� ����b!
 Reynolds� �boids� tech�

nique has been used as a basis for photorealistic imagery of bat swarms in the �lms

�Batman Returns� and �Cli�hanger� Reynolds� ����!

 Handley� ����b� Haynes et al�� ����b� Iba� ����a� Qureshi� ����� Raik and Durnota�

����� Luke and Spector� ����� Zhang et al�� ����! have also applied genetic programming to

autonomous agents
 However various multi agent pursuit �games� in distributed arti�cial

intelligence �DAI	 have already been considered using genetic algorithms with a linear

chromosome Manela� ����!

B���� Artistic

There have been a number of uses of genetic programming� perhaps inspired by Dawkins�

morphs Dawkins� ����! or Karl Sims� panspermia� which generate patterns on a computer

display
 Singleton� with his Doodle Garden� has taken this as far as a commercial product�

where the patterns grown can be used as pleasing screen savers

���

 Das et al�� ����! uses genetic programming to generate sounds and three dimensional

shapes
 Virtual reality techniques are used to present these to the user
 As in Section B
�
��

there is a manual �tness function� with the user indicating a preference between the four

objects presented to him
 Spector and Alpern� ����! have used GP to automatically

generate Jazz improvisations
 While the music achieved high marks from an automatic

critic� they report it was not pleasing to human ears$

B�� Conclusions

This appendix has brie�y surveyed recent work on the technique of automatic program

generation known as genetic programming
 It has presented program generation as the

task of searching the space of possible programs for a suitable one
 This search space is

vast and poorly behaved� which is the sort of search for which genetic algorithms are best

suited
 It is therefore reasonable to apply genetic algorithms to this search and� as this

appendix shows� this has had a measure of success

Genetic programming has been demonstrated in the arena of classi�cation �Section

B
�
�	� albeit not under the name genetic programming� with at least one commercial

package available
 It is as a general technique that genetic programming is a particu�

larly new and emerging research area
 It has solved a number of problems from a wide

range of di�erent areas
 Genetic programming has also been successfully applied to real

world applications� such as optical character recognition �OCR	 and signal processing

�Section B
�
�	

It is expected that use of genetic programming in the production of commercial software

will become more widespread� perhaps �rst in signal processing but perhaps also in tedious

routine maintenance problems �Section B
�
�	

���

B�	 Glossary

Building Block A pattern of genes in a contiguous section of a chromosome which� if

present� confers a high �tness to the individual
 According to the building block

hypothesis� a complete solution can be constructed by crossover joining together in

a single individual many building blocks which where originally spread throughout

the population

Cellular Automata A regular array of identical �nite state automata whose next state is

determined solely by their current state and the state of their neighbours
 The most

widely seen is the game of Life in which complex patterns emerge from a �supposedly

in�nite	 square lattice of simple two state �living and dead	 automata whose next

state is determined solely by the current states of its four closes neighbours and

itself

Classi�ers An extension of genetic algorithms in which the population consists of a co�

operating set of rules �i
e
 a rulebase	 which are to learn to solve a problem given a

number of test cases
 Between each generation the population as a whole is evaluated

and a �tness is assigned to each rule using the bucket�brigade algorithm or other

credit sharing scheme �e
g
 the Pitt scheme	
 These schemes aims to reward or

punish rules which contribute to a test case according to how good the total solution

is by adjusting the individual rules �tness

At the end of the test data a new generation is created using a genetic algorithm

as if each rule were independent using its own �tness �measures may be taken are

taken to ensure a given rule only appears once in the new population	

Coevolution Two or more populations are evolved at the same time
 Often the separate

populations compete against each other

Convergence Tendency of members of the population to be the same
 May be used

to mean either their representation or behaviour are identical
 Loosely a genetic

algorithm solution has been reached

Chromosome Normally� in genetic algorithms the bit string which represents the indi�

vidual
 In genetic programming the individual and its representation are usually the

same� both being the program parse tree
 In nature many species store their genetic

information on more than one chromosome

���

Crossover Creating a new individual�s representation from parts of its parents� repre�

sentations

Deme A separately evolving subset of the whole population
 The subsets may be evolved

on a di�erent computers
 Emigration between subset may be used �see Panmixia	

Elitist An elitist genetic algorithm is one that always retains in the population the best

individual found so far
 Tournament selection is naturally elitist

Epistasis A term from biology used to denote that the �tness of an individual depends

upon the interaction of a number of their genes
 In genetic algorithms this would be

indicated by the �tness containing a non�linear combination of components of the

string

Evolution Programming A population containing a number of trial solutions each of

which is evaluated to yield an error
 Typically� at the end of each generation� the

best half of the population is retained and a new solution is produced from each

survivor
 The process is continued with the aim that the population should evolve

to contain an acceptable solution

Evolutionary programming like Evolution Strategy produces new children by mu�

tating at random from a single parent solution
 The analogue components �e
g
 the

connection weights when applied to arti�cial neural networks	 are changed by a

gaussian function whose standard deviation is given by a function of the parent�s

error called its temperature
 Digital components �e
g
 presence of a hidden node	

are created and destroyed at random

Evolution Strategy or Evolutionsstrategie A search technique �rst developed in Berlin

Each point in the search space is represented by a vector of real values
 In the

original Evolution Strategy� �� � �	�ES� the next point to search is given by adding

gaussian random noise to the current search point
 The new point is evaluated and

if better the search continues from it
 If not the search continues from the original

point
 The level of noise is automatically adjusted as the search proceeds

Evolutionary Strategies can be thought of as like an analogue version of genetic

algorithms
 In �� � �	�ES� � parent is used to create � o�spring
 In �	 �
	�ES and

�	�
	�ES 	 parents are used to create
 children �perhaps using crossover	

Finite State Automaton �FSA� or Finite State Machine �FSM� A machine which can

���

be totally described by a �nite set of states� it being in one these at any one time�

plus a set of rules which determine when it moves from one state to another

Fitness Function A process which evaluates a member of a population and gives it a

score or �tness
 In most cases the goal is to �nd an individual with the maximum

�or minimum	 �tness

Function Set The set of operators used in a genetic program� e
g
 ����
 These act

as the branch points in the parse tree� linking other functions or terminals
 See also

non�terminals

Generation When the children of one population replace their parents in that population

Where some part of the original population is retained� as in steady state GAs�

generation typically refers to the interval during which the number of new individuals

created is equal to the population size

Generation Equivalent In a steady state GA� the time taken to create as many new

individuals as there are in the population

Genetic Algorithm A population containing a number of trial solutions each of which

is evaluated �to yield a �tness	 and a new generation is created from the better of

them
 The process is continued through a number of generations with the aim that

the population should evolve to contain an acceptable solution

GAs are characterised by representing the solution as an �often �xed length	 string

of digital symbols� selecting parents from the current population in proportion to

their �tness �or some approximation of this	 and the use of crossover as the dominate

means of creating new members of the population
 The initial population may be

created at random or from some known starting point

GA Deceptive A gene pattern which confers high �tness but is not present in the optimal

solution is said to be deceptive� in that it may lead the genetic algorithm away from

the global optimum solution

Genetic Operator An operator in a genetic algorithm or genetic programming� which

acts upon the chromosome to produce a new individual
 Example operators are

mutation and crossover

Genetic Program A program produced by genetic programming

���

Genetic Programming A subset of genetic algorithms
 The members of the popula�

tions are the parse trees of computer programs whose �tness is evaluated by running

them
 The reproduction operators �e
g
 crossover	 are re�ned to ensure that the

child is syntactically correct �some protection may be given against semantic errors

too	
 This is achieved by acting upon subtrees

Genetic programming is most easily implemented where the computer language is

tree structured so there is no need to explicitly evaluated its parse tree
 This is one

of the reasons why Lisp is often used for genetic programming

This is the common usage of the term genetic programming however it has also been

used to refer to the programming of cellular automata and neural networks using a

genetic algorithm

Hits The number of hits an individual scores is the number of test cases for which it

returns the correct answer �or close enough to it	
 This may or may not be a

component of the �tness function
 When an individual gains the maximum number

of hits this may terminate the run

In�x Notation Notation in which the operator separates its operands
 E
g
 �a � b	� c

In�x notation requires the use of brackets to specify the order of evaluation� unlike

either pre�x or post�x notations

Non�Terminal Functions used to link parse tree together
 This name may be used to

avoid confusion with functions with no parameters which can only act as end points

of the parse tree �i
e
 leafs	 and so are part of the terminal set

Mutation Arbitrary change to representation� often at random
 In genetic programming�

a subtree is replaced by another� some or all of which is created at random

Panmixia When a population is split into a number of separately evolving populations

�demes	 but the level of emigration is su
ciently high that they continue to evolve

as if a single population

Parsimony Brevity
 In GP� this is measured by counting the nodes in the tree
 The

smaller the program� the smaller the tree� the lower the count and the more parsi�

monious it is

Post�x Notation Reverse Polish Notation or Su�x Notation Notation in which the

operator follows its operands
 E
g
 a � b� c represented as abc��

���

Pre�x Notation Polish Notation Notation in which the operator comes before its operands

E
g
 a � b represented as �ab

Premature Convergence When a genetic algorithm�s population converges to some�

thing which is not the solution you wanted

Recombination as crossover

Reproduction Production of new member of population from existing members
 May

be used to mean an exact copy of the original member

Simulated Annealing Search technique where a single trial solution is modi�ed at ran�

dom
 An energy is de�ned which represents how good the solution is
 The goal is to

�nd the best solution by minimising the energy
 Changes which lead to a lower en�

ergy are always accepted� an increase is probabilistically accepted
 The probability

is given by exp��%E�kBT 	
 Where %E is the change in energy� kB is a constant

and T is the Temperature
 Initially the temperature is high corresponding to a liq�

uid or molten state where large changes are possible and it is progressively reduced

using a cooling schedule so allowing smaller changes until the system solidi�es at a

low energy solution

Stochastic Random or probabilistic but with some direction
 For example the arrival of

people at a post o
ce might be random but average properties �such as the queue

length	 can be predicted

Terminal Set A set from which all end �leaf	 nodes in the parse trees representing the

programs must be drawn
 A terminal might be a variable� a constant or a function

with no arguments

Tournament Selection A mechanism for choosing individuals from a population
 A

group �typically between � and � individuals	 are selected at random from the pop�

ulation and the best �normally only one� but possibly more	 is chosen

���

Appendix C

Scheduling Planned Maintenance

of the National Grid

In England and Wales electrical power is transmitted by a high voltage electricity trans�

mission network which is highly interconnected and carries large power �ows
 It is owned

and operated by The National Grid Company plc
 �NGC	 who maintain it and wish to

ensure its maintenance is performed at least cost� consistent with plant safety and security

of supply
 When planning preventative maintenance� the following factors must be taken

into account�

� location and size of demand for electricity�

� generator prices� capacities and availabilities�

� electricity carrying capacity of the remainder of the network� i
e
 that part not un�

dergoing maintenance

There are many components in the cost of planned maintenance
 The largest is the

cost of replacement electricity generation� which occurs when maintenance of the network

prevents a cheap generator from running so requiring a more expensive generator to be

run in its place

The task of planning maintenance is a complex constrained optimization scheduling

problem
 The schedule is constrained to ensure that all plant remains within its capacity

and the cost of replacement generation� throughout the duration of the plan is minimised

At present maintenance schedules are produced manually by NGC�s Planning Engineers

�who use computerised viability checks on the schedule after it has been produced	
 This

appendix describes initial investigations into the feasibility of generating practical and

economic maintenance schedules using genetic algorithms
 Later work� using the South

Wales region as a test bed� is described in Appendix D

���

���

The work to date is based upon a demonstration four node test problem Dunnett�

����!
 Section C
� presents the �tness function devised for the four node problem and

indicates changes that may be required when considering larger networks
 Section C
�

describes the four node problem in detail
 Section C
� considers various possible genetic

algorithms and explains why work has concentrated upon using �greedy optimizers�
 Sec�

tion C
� details the four optimizers that have been tried and the results achieved
 The

best of these readily produces optimal solutions
 Section C
� describes the standard GA

package� QGAME� which was used
 Section C
� considers scaling up from the demonstra�

tion problem and highlights concern about the computational complexity of the greedy

optimizers

C�� Approximating Replacement Generation Costs

NGC use computer tools for costing maintenance schedules� however because of their

computational complexity� it was felt that these were unsuitable for providing the �tness

function
 Instead our �tness function is partially based upon estimating the replacement

generation costs that would occur if a given maintenance plan were to be used
 The

estimate is made by calculating the electrical power �ows assuming the maintenance will

not force a change in generation
 In practice alternative generators must be run to reduce

the power �ow through over loaded lines in the network
 The cost of the alternative

generators is modeled by setting the amount of replacement generation equal to the excess

power �ow and assuming alternative generators will be a �xed amount more expensive than

the generators they replace

As a �rst approximation issues concerning security of supply following a fault are

not covered
 We plan to increase the realism of the GA as we progress
 Other costs

�e
g
 maintenance workers� overtime� travel	 are not considered

C�� The Fitness Function

The GA�s �tness function is composed of two parts� a bene�t for performing maintenance

plus penalties for exceeding line ratings� isolating nodes and splitting the network

C���� Maintenance Bene
ts

The maintenance requirements of the di�erent components of the transmission network

vary both in terms of the number of weeks required to perform them and their urgency
 It

may be advisable to hold over less urgent maintenance until the following year
 We model

���

the urgency by allocating each maintenance activity a bene�t term in the �tness function

During the plan each part of the network should be maintained a small number of

times� typically once
 Each maintenance activity takes a few weeks and has a particular

�tness bene�t
 Should a trial maintenance plan schedule a line for maintenance for its

required number of weeks� that trial plan�s �tness is improved by the maintenance bene�t

associated with that line
 Should a line require more than one maintenance period they

must not overlap� however there may be an additional �tness bene�t if they run consecu�

tively �perhaps of about ���	
 Once the target number of weeks of maintenance has been

reached� there is no additional bene�t or penalty from additional maintenance
 The total

bene�t is obtained by summing across all lines for the whole year

In the rest of this appendix it is assumed that each line in the network can be main�

tained independently� however there are some cases where this is not so �notably �Tee�

junctions	
 These require several items to be taken out of service simultaneously
 As there

are relatively few of these they can be treated as special cases

C���� Over Loading Costs

In order to calculate the line overloading costs� we must �rst determine which generators

are to be used and when
 This is done by using the available generators in strict price

order �cheapest �rst	 until the predicted demand for each week is met
 This is known as

the merit order dispatch
 It is �xed and therefore the same for all trial schedules

For each week of a trial schedule the predicted demand and the merit order dispatch

are used in a �DC load �ow� analysis which calculates the power �ow through every line in

the network
 The over loading cost for each line is proportional to the amount the power

�ow though it exceeds its normal operating limit �it is zero if within the limit	
 The total

over loading costs are the sum over each week of the maintenance plan and over all lines

in the network

C���� Avoiding Isolating Nodes or Splitting the Network

From an operational point of view� no acceptable maintenance schedule would ever isolate

a generation or demand node from the rest of the network or split the network
 However

the GA �tness function must be able to cope with every schedule that is generated
 The

�DC load �ow� algorithm cannot cope with either as they require it to invert a singular

matrix
 Therefore the �tness function looks for these conditions and de�nes a �tness for

them without calculating power �ows

���

As both represent highly un�t solutions� weeks of a schedule that cause either con�

tribute a high penalty to the schedule�s whole �tness
 The penalty for each isolated node

is proportional to the load or expected generation at that node
 The penalty for a network

split is even more severe� it is proportional to the total load across the whole network in

that week

C���� Combined Fitness Measure

The complete �tness measure is expressed in Megawatt weeks and is given by the following

formula�

cost �
X
target

Kt � ���maintenance scheduled	

�
X
weeks

�
BBBBBBBBBBBBBB�

If network split then

S�� total demand

Else If isolated nodes � � then

S��
X

isolated nodes

j demand � generation j

Else X
lines

If j�owj �rating then

j�owj�rating

CCCCCCCCCCCCCCA

� �C��	

The �rst summation being over all target maintenance �NB the trial plan�s cost is

increased by Kt if the corresponding maintenance is not scheduled	
 The second outer

summation being over each week of the maintenance plan� the �rst inner one� being over

all isolated nodes� and the second� over all lines in the network

For the four node system �next section	 all the constants Kt are equal and S� and S�

are equal to each other
 This may not be the case in the full system

C�� The Four Node Demonstration Network

A small power system has been devised
 The network is shown in Figure C
�
 As the

problem�s network contains four substations �i
e
 nodes in the network multi�graph	� it is

know as the �four node problem�
 Despite its small size� this problem includes many of

the features� such as tight time limits� seasonal demand patterns and high power �ows�

which characterise the full network

This power system contains nine generators of di�ering capacities� availabilities and

prices
 The substations are linked by pairs of transmission lines �i
e
 links in the network

multi�graph	 to form a square
 The transmission lines are of two sorts� ����MW and

���

Electricity users Electricity users

1 2

3 4

4 500MW Generators 5 400MW Generators

Figure C
�� Four node network

���MW nominal rating but all have the same impedance �nominal ratings are some ���

above normal operating limits	
 Table C
� gives the transmission line nominal ratings

Table C
� shows the predicted demand� which varies from week to week and node to node

�� Megawatt �MW	 � ���� horsepower	

Table C
�� Nominal line ratings �MW	 and impedances

Line Start node End node Rating Impedance

� � � ��� �

� � � ��� �

� � � ���� �

� � � ���� �

� � � ��� �

� � � ��� �

� � � ���� �

� � � ���� �

The problem is to devise a nine week maintenance schedule which� maintains each line

for at least one week and minimises predicted line over loading costs whilst not splitting

the network or isolating nodes in it
 I
e
 has minimum cost

C���� Determining which Generators to Use

In each week of the maintenance schedule� the demand for power �Table C
�	 is met by

the cheapest available generators
 Table C
� shows which generators run� and how much

power they generate in each week

���

Table C
�� Predicted demand and generator price� capacity and availability

Week Demand Node � Gens Node � Generators

Node Node Total Name �
� �
� �
� �
� �
� �
� �
� �
� �
�

� � Price �
� �
� �
� �
� �
� �
� �
� �
� �
�

MW MW MW Capacity ��� ��� ��� ��� ��� ��� ��� ��� ���

� ���� ���� ���� x

� ���� ���� ���� x

� ���� ���� ���� x

� ���� ���� ���� x

� ���� ���� ���� x

� ���� ���� ���� x

� ��� ���� ���� x

� ��� ���� ���� x

� ��� ���� ����

x 	 cannot produce electricity this week

We now have enough information to calculate the power �ows in every power trans�

mission line in the network in every week for any given maintenance schedule
 Once we

have established the constants K and S� the �tness or cost of the schedule can be readily

calculated from the known power �ows using �C
�	

Table C
�� Merit order generator loading �MW	

Week Node � Generators Node � Generators Total

�
� �
� �
� �
� Total �
� �
� �
� �
� �
� Total

� x ��� ��� ��� ���� ��� ��� ��� � � ���� ����

� ��� x ��� ��� ���� ��� ��� ��� ��� � ���� ����

� ��� ��� x ��� ���� ��� ��� ��� ��� � ���� ����

� ��� ��� ��� x ���� ��� ��� ��� ��� ��� ���� ����

� ��� ��� ��� ��� ���� x ��� ��� ��� ��� ���� ����

� ��� ��� ��� ��� ���� ��� x ��� ��� ��� ���� ����

� ��� ��� ��� ��� ���� ��� ��� x ��� ��� ���� ����

� ��� ��� ��� ��� ���� ��� ��� ��� x ��� ���� ����

� ��� ��� ��� ��� ���� ��� ��� ��� ��� ��� ���� ����

x 	 cannot produce electricity this week

���

C���� Determining Fitness Function Parameters K and S

The constants of proportional� K and S need to be chosen so that the maintenance bene�t

dominates
 This was done by calculating the line costs associated with many feasible

schedules �using the heuristic given in Section C
�
�	
 This gave the highest feasible line

cost as being ����MW weeks
 K was set to ����� MW weeks� so that any schedule which

failed to maintain even one line would have a higher cost that the worst �reasonable�

schedule which maintains them all

S was chosen so that isolating any node would have a high cost
 The lowest de�

mand#generation on a node is ��� MW
 Setting S to �ve ensures that any schedule which

isolates any node will have a cost higher the worst �reasonable� schedule ����MW��weeks

� �����MW weeks	

C�� The Chromosome

Various ways of representing schedules within the GA� were considered
 When choosing

one� we looked at the complete transmission network which contains about ��� nodes

and about ��� transmission lines which are maintained over a �� week plan
 Table C
�

summarizes the GA representations investigated � Shaw� ����! gives a bibliography of GAs

used on many scheduling problems	

In the linear� �D and TSP structures every attempt should be made to keep electrically

close lines close to each other in the representation
 The graph representation has the

advantage that this can be naturally built into the chromosome

With a simple linear chromosome� Holland or multi�point crossover Goldberg� ����!�

would appear to be too disruptive to solve the problem
 A simple example illustrates this

Suppose lines L� and L� are close together
 It will often be the case that good solutions

maintain one or the other but neither at the same time
 But crossover of solutions main�

taining L� but not L� with those maintaining L� but not L� will either make no change

to L� and L� or not maintain either or maintain both
 The �rst makes no change to the

�tness whilst the second and third make it worse
 That is� we would expect crossover to

have di
culty assembling better solutions from good �building blocks� Goldberg� ����!

The same problem appears in the temporal dimension and so a�ects the �rst three repre�

sentations given in Table C
�
 This coupled with the sparseness of the chromosome �about

� bit in �� set	 and other di
culties� has led to the decision to try a �greedy optimization�

representation

���

Table C
�� Possible chromosomes for the maintenance scheduling problem

Organiz�
ation

Size Gene Expected
Bene�t

Disadvantages Selected
References

Linear ������ bit Simple Crossover disrup�
tive� Too long� No
structure� Sparse

 Goldberg� ����!

�D ��� by �� bit Simple�
Obvious
tempo�
ral
structure

Crossover
disruptive� Still very
big� No grid struc�
ture� Sparse

 Cartwright
and Harris� ����!
 Valenzuela and
Jones� ����! An�
dre� ����a!

Graph ��� by �� bit Realistic Crossover disrup�
tive� Complex� Lit�
tle preceding work�
Sparse

 Maher and
Kundu� ����!

TSP ������ link Widely
studied

�By edge� costs�
Sparse

 Starkweather et

al�� ����! Valen�
zuela and Jones�
����!

GP S�expr�
ession

Complex� Little pre�
ceding work

 Atlan et al�� ����!

Expans�
ive
Coding

��� ����n com�
plex

Crossover
friendly

Complex� Little pre�
ceding work

 Beasley et al��
����a!

�Greedy
Optimiz�
ation�

��� line id Good
crossover�
Compact�
Widely
studied

Fitness evaluation
expensive

 Syswerda� ����a!
 Fang et al�� ����!
 Fang et al�� ����!

���

C�� Greedy Optimizers

The approach taken so far to solving the power transmission network maintenance schedul�

ing problem has been to split the problem in two� a GA and a �greedy optimizer�
 The

greedy optimizer is presented with a list of work to be done �i
e
 lines to be maintained	

by the GA
 It schedules those lines one at a time� in the order presented by the GA� using

some problem dependent heuristic
 Figure C
� shows this schematically� whilst the dotted

line on Figure C
� shows an order in which lines are considered

Genetic Algorithm

Ordered list of
things to be
Scheduled

Greedy Scheduler

Schedule

Cost of Schedule

Fitness
Permutation

Figure C
�� Hybrid GA and �greedy optimizer�

This approach of hybridising a GA with a problem speci�c heuristic has been widely

studied
 Davis� ����! for example �rmly advocates using hybrid GAs when attempting

to solve di
cult real world problems
 Hybrid GAs� of various sorts� have been used on a

number of scheduling problems �e
g
 �ight crew scheduling Levine� ����!� task scheduling

 Syswerda� ����a! and job�shop and open�shop scheduling Fang et al�� ����� Fang et al��

����� Yamada and Nakano� ����!	

A variety of heuristics of increasing sophistication and computational complexity have

been tried on the four�node problem which yielded progressively better results

C���� Heuristic � � One Week� One Line

If we ensure a schedule maintains all lines and does not isolate nodes its �tness will be

independent of K and S
 Such schedules are readily devised by only maintaining one line

at a time
 Further such schedules are reasonable solutions to the problem �indeed it was

���

Electricity users Electricity users

1 2

3 4

Generation Generation

Figure C
�� Example order �dotted	 in which lines are considered by a �greedy optimizer�

anticipated that the best solution would be of this type	
 By testing a number of these

we used the results to guide choice of K and S
 Figure C
� shows the distribution of line

costs lie between ���� and ���� MW weeks

In Figures C
� to C
�� we plot cumulative frequency against over loading line costs

�or �tness	
 Often GA �tness landscapes are very rough however the roughness or texture

of a �tness landscape is a product of the representation used as well as the �tness itself

Using cumulative frequency makes the graph independent of representation and� in this

case� makes it smooth

The least cost solutions have the form of the schedule given in Table C
�
 These

maintain the two right hand �referring to Figure C
�	 high rating lines �numbered � and ��

see Table C
�	 in the �rst and fourth weeks� the left hand two ��� �	 in weeks two and

three� the bottom cross lines ��� �	 in the �fth and six weeks� nothing in week seven and

the top two cross lines ��� �	 in the last two weeks
 We shall return to the two top cross

lines later

Table C
�� Best schedule produced by one week� one line heuristic

Week � � � � � � � � �

Lines � � � � � � � �

Fitness ���� MW weeks

���

1000

1500

2000

2500

3000

3500

4000

0 50000 100000 150000 200000 250000 300000 350000 400000

F
i
t
n
e
s
s

(
M
W

w
e
e
k
s
)

Number of cases (cumulative)

Figure C
�� Cumulative frequency v
 line costs �one week� one line	

C���� Heuristic � � Minimum Power Flow

A greedy optimizer was devised which scheduled the maintenance of each line in the week

in which the power �ow through it is a minimum
 In the event of a tie� the earlier week

is chosen
 As each line is scheduled� the power �ows through the rest of the network are

recalculated
 As Figure C
� shows� the �tness of the schedules this algorithm produces

varies from ���� to ���� MW weeks� with ��� being ���� or less
 No schedule causes a

node to be isolated or the network to be split

Both the best and the worst solutions produced are better than the best and worst

given by the one line� one week algorithm
 In fact most solutions are better than all but

�
��� of the solutions given by the previous algorithm

The lower costs have been achieved by maintaining lines when demand �and hence

power �ows	 are least
 Table C
� shows one of these
 Even the highest cost schedule

maintains the eight lines in the �rst four weeks� when demand is lowest
 This reduces

the number of possible schedules so there are many solutions which have identical �tness

This is further increased by the symmetries of the problem
 For example there are ���

lowest cost schedules

These are good solutions which may prove to be acceptable but they are known not to

be optimal
 Whilst good solutions to the problem as posed� they would probably not be

acceptable operationally because the maintenance is too bunched together
 This reduces

the resilience of the network� for example a single circuit failure could disconnect electricity

���

1400

1450

1500

1550

1600

1650

1700

1750

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

F
i
t
n
e
s
s

(
M
W

w
e
e
k
s
)

Number of cases (cumulative)

Figure C
�� Cumulative frequency v
 �tness �minimum power �ow	

Table C
�� Best schedule produced by minimum power �ow heuristic

Week � � � � � � � � �

Lines � � � � � � � �

Fitness ���� MW weeks

���

consumers
 It may also cause other problems� such as requiring too many maintenance

gangs
 However these issues are beyond the scope of the four node problem

C���� Heuristic � � Minimum Line Cost

The greedy lowest power �ow optimizer was replaced by the more complex minimum line

cost optimizer
 This schedules maintenance in the week which currently contributes least

to total costs
 If there is a tie� the earliest week is used

As Figure C
� shows this algorithm produced only a marginal reduction in the best

solution found �����
�� MW weeks	 and the cost of the worst schedule is actually worse

����� MW weeks	
 Instead of ��� having a �tness of ���� or better� now only ��� do

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

F
i
t
n
e
s
s

(
M
W

w
e
e
k
s
)

Number of cases (cumulative)

Figure C
�� Cumulative frequency v
 �tness �minimum line cost	

Most schedules again concentrate maintenance in the �rst four weeks but some� includ�

ing the best �see Table C
�	� use the �fth and sixth weeks as well
 This more distributed

maintenance plan is only a marginal improvement on the previous result

Table C
�� Best schedule produced by minimum line cost heuristic

Week � � � � � � � � �

Lines � � � � � � � �

Fitness ����
�� MW weeks

Table C
� shows one of the worst schedules
 It suggests� with this greedy optimizer�

there is merit in delaying consideration of lines � and �
 We return to this point in the

���

next section

Table C
�� Worst schedule produced by minimum power �ow heuristic

Week � � � � � � � � �

Lines � � � � � � � �

Fitness ���� MW weeks

C���� Heuristic � � Minimum Increase in Line Cost

The previous greedy optimizers had been based on the assumption that placing a line in

maintenance was bound to increase the power �ows on the remaining lines and so must

increase line costs �or leave them unchanged	
 Whilst it is theoretically possible for the

change in power �ows to decrease line costs it was assumed that this would not occur in

practice
 As this section shows� this assumption was wrong
 It is possible to schedule lines

� or � so that they reduce line costs

Brie�y this can happen when one of the pairs of high rating lines �e
g
 � and �	 is over

loaded but the rest of the network �particularly lines � and �	 is not and lines � and � are

transferring power to them
 Maintaining line � increases the impedance between nodes

� and � and so while the power through line � increases� the total power �ow between

nodes � and � decreases
 As the generation remains unchanged� the power through the

over loaded lines decreases by the same amount� so reducing the line costs �the change is

met by increased power �ows in the rest of the network	

The greedy minimum line cost optimizer was replaced by the more complex least in�

crease in line cost optimizer
 This schedules maintenance in the week in which maintaining

it would lead to the least increase in line costs �or in which there is most decrease	
 If

there is a tie� the earliest week is used
 NB this optimizer looks one week ahead whereas

the others make their decisions using only the lines that have already been scheduled

As Figure C
� shows this algorithm manages to �nd the optimal solution ����� MW

weeks	 and the cost of the worst schedule ����� MW weeks	 is marginally better than

the worst found by the least power �ow algorithm
 Now more than ��� have a �tness

of better than ���� MW weeks
 Figure C
� shows the �tness distributions for all four

heuristics plotted to the same scale

Trial solutions now concentrate maintenance in the �rst three or four weeks except for

lines � and � which are placed in the last two weeks �when demand is heaviest	
 Table C
�

gives an example schedule produced by this method� which is the best known solution to

���

1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

1750

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

F
i
t
n
e
s
s

(
M
W

w
e
e
k
s
)

Number of cases (cumulative)

Figure C
�� Cumulative frequency v
 �tness �minimum increase in line cost	

1200

1400

1600

1800

2000

2200

2400

0 10000 20000 30000 40000 50000 60000

F
i
t
n
e
s
s

(
M
W

w
e
e
k
s
)

Number of cases (cumulative)

One Week, One Line
Min Power Flow
Min Line Cost

Min Increase Line Cost

Figure C
�� Cumulative frequency v
 �tness �greedy optimizers	

���

the four node problem

Table C
�� Best schedule �produced by minimum increase in line cost heuristic	

Week � � � � � � � � �

Lines � � � � � � � �

Fitness ���� MW weeks

The worst schedules �Table C
��	 suggest there is merit �with this type of greedy

optimizer	 of considering lines � and � last
 We are now free to consider line � and � at

any point� since the optimizer will almost certainly place them either in week eight or nine

regardless

Table C
��� Worst schedule produced by minimum increase in line cost heuristic

Week � � � � � � � � �

Lines � � � � � � � �

Fitness ���� MW weeks

C�� Using QGAME

Using a chromosome which consisted of a permutation of the lines to be scheduled� single

point PMX crossover Goldberg� ����! and a �tness function which used the minimum

increase in line costs greedy optimizer �Section C
�
�	 the genetic algorithm QGAME

 Ribeiro Filho and Treleaven� ����! had no di
culty in �nding the optimal solution
 With

a population of �� and default parameters �see Table C
��	 optimal solutions were found

by generation four in a couple of seconds

By generation �� approximately half the population consisted of the same optimal

solution� however there were a number of slightly di�erent chromosomes which also gave

rise to optimal schedules
 By generation �� almost all the population consists of optimal

solutions but there are now at least two di�erent but equivalent optimal schedules and

there are at least four di�erent but optimal chromosomes
 The population now appears

to be dynamically stable� with no appreciable change in either chromosomes �genotype	

or schedules �phenotype	 by generation ���

���

Table C
��� QGAME genetic algorithm parameters

Name Value Meaning

Problem type Combinatorial Combinatorial crossover and mutation operators are
used on the chromosome� which holds a permutation
of the lines to be scheduled

GeneType G INT Line identi�cation number

POPULATION �� Size of population

CHROM LEN � Eight genes �lines	 per chromosome

OptimiseType Minimise Search for lowest �tness value

PCROSS �
� On average each generation ����POPULATION��
pairs of individuals are replaced by two new ones
created by crossing them over

PMUT �
�� On average each generation �����POPULATION
individuals are mutated by swapping two genes

Selection Truncated The best TRUNCATION�POPULATION of the
population are passed directly to the next genera�
tion
 The remainder are selected using normalised
�tness proportionate �roulette wheel	 selection
 Fit�
ness is linearly rescaled so the best in the population
has a normalised �tness of �
� and the worst zero

TRUNCATION �
� The best ��� passed directly to the next generation

POOLS � Single population

CHROMS � Individuals use single chromosome

MAX GEN ��� Run for ��� generations

���

C�	 Discussion

Having solved the four node problem� we now consider how this technique will scale up

to larger problems
 There are two aspects to scaling up� how di
cult it is to search the

larger search space and how the time taken by �tness evaluation scales

Table C
�� shows the computational complexity of the four heuristics
 A large com�

ponent of them all� is the DC load �ow calculation� which assuming the number of nodes

� number of lines� is O�n		
 In practice we expect to do rather better than simple inter�

polation using Table C
�� would indicate because�

� Table C
�� re�ects scaling for large problems� i
e
 the time taken by low order terms

will fall as a proportion of the total as the problem grows�

� We expect to use sparse matrix and other techniques to speed up the DC load �ow

calculation�

� The code has not been optimized as yet

But even so� considerable growth in the �tness evaluation time must be anticipated� as

the size of the problem �i
e
 the number of nodes	 is increased

Table C
��� Computational complexity of �tness function

Heuristic Order of Computational Complexity

One week� One Line weeks�DC weeks�nodes	

Min Power Flow �lines�weeks	�DC �lines�weeks	�nodes	

Min Line Cost �lines�weeks	�DC �lines�weeks	�nodes	

Min Increase Line Cost weeks�lines�DC weeks�lines�nodes	

We can also calculate how the size of the search space grows with problem size but

assessing how di
cult it will be to search is more problematic
 The size of the complete

search space grows exponentially� being �lines�weeks
 However this includes many solutions

that we are not interested in� e
g
 we are not interested in solutions which take a line out

of service when all its maintenance has already been done

If we are prepared to consider only solutions which maintain each line in a single

operation for exactly the required time then the number of such solutions is�

�� � weeks� weeks to do maintenance	lines � �C��	

���

Although a big number this is considerably less than �lines�weeks
 For the four node problem

the ratio between them is ��� ����� and this di�erence grows exponentially as the problem

increases in size

The greedy optimizers use their problem speci�c knowledge to further reduce the search

space
 They consider at most �lines	$ points in the smaller search space referred to in

�C
�	
 Once again this is a considerable reduction
 For the four node problem it is a

thousandfold reduction and this di�erence grows rapidly as the problem increases in size

However� as we have seen from the �rst three greedy optimizers� there is a danger in all

such heuristics that by considering some solutions rather than all� the optimum solution

may be missed

For the four node problem it was feasible to investigate a signi�cant part of the search

space
 Figure C
� shows part of the search space in which schedules do not do more

maintenance than required
 This includes all ���weeks�weeks to do maintenance	lines

schedules which do the required amount of maintenance plus those that fail to maintain one

or more lines �above ������ MW weeks the graph is shown dotted as detailed statistics were

not recorded� values below ������ are plotted on an expanded scale in Figure C
��	
 Figure

C
�� indicates that it is hard to �nd the global minimum but it should be straightforward

to �nd solutions costing less than ����MW weeks
 Figure C
� shows all of the greedy

optimizers should readily �nd solutions better than this and the three that use DC load �ow

calculations would readily �nd solutions better than ����MW weeks �i
e
 within ���MW

weeks of the global optimum	

In addition to reducing the size of the search space� the successful greedy algorithm�

considerably enhances the chance of �nding the optimal solution because there are many

�����	 solutions which produce it
 Whilst some ���	 of the multiple optimal solutions

arise from the symmetry of the original problem others come from the power of the greedy

algorithm itself

There is no guarantee� despite the care in designing the four node problem� that larger

problem�s �tness landscapes will be similar to that of the four node problem
 Assuming

they are� then we can expect our greedy scheduler to readily �nd near optimal solutions

C�� Conclusions

This appendix which was published in part in Langdon� ����d! has described the com�

plex real world problem of scheduling preventive maintenance of a very large electricity

transmission network
 A demonstration problem which� although small� includes many

���

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2e+07 4e+07 6e+07 8e+07 1e+08

F
i
t
n
e
s
s

(
M
W

w
e
e
k
s
)

Number of cases (cumulative)

Worst 74065

 Best 1255

Figure C
�� Cumulative frequency v
 �tness �no line maintained more than once	

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2e+07 4e+07 6e+07 8e+07 1e+08

F
i
t
n
e
s
s

(
M
W

w
e
e
k
s
)

Number of cases (cumulative)

 Best 1255

Figure C
��� Cumulative frequency v
 �tness �no line maintained more than once	

���

of the features of the real problem� has been created
 The approach of hybridising a ge�

netic algorithm �GA	 with a problem speci�c heuristic has been successfully applied to

the demonstration problem

The time taken to perform GA �tness evaluations and with it program run time� grows

rapidly with problem size� however there are a number of techniques which could be used

to contain this

Analysis of the search space of the demonstration problem indicates� provided it is

representative of larger problems� our hybrid GA approach should be able to �nd near

optimal solutions to larger maintenance scheduling problems
 Since the demonstration

system was devised to contain features of the larger problem we may expect� provided

the growth in �tness evaluation time is not excessive� this approach to be suitable for

scheduling the maintenance of electrical power transmission networks

The four node problem de�nition and QGAME are available via anonymous ftp� site

cs�ucl�ac�uk directory genetic
four node

���

Appendix D

Scheduling Maintenance of the

South Wales Network

Appendix C showed the combination of a Genetic Algorithm using an order or permutation

chromosome combined with hand coded �Greedy� Optimizers can readily produce an

optimal schedule for a four node test problem
 This appendix concentrates on the evolution

of better �greedy� optimizers for the South Wales region of the UK high voltage power

network problem using genetic programming �GP	 starting from the hand coded heuristic

used with the GA

Section D
� describes the South Wales region
 The �tness function used to cost main�

tenance schedules and scheduling heuristics are based on that used in Appendix C �Sec�

tion D
�	
 Section D
� brie�y describes how the GA has been used to �nd maintenance

schedules for the South Wales region
 While Section D
� describes in detail the genetic

programming experiment and the results obtained
 Section D
� describes other approaches

that might be tried and possible further work

D�� The South Wales Region of the UK Electricity Net�

work

The South Wales region of the UK electricity network carries power at ���K Volts and

���K Volts between electricity generators and regional electricity distribution companies

and major industrial consumers
 The region covers the major cites of Swansea� Cardi��

Newport and Bristol� steel works and the surrounding towns and rural areas �see Fig�

ure D
�	
 The major sources of electricity are infeeds ��	 from the English Midlands� coal

�red generation at Aberthaw� nuclear generation at Oldbury and oil �red generation at

Pembroke
 Both demand for electricity and generation change signi�cantly through the

year �See Figures D
� and D
�	

The representation of the electricity network used in these experiments is based upon

���

���

100 MW Generation

100 MW Demand

Swansea

Cardiff

Pembroke

MELKA1

Oldbury

WALHA1

Aberthaw

Bristol

Newport

Figure D
�� South Wales Region High Voltage Network

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

10 20 30 40 50

P
r
e
d
i
c
t
e
d

D
e
m
a
n
d

WeeksApril March May Holiday ICGA-95 Christmas

Week 18 Week 21

South Wales Load Curve

Figure D
�� Predicted Demand in South Wales Region

���

0

200

400

600

800

1000

10 20 30 40 50

P
r
e
d
i
c
t
e
d

G
e
n
e
r
a
t
i
o
n

WeeksApril March May Holiday ICGA-95 Christmas

WALHA1
MELKA1

1
2
7
8
9

Figure D
�� Predicted Generation in South Wales Region

the engineering data available for the physical network� however a number of simpli�cations

have to be made
 Firstly the regional network has been treated as an isolated network�

its connections to the rest of the network have been modeled by two sources of generation

connected by a pair of low impedance high capacity conductors
 Secondly the physical

network contains short spurs run to localised load points such as steel works
 These �T�

points have been simpli�ed �e
g
 by inserting nodes into the simulation	 so all conductors

connect two nodes
 The industry standard DC load �ow approximation is used to calculate

power �ows through the network

In the experiments reported in this appendix the maintenance planning problem for the

South Wales region has been made deliberately more di
cult than the true requirement

In these experiments�

� All lines must be maintained during the �� week plan ����� had �� weeks rather

than ��	
 Typically about one third of the lines are maintained in any one year

� All maintenance takes four weeks
 Typically scheduled outage of a line is between a

week and ��
� months

� All conductor ratings were reduced by ���

The requirement that the network should be fault resistant during maintenance is only

considered in Section D
�
� and not in the GP work in this appendix
 This is because

���

consideration of potential network faults is highly CPU intensive
 The permutation GA

approach has been taken further than the GP approach and acceptable schedules have

been evolved which do consider network robustness

D�� The Fitness Function

The �tness function used by both GA and GP approaches to scheduling maintenance in

the South Wales region is essentially that used on the four node problem �described in

Section C
� and summarised by Equation C
� on page ���	
 To summarise� there is a

maintenance bene�t for each maintenance task completed �i
e
 for each line maintained

for at least four consecutive weeks	� the replacement generation costs are approximated by

a penalty given by the amount each line is overloaded� and large penalties are also included

to punish schedules which isolate nodes
 �However nodes with no demand or generation

connected directly to them are excluded from these penalties	
 In the case of the South

Wales network� which contains zero demand nodes� it is necessary to consider the impact

of network splits in more detail than was the case with the four node network
 When

nodes are isolated or the network is split� the penalty for each node in the disconnected

part of the network are summed and then the usual load�ow and �tness calculations are

performed on the remaining connected network �i
e
 the connected network containing the

most nodes	
 In the South Wales problem there is no separate penalty for splitting the

network

For the South Wales problem the same values of Kt� S� and S� as the four node system

where used
 I
e
 Kt is ����� MW and S� � S� � �
 Gordon� ����! veri�ed the values used

for the four node problem are applicable to the South Wales region

The South Wales network is obviously considerably larger and more complex than

the four node network
 Correspondingly� both the time to perform network connectivity

checks and to calculate power�ows within the network are greatly increased
 Since both

are fundamental parts of some greedy schedulers and of the �tness function� the run time

of the South Wales problem is far greater than that of the four node problem

The sparse matrix package SDRS� was used to reduce the CPU requirements of the

load�ow calculation
 While successful� the reduction was only by a factor of two
 A larger

ratio is anticipated with larger networks� such as the National Grid
 More success was

had with the �rankone� technique� which in some cases produced a ten fold speed up

Analysis indicates that performing the network connectivity checks can be a bottle

neck
 A signi�cant reduction in run time was achieved by replacing the original algorithm

���

Additional reduction was achieved by maintaining a cache of previously evaluated network

connectivities
 It is felt that caching techniques could produce worthwhile reductions in

run time if also applied to the load�ow calculation

D�� Solving the South Wales Problem with GAs

D���� South Wales Problem without Contingencies

Many aspects of network planning must consider the e�ect of possible faults in the network

�Faults which are either frequent or which have important consequences may be worthy

of inclusion in network planning
 These are called contingencies	
 Considering lots of

contingencies increases run time greatly and so we start by not including them

A slightly modi�ed version of the minimum increase in line cost heuristic �Section C
�
�	

was able to �nd good schedules for the South Wales region
 The best found has a cost

of ���MW weeks
 The GA was that used in Appendix C� with the same population size

While these results were encouraging� it became clear that the a viable solution to the

scheduling problem would have to include �at least some of	 the contingencies

The run time of these experiments is consistent with Table C
�� �page ���	 and the

fact that results have been obtained indicates some similarity between the search space

and that of the four node problem� despite it being ��� ���� fold larger

 Gordon� ����! used a linear chromosome with non�binary alleles Ross� ����! to solve

the four node problem but was less successful on the larger South Wales problem

D���� South Wales Problem with Contingencies

In the version of the South Wales problem with contingencies� the �tness function �de�

scribed in Section D
�	 is extended to explicitly include each contingency
 For each con�

tingency� the �tness of the schedule is recalculated assuming that the contingency actually

occurred
 This gives a cost for each contingency �plus the base case� when there are no

contingencies	
 The complete �tness is a weighted sum of these costs
 The run time of

the GA increases roughly in proportion to the number of contingencies
 �In this section

the arti�cial reduction in conductor ratings �cf
 Section D
�	 was removed and the true

ratings were used in the �tness calculations	

Experiments where conducted with the two most severe contingencies� all eight double

fault contingencies and �nally all �� contingencies

A number of �Greedy optimisers� were tried with the permutation GA �described in

Appendix C	
 Satisfactory schedules where obtained for the full problem� with all ��

���

contingencies� using a two stage heuristic� the �rst stage selects all the weeks for which

the weighted node disconnection costs summed over all contingencies �Section C
�
�	 is

the minimum
 The modi�ed version of the minimum increase in line cost heuristic� used

in the previous section� is then used to select the weeks in which to perform maintenance

NB the second stage can only choose from weeks passed to it by the contingency pre�pass

The remainder of this appendix considers solving the non contingent South Wales

problem using genetic programming

D�� Genetic Programming Solution

A number of di�erent GP approaches have been tried on these problems
 A �pure� GP

approach can �nd the optimal solution to the four node problem without the need for hand

coded heuristics
 On the South Wales problem� possibly due to insu
cient resources� a

�pure� GP has not been able to do as well as the best solution produced by the GA and

�greedy optimizer� combination� described in Section D
�
�
 The remainder of this section

describes the evolution of lower cost schedules using a GP population which is �seeded�

with the two heuristics based on those described in Sections C
�
� and C
�
�

D���� Architecture

Each individual in the GP population consists of a single tree
 This program is called once

for each line that is to be maintained� its return value is converted from �oating point to

an integer which is treated as the �rst week in which to schedule maintenance of that line

If this is outside the legal range � � � � �� then that line is not maintained

The lines are processed in �xed but arbitrary order given by NGC when the network

was constructed
 Thus the GP approach concentrates upon evolving the scheduling heuris�

tic whereas in the GA approach this is given and the GA searches for the best order in

which to ask the heuristic to process the lines

D���� Choice of Primitives

The functions� terminals and parameters used are given in Table D
�
 The function and

terminal sets include indexed memory� loops and network data

Indexed memory was deliberately generously sized to avoid restricting the GP�s use of

it
 It consists of ����� memory cells each containing a single precision �oating point value

They had addresses in the range ����� � � � � ����
 Memory primitives �read� set� swap	

had de�ned behaviour which allows the GP to continue on addressing errors
 All stored

���

data within the program is initialised to zero before the trial program is executed for the

�rst line
 It is not initialised between runs of the same trial program

The for primitive takes three arguments� an initial value for the loop control variable�

the end value and a subtree to be repeatedly executed
 It returns the last value of the

loop control variable
 A run time check prevents loops being nested more than four deep

and terminates execution of any loop when more than ������ iteration in total have been

executed in any one program call
 I
e
 execution of di�erent loops contribute to the same

shared limit
 The current value of the innermost for loop control variable is given by the

terminal i�� that of the next outer loop by i�� the control variable of the next outer loop

by terminal i� and so on
 When not in a loop nested to depth n� in is zero

The network primitives return information about the network as it was just before

the test program was called
 Each time a change to the maintenance schedule is made�

power �ows and other a�ected data are recalculated before the GP tree is executed again

to schedule maintenance of the next line
 The network primitives are those available to

the C programmer who programmed the GA heuristics and the �tness function �see Table

D
�	
 Where these primitives take arguments� they are checked to see if they are within

the legal range
 If not the primitive normally evaluates to �
�

D���� Mutation

Approximately ��� of new individuals are created by crossover between two parents using

GP crossover �as Koza� ����! except only one individuals is created at a time	
 The

remainder are created by mutating a copy of a single parent
 Two forms of mutation

are used with equal likelihood
 In subtree mutation Koza� ����! a single node within

the program is chosen at random
 This is the root of a subtree which is removed and

replaced with a randomly generated new subtree
 The other form or mutation selects

nodes at random �with a frequency of ��#����	 and replaces them with a randomly selected

function �or terminal	 which takes the same number of arguments
 Thus the tree shape is

unchanged but a Poissonly distributed number of node are changed within it
 Notice the

expected number of changes rises linearly with the size of the tree

D���� Constructing the Initial Population

The initial population was created from two �seed� individuals
 These are the GA heuris�

tics described in Sections C
�
� and C
�
� but written as GP individuals using the primi�

tives described in Section D
�
� and modi�ed for the South Wales region �see Figures D
�

and D
�	
 Half the remaining population is created from each seed by making a copy of it

���

Table D
�� Network Primitives
Primitive Meaning

max ��
�

ARG� Index number of current line� ��� � � � ����

nn Number of nodes in network� ��
�

nl Number of lines in network� ��
�

nw Number of weeks in plan� ��
�

nm weeks Length of maintenance outage� �
�

P�n	 Power injected at node n in ���MW
 Negative values indicate demand

NNLK�l	 Node connected to �rst end of line l

NNLJ�l	 Node connected to �nd end of line l

XL�l	 Impedance of line l (

LINERATING Power carrying capacity of line l in MW

MAINT�w� l	 �
� if line l is scheduled for maintenance in week w� otherwise �
�

splnod�w� n	 �
� if node n is isolated in week w of the maintenance plan� �
�
otherwise

FLOW�w� n	 Power �ow in line l from �rst end to second in week w� negative if �ow
is reversed MW

shed�w� l	 Demand or generation at isolated nodes in week w if line l is maintained
in that week in addition to current scheduled maintenance MW

load�ow�w�l�a	 Performs a load �ow calculation for week w assuming line l is main�
tained during the week in addition to the currently scheduled mainte�
nance
 Returns cost of schedule for week w

If a is valid also sets memory locations a � � � a � nl � � to the power
�ows through the network MW

�t�w	 Returns the current cost of week w of the schedule

���

Table D
�� South Wales Problem
Objective Find a program that yields a good maintenance schedule when pre�

sented with maintenance tasks in network order

Architecture One result producing branch

Primitives ADD� SUB� MUL� DIV� ABS� mod� int� PROG�� IFLTE� Ifeq� I�t�
�� �� �� max� ARG�� read� set� swap� for� i�� i�� i�� i�� i�� nn� nl� nw�
nm weeks� P� NNLK� NNLJ� XL� LINERATING� MAINT� splnod�
FLOW� shed� load�ow �t

Max prog size ���

Fitness case All �� lines to be maintained

Selection Pareto Tournament group size of � �with niche sample size ��	 used
for both parent selection and selecting programs to be removed from
the population
 Pareto components� Schedule cost� CPU penalty
above ������� per line� schedule novelty
 Steady state panmictic
population
 Elitism used on schedule cost

Wrapper Convert to integer
 If � � and � ��� treat as week to schedule
start of maintenance of current line� otherwise the current line is
not maintained

Parameters Pop � ����� G � ��� no aborts
 pc � ���� psubtree mutation � �����
pnode mutation � ����
 Node mutation rate � �������

Success predicate Schedule cost � ���

and then mutating the copy
 The same mutation operators are used to create the initial

population as to create mutants during the main part of the GP run
 I
e
 there is equal

chance to mutate a subtree as to create mutants by random change to nodes with the tree

�Procedures to detect and discard individuals which encounter array bound errors whilst

executing were not used	

D���� Fitness Function

The �tness of each individual is comprised of three independent components� the �tness

�cost	 of the schedule it produces �as described in Section D
�	� a CPU penalty and a

novelty reward for scheduling a line in a week which is unusual
 These components are

not combined instead selection for reproduction and replacement uses Pareto tournaments

�cf
 Section �
�
�	 and �tness niches �Section �
�
�	
 The cost and CPU penalty are

determined when the individual is created but the novelty reward is dynamic and may

change whilst the individual is within the population

The CPU penalty is the mean number of primitives evaluated per line
 However if

this below the threshold of ������� then the penalty is zero
 Both seeds are comfort�

ably below the threshold
 �The minimum power �ow seed executes ������� primitives

����� ������ � ����	 and the minimum increase in cost seed executes ������� primitives

���

week � �PROG� �set �SUB � 	� �SUB �SUB � max� nw��

�PROG� �for 	 nw �set ��ADD i� �read �SUB � 	���� �ABS �FLOW i� ARG	����

�PROG� �set �SUB � �ADD 	 	�� �SUB �read �SUB � 	�� nw��

�PROG� �for 	 �SUB nw �SUB nm�weeks 	��

�PROG� �set � ��

�PROG�

�for i� �ADD i� �SUB nm�weeks 	� �

�set � �ADD �read �� �read �ADD i� �read �SUB � 	�

������

�set ��ADD i� �read �SUB � �ADD 	 	����� �read ������

�PROG� �set � �MUL max �MUL max �MUL max max����

�PROG� �set 	 ��

�PROG� �for 	 �SUB nw �SUB nm�weeks 	��

�Iflt �read ��ADD i� �read �SUB � �ADD 	 	������ �read ��

�PROG� �set 	 i��

�set � �read ��ADD i� �read �SUB � �ADD 	 	��������

���

�read 	��������

Figure D
�� Seed � � Minimum Power �ow Heuristic
 Length ���� Cost of schedule ����
��

����� ������ � ����		

The novelty reward is �
� if the program constructs a schedule where the start of any

line�s scheduled maintenance is in a week when less than ��� other schedules schedule the

start of the same line in the same week
 Otherwise it is �
�

D���	 Results

In one GP run the cost of the best schedule in the population is ����
�� initially
 This is

the cost of schedule produced by seed �
 Notice this is worse than the best schedule found

by the GA using this seed because the heuristic is being run with an arbitrary ordering of

the tasks and not the best order found by the GA
 By generation � a better schedule of

cost ���
��� was found
 By generation �� a schedule better than that found by the GA

was found
 At the end of the run �generation ��	 the best schedule found had a cost of

���
��� �see Figure D
�	
 The program that produced it is shown in Figure D
�

The best program di�ers from the best seed in eight subtrees and has expanded almost

to the maximum allowed size
 At �rst sight some of the changes appear trivial and unlikely

to a�ect the result but in fact only two changes can be reversed with out worsening the

schedule
 However all but one of the other changes can be reversed �one at a time	 and

yield a legal schedule with a cost far better than the population average� in some cases

better than the initial seeds

���

week � �PROG� �set �SUB � 	� �SUB �SUB � max� nw�� ���	��working area

�PROG� �for 	 nw �set ��ADD i� �read �SUB � 	���� �store answer

��ABS �FLOW i� ARG	�� min load flow heuristic

�loadflow i� ARG	 �ADD � ��� �discard flow info

��

�PROG� �set �SUB � �ADD 	 	�� �SUB �read �SUB � 	�� nw�� ������workarea

�PROG� �for 	 �SUB nw �SUB nm�weeks 	�� �work� � sum ov � weeks

�PROG� �set � �� �����temp

�PROG�

�for i� �ADD i� �SUB nm�weeks 	� �

�set � �ADD �read �� �read �ADD i� �read �SUB � 	�

������

�set ��ADD i� �read �SUB � �ADD 	 	����� �read ������

�PROG� �set � �MUL max �MUL max �MUL max max����

�PROG� �set 	 ��

�PROG� �for 	 �SUB nw �SUB nm�weeks 	�� �find min increase in cost

�Iflt �SUB �calculate increase in cost

�read ��ADD i� �read �SUB � �ADD 	 	������

�PROG� �PROG� �set � ��

�for i� �ADD i� �SUB nm�weeks 	��

�set � �ADD �read �� �fit i������

�read ����

�read ��

�PROG� �set 	 i��

�set � �SUB

�read ��ADD i� �read �SUB � �ADD 	 	������

�read �����

���

�read 	��������

Figure D
�� Seed � � Minimum Increase in Cost Heuristic
 Length ���� Cost of schedule
����
��

���

1000

10000

100000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
o
s
t

o
f

s
c
h
e
d
u
l
e

Number of Individuals Created

Best
Mean

Worst
616

Figure D
�� Evolution of GP Produced Schedule Costs

D�� Other GP Approaches

Genetic Programming has been used in other scheduling problems� notably Job Shop

Scheduling Atlan et al�� ����! and scheduling maintenance of railway track Grimes� ����!

An approach based on Atlan et al�� ����! which used a chromosome with a separate

tree per task �i
e
 line	 to be maintained was tried
 However unlike Atlan et al�� ����!

there was no central coordinating heuristic to ensure �the system�s coherence� and each

tree was free to schedule its line independent of the others
 The �tness function guiding

the co�evolution of these trees
 This was able to solve the four node problem� where there

are eight tasks� but good solutions were not found �within the available machine resources	

when this architecture was used on the South Wales problem� where it required �� trees

within the chromosome

Another architecture extended the problem asking the GP to simultaneously evolve a

program to determine the order in which the �greedy� scheduler should process the tasks

and evolve the greedy scheduler itself
 Each program is represented by a separate tree

in the same chromosome
 Access to Automatically De�ned Functions �ADFs	 was also

provided

The most recent approach is to retain the �xed network ordering of processing the

tasks but allow the scheduler to change its mind and reschedule lines
 This is allowed by

repeatedly calling the evolved program� so having processed all �� tasks it called again

���

week � �PROG� �set �SUB � 	� �SUB �SUB � max� nw�� ���	��working area

�PROG� �for i� nw �set ��ADD i� �read �SUB � 	���� �store answer

��ABS �FLOW i� ARG	�� min load flow heuristic

�loadflow i� ARG	 �ADD � i��� �discard flow info

��

�PROG� �set �SUB � �ADD 	 ARG��� �set �SUB �read �ADD i� �read �SUB �

�ADD � �					 �read �		 �SUB �read �SUB �read �MUL � �ADD � �			 �		 i�			

�PROG� �for 	 �SUB nw �SUB nm�weeks �swap i� �NNLK �		�� �work� � sum ov � weeks

�PROG� �set � �XL �	� �����temp

�PROG�

�for i� �ADD i� �SUB nm�weeks 	� �

�set � �ADD �read �� �read �ADD i� �read �SUB � 	�

������

�set ��ADD i� �read �SUB � �ADD 	 	����� �read ������

�PROG� �set � �MUL max �SUB nw �SUB � �swap �XL �	 �read �				��

�PROG� �set �PROG� ��t nw	 �set nw �ADD �read �	 �ADD i� �read �SUB � �						 ��

�PROG� �for 	 �SUB nw �SUB nm�weeks 	�� �find min increase in cost

�Iflt �SUB �calculate increase in cost

�read ��ADD i� �read �SUB � �ADD 	 	������

�PROG� �PROG� �set � ��

�for i� �ADD i� �SUB nm�weeks 	��

�set � �ADD �read �� �fit i������

�read ����

�read ��

�PROG� �set 	 i��

�set � �SUB

�read ��ADD i� �read �SUB � �ADD 	 	������

�read �����

���

�read 	��������

Figure D
�� Evolved Heuristic
 Length ���� Cost of schedule ���
���� CPU �������

���

for the �rst� and then the second� and the third and so on
 Processing continues until

a �xed CPU limit is exceeded �cf
 PADO Teller and Veloso� ����d!	
 These alternative

techniques were able to produce maintenance schedules but they had higher costs than

those described in Sections D
�
� and D
�
�

D�� Discussion

The permutation GA approach has a signi�cant advantage over the GP approach in that

the system is constrained by the supplied heuristic to produce only legal schedules
 This

greatly limits the size of the search space but if the portion of the search space selected

by the heuristic does not contain the optimal solution� then all schedules produced will

be suboptimal
 In the GP approach described the schedules are not constrained and

most schedules produced are poor �see Figure D
�	 but the potential for producing better

schedules is also there

During development of the GA approach several �greedy� schedulers were coded by

hand� i
e
 they evolved manually
 The GP approach described further evolves the best

of these
 It would be possible to start the GP run not only with the best hand coded

�greedy� scheduler but also the best task ordering found by the GA
 This would ensure

the GP started from the best schedule found by previous approaches

The run time of the GA is dominated by the time taken to perform load�ow calculations

and the best approaches perform many of these
 A possible future approach is to hybridise

the GA and GP� using the GP to evolve the �greedy scheduler� looking not only for the

optimal schedule �which is a task shared with the GA	 but also a good compromise between

this and program run time
 Here GP can evaluate many candidate programs and so have

an advantage over manual production of schedulers
 This would require a more realistic

calculation of CPU time with load�ow and shed functions being realistically weighted in

the calculation rather than �as now	 being treated as equal to the other primitives

When comparing these two approaches the larger machine resources consumed by the

GP approach must be taken into consideration �population of ���� and �� generation

versus population of �� and ��� generations	

D�	 Conclusions

This appendix which was published in part in Langdon� ����a! has described the complex

real world problem of scheduling preventive maintenance of a very large electricity trans�

mission network
 It has been demonstrated that both the combination of a GA and hand

���

coded heuristic and a GP using the same heuristics as seeds in the initial population can

produce low cost schedules for a region within the whole network when network robustness

is not considered
 Lower cost schedules have been found by the GP but at the cost of

many more �tness evaluations

The combination of a GA and hand coded heuristic has been shown to produce accept�

able schedules for a real regional power network when including consideration of network

robustness to single and double failures
 However consideration of such contingencies con�

siderably increases run time and so the production of schedules with similar costs using

GP has not yet been demonstrated

The time taken to perform GA �tness evaluations and with it program run time� grows

rapidly with problem size and number of potential failures that must be considered
 It

is anticipated that running on parallel machines will be required to solve the national

problem using a GA or GP approach
 However there are a number of techniques which

could be used to contain run time

���

Appendix E

Implementation

E�� GP�QUICK

For reasons of convenience of use� support and speed� the work in this thesis is primarily

coded in C��
 The GP�QUICK package written by Andy Singleton Singleton� ����! was

chosen as a basis because�

� It was written in C��

� It was freely available� for non�commercial use

� It was stable

� There was some limited bug �xing support

� There were early problems with the alternative C�� GP package� GPCPlus

� It implements �via the FASTEVAL macro	 linear pre�x jump tables � Keith and

Martin� ����� page ���! describes these as the best of the options they considered	

� GP�QUICK stores GP individuals in �xed length arrays
 This is believed to con�

siderably simplify the dynamic memory allocation#deallocation problem and avoid

fragmenting the heap� however it means wasting some memory where individuals

are less than the maximum length

Some disadvantages to GP�QUICK have been encountered
 For example� GP�QUICK

accesses the population at random
 This can cause severe performance problems if part

of the population is swapped out of main memory

���

���

E�� Coding Changes to GP�QUICK����

Over the course of this work numerous changes have been made to GP�QUICK
 The

following list contains some of the more important�

� Support for multiple trees within one individual

� Support for Automatically De�ned Functions �ADFs	

� Reduction in space to store population to one byte per primitive

� Run parameters set by control �le and#or command line

� Separate �le of test cases

� Check pointing �so long runs can be restarted after a workstation reboots	

E�� Default Parameters

The default values for GP�QUICK parameters used in this thesis are given in Table E
�

They are the same as those used by Koza� ����� page ���! except� the following GP�

QUICK parameters have also been used�

� GP�QUICK implements a steady state� rather than a generational� population

� The GP�QUICK default tournament size is �� rather than �
 Additionally selecting

individuals for removal from the population is performed using tournament selection

�again with a tournament size of �	

� A maximum total program length limit is used rather than a maximum program

depth limit of ��
 In addition to the total length restriction� some experiments

impose a limit� when the initial population is created� of �� nodes on individual

trees within the program

� A single child is produced by each crossover
 �If the potential o�spring exceeds the

maximum program size then the roles of the two parents are swapped� given both

parents are of legal length this second o�spring cannot be too big	

���

Table E
�� Default GP�QUICK Parameters

pPopSize � �����

pGenerateLimit � �������

pPopSeed � �

pTestSeed � �

pTrace � �

pMaxExpr � ���

pInitExpr � �

pMuteRate � �

pCrossSelf � �

pUnRestrictWt � ��

pCrossWt � ��

pMuteWt � �

pAnnealMuteWt � �

pAnnealCrossWt � �

pCopyWt � ��

pSelectMethod � �

pTournSize � �

pGaussRegion � �

pRepeatEval � �

pKillTourn � �

pMaxAge � �

pParsimony � �

E�� Network Running

All the experiments presented in this thesis were carried out on the UCL Computer Science

department�s heterogeneous network of SUN workstations
 The runs being independent

of each other
 Using the queue problem as an example� with a population of ������� each

job occupies about �� Megabytes of RAM within the workstation
 However the elapse

time of each job varies considerably depending upon the load on the workstation �most

runs were done out of hours	� the speed of the workstation and the details of the GP run

To perform a million �tness evaluations �each of which requires the program under test

to be run ��� times	 takes all day on the faster workstations and cannot be completed in

a day on the slower ones

E�� Reusing Ancestors Fitness Information

 Handley� ����a! has shown that where GP primitives do not have side e�ects considerable

reduction in run time can be achieved by the use of caches and representing the population

as a single directed acyclic graph
 These caches hold values of previously evaluated subtrees

in the population
 As the whole population is represented as a single graph� the caches

are shared by the whole population
 Thus the �tness evaluation of any member of the

population can load subtree caches with values that might be used during the �tness

evaluation of any program created later
 I
e
 partial �tness evaluation information is

readily inherited
 This section brie�y describes an implementation which has achieved

reductions in run time by a factor of two
 It can be applied to multi�tree programs whose

���

primitives have side e�ects and is implemented using a conventional representation for the

population

When tests are independent of each other� unless a particular test causes code which

is di�erent in a child from its parent to be run� the child�s result on that test must be the

same as that of its parent on the same test
 Since the only di�erence between the child�s

code and the parent�s is produced by crossover �or mutation	� it can be readily determined

if the child�s result on a particular test could be di�erent from its parent
 Only those tests

where the result could be di�erent need be run
 For the others� the result can be taken

from the parent
 The complete �tness of the child is assembled from the individual test

results
 NB result values can be inherited inde�nitely� i
e
 not only directly from the child�s

mother but also from its grandmother� great grandmother etc

Our implementation considers changes only at the tree level
 If crossover changes a

tree which is not executed in a particular test then the new program�s behaviour on that

test must be identical to its parent�s
 I
e
 its score must be identical and therefore the

child�s score on that test is inherited� and that test is not executed
 The savings produced

are dependent upon the test sequences� GP parameters and other time saving techniques

�cf
 Section E
�	� nonetheless run time was halved in some cases
 Since results for each test

in the test case must be stored� as well as the overall �tness value� the technique increases

execution speed at the expense of greater use of memory

The technique could be extended to cover other cases where a child�s score must be

identical to that of one of its parents
 For example children produced by crossovers which

occur within introns� must behave identically to their parent and so have identical �tness

E�� Caches

Handley�s Handley� ����a! combination of caches and directed acyclic graphs� requires

all the primitives to be free of side e�ects
 read� write and other primitives do have

side e�ects� nevertheless caching can be used when parts of the program �such as trees or

ADFs	 are known to be free of side e�ects
 In the case of some runs of the list problem�

cache hit ratios of between ��� and ��� were obtained with caches on End ����� words	�

First ����	� Next �����	 and Previous ����	
 This reduced run time by about ���

���

E�	 Compressing the Check Point File

As mentioned in Section E
�� GP runs may take a long time
 Under these circumstances

a check point �le can be used to restart a run from the last check point� rather than from

the beginning
 The check point �le can also be used to extend particularly interesting

runs

The bulk of the check point �le is occupied by the GP population
 If written as plain

text the population consumes too much disk space� particularly if more than one GP run

is active at the same time
 Therefore the population is written in a coded form� which

occupies one byte per program primitive
 As the GP run continues and the population

converges� considerable reductions in disk space can be achieved by using gzip to compress

the check point �le
 Compression ratios as high as �� fold can occur but compression to

about one bit per program primitive is common
 �The high compression achieved indicates

low diversity within the GP population	
 A balance needs to be struck between the time

taken to process the check point �le and the potential time saved should the check point

�le be used
 Typically it takes about a minute to compress the check point �le
 Therefore

check points are written about once an hour

E�� Code

Some of the C�� code used in this thesis is available� for research and educational pur�

poses� via anonymous ftp� node cs�ucl�ac�uk directory genetic
gp�code

���

Index

ADF� ������ �������

as evolving primitive� ���� ��������
���

as representation change� ���

bracket problem� ���

cache� ���

call by reference� ���

comparison with GLiB� ���

constraining use� ���� ���

dyck problem� ���

FUNC� ���� ���

in PADO� ���

list problem� �������� ���

forwhile� ���� ���

syntax restrictions� ���

pass by reference� �����

list problem� ���

queue problem� ���

primitives� used in� ��� ���

queue problem� ��� ��� ���

RPN problem� ���� ���

semantically constrained� ���

support in GP�QUICK� ���

treating rbp as ADF� ��� ��

ARG�

dyck problem� ���

list problem� ���� ���

south wales problem� ���

arg�

bracket problem� �������

dyck problem� ���

list problem� ���� ���

syntax restrictions� ���

queue problem� ��

syntax restrictions� ���

RPN problem� ���

stack problem� ��� ��

essential in� ���

extinct� ���

�tness covariance� ���� ���

ARG�

list problem� ���

arg�

dyck problem� ���
RPN problem� ���

Automatically De�ned Functions� see ADF

Automatically De�ned Macros� ��
aux� ��� ���

list problem� ���� ���
initialised� ���

queue problem� ��� ������ ��� ��� ����
���

bug� ���
di�erences between experiments� ���

di�erent from stack� ���
harder than stack� �������
initialised� ��
syntax restrictions� ���
use in shu�er� �����

stack problem� ��� ��� ��

deceptive� ���� ���
essential in� ���
extinct� ���
�tness covariance� ���
initialised� ��
use in solutions� ��� ���

auxiliary register� see aux

bloat
inherent in variable length represen�

tations� �����
list problem� ���
RPN problem

removal� �������
stack problem� ��

boids� ���
boolean ��multiplexer

code growth� ������ ���
e�ect of parsimony pressure� ��

branch typing� ��
in multi�tree crossover� ��

Bruce� ������ ���� ���
building blocks

introns� ���
queue shu�er� ��� ���

cache

���

���

ancestor�s �tness� ���

bracket problem

ADF evaluation� ���

DAG� ���

future work� ���

load�ow� ���

network connectivity� ���

queue problem

ADF evaluation� ���

recommended� ���

tree evaluation� ���

calculator problem� see RPN problem

call by reference� see ADF� call by refer�
ence

case sensitive primitives names� ��

cellular automata� ��

clones� ���

crossover

binary tree model� �������

leaf measurements� ���� ���

leaf model� �������

measurements� ���� ���

whole tree� �������

disable reproduction operator� ���

low variety� ���� ���

closure� ��

extended� ���

indexed memory addresses� ��

protected modulus� ��

co�evolution

�� trees� ���

queue problem� ��

references� ��� ��� ���� ���� ���

representation� ���

stack problem� ��

ten operations� ���

test case� ���

contingencies

electrical network� �������

not in GP� ���

coroutine model� ���� ���

CPU

complexity of problem� ��

usage

dyck problem� ���

list problem� ���

RPN problem� ���

CPU complexity of scheduling heuristics�
���

CPU limit� south wales problem� ���

CPU penalty

faster solutions

list problem� ���

RPN problem� ���� ���

increased after solution

dyck problem� ���� ���� ���

list problem� ���

RPN problem� �������

list problem� ���� ���

pareto� ��� �������

removal of introns� ���

south wales problem� ���� ���

crossover� ��

ADF� ��� ���

asymmetric� ��

between di�erent implementations� ��

bit string� ���

building block assembly� ���

clones� ���� ���

binary tree model� �������

leaf measurements� ���� ���

leaf model� �������

measurements� ���� ���

run time reduction� ���

stack problem� �������� ���� ���

closure� ��

directed� see directed crossover

disruption� ��� ���

diverse individuals

�tness niches� ���� ���

e�ect on reproduction rate� ��� ���

four node problem� ���

introns� ��

length restriction

stack problem� ��

measurements

stack problem� �������

multi�tree� �����

�� trees� ���

list problem� ���

queue problem� ��

RPN problem� ���

stack problem� ��

no code sharing between di�erent tree
types� ��� ���

o�spring same �tness� ��

one o�spring� ���

program length limit� ���

protected from by encapsulation� ���

QGAME� ���

random

Price�s theorem� ���� �������

���

run out of steam� ���

scheduling representations� �������

self

demes� ��

semantically constrained� ���

short �t programs� ��

solution rediscovery� ���

STGP� ���

successful

stack problem� �������

tree� ��� ���

unique o�spring� ���

variety� ���

constant model� �������

quadratic model� �������

stack problem� �������

whole trees reduces variety� �������

cultural transmission� ��

Dec Aux

queue problem� ��� ������ ��� ��� ���

di�erent from stack� ���

harder than stack� �������

syntax restrictions� ���

stack problem� ��� ��� ��

deceptive� ���� ���

essential in� ���

extinct� ���

�tness covariance� ���� ���

use in solutions� ���

deception� ��� ��

co�evolution� ���

deme� ���

dyck problem

static program� ���

future work� ���

list problem� ���

mutation rate to escape� ���

niches� ���� ���

novel genetic operators� ���

queue problem� ���� ���

RPN problem� ���

stack problem� ���� ���� ���

deme� �����

bene�cial� ��

bracket problem� ���

deceptive problems� ���

defocusing search� ���

diversity� ���� ���

dyck problem� ���� ���� ���

elitism� ��

genetic similarity� ��
queue problem� �������
references� ���
speed of convergence� ��

directed crossover� ���
error location� ���
list problem� ���
software maintenance� ���
survey� �����

distributed arti�cial intelligence �DAI	� ���
divide by zero� ��

E�ort� ��� �������
elitism

demic populations� ��
list problem� ���
multi�objective �tness function� ��
required if random removal� ���
south wales problem� ���
steady state population� ��

end nodes� ��
error location guiding crossover� ���
error trapping not required

list problem� ���
queue problem� ��� ��
stack problem� ��� ��

error� memory address
abort

queue problem� ��
stack problem� ��

continuing on
queue problem� ��� ���

options� ��
error� recursion

abort
queue problem� ��

error� stack
continuing on� ���

external nodes� ��
extinction

critical stack primitives� ���
list primitives� ���

feature �lms� ���
Fisher�s fundamental theorem� ���
�tness� ������ ���

avoid evaluation of clones� ���
avoiding excess resource consumption�

��
cache� see cache
deceptive� see deception
diversity� ���

���

dynamic� ��

evaluations required� see e�ort

future work
reduce test case� ���

identical from di�erent programs� ���
manual� ���
multi�objective� see pareto
novelty reward� ���

o�spring �tness correlation� ���
primitive covariance� see Price�s the�

orem
program size� see parsimony
queue problem

harder than stack� ���
run time� ���

rank based� ��

redesign� ���
rediscovery� ���
reducing test case� ���
rescaling� ��

sharing� see niches
su
cient testing� ���
test case� �����

Flockton� ��

�u�� see introns
for

south wales problem� ���

syntax restriction� ���
forwhile� ���� ���

bracket problem� ���� ���
list problem� ���

CPU penalty� ���
CPU usage� �������
in ADF only� ���

iteration limit� ���
syntax restriction� �������

functions� ��

Gathercole� ��
generation equivalent� ��
genetic drift� ��

Price�s theorem� ���

Gordon� ���� ���
GP�QUICK� ���

support for ADFs� ��� ���

halting problem� ���

Inc Aux
queue problem� ��� ������ ��� ��� ���

di�erent from stack� ���
harder than stack� �������

syntax restrictions� ���

stack problem� ��� ��� ��

deceptive� ���� ���

essential in� ���

extinct� ���

�tness covariance� ���

use in solutions� ���

inde�nite loops� ���

indexed memory� �����

avoiding deception� ���

greedy solutions� ��

penalty� ��� ���� ���

increased after solution� ���

south wales problem� ���

survey� �������

information theory

queue problem� ���

size of test case� ���

stack problem� ��

initialisation

aux

bracket problem� ���

dyck problem� ���

queue problem� ��

RPN problem� ���

stack problem� ��

indexed memory

bracket problem� ���

dyck problem� ���

GEMS� ���

list problem� ���

queue problem� ��

references� ���

RPN problem� ���

south wales problem� ���

stack problem� ��

internal nodes� ��

introns� ��

avoiding �tness evaluation� ���

building blocks� ���

concealing convergence� ��

hiding building block� ���

inherent in variable length represen�
tations� �����

loss of variety� ���

removal by CPU penalty� ���

some references� ���

stack problem� ��

wetware� ���

iteration� see for� forwhile

constrained� ���

���

CPU usage� ��� ���

little research� ��� ���

Koza� ������

length� see program size

loop� see for� forwhile

machine code
RISC� ���� ���

Z��� ���
Maze

Solving with a stack� ��
MDL� �������

biasing search� ��
general programs� shorter� ���

MInc
implementation� ��

queue problem� ��� ��� ���� ���
harder than stack� �������

syntax restrictions� ���
minimum description length� see MDL

mod
implementation� ��

queue problem� ��
south wales problem� ���

models of loss of variety� ���
modulus� see mod

modulus increment� see MInc
multi�tree programs� �����
mutation� ��

arti�cial life� ���
background primitive frequency� ���

bit string� ���
defocusing search� ���

possible bene�t� ���� ���
Price�s theorem� ���

restore diversity� ���
south wales problem� ���� ���

survey� �������

neutral crossovers� ��
niches� �����

deception� ���
defocusing search� ���

diversity� �������� ���
dyck problem� ���

future work� ���� ���
genetic similarity� ��

list problem� ���� �������
RPN problem� ���

south wales problem� ���

object orientated programming

Bruce� �����

PADO� ���

anytime algorithm� ���� ���

run time in �tness� ���

panmictic population� ��

fast convergence� ���

pareto� �����

avoiding loss of improvements� ���

CPU penalty� ��

dyck problem� ���� ���

future work� ���

list problem� ���� ���

memory penalty� ��

queue problem� ���

RPN problem� ���� ���

south wales problem� ���

parsimony� ������ ���� ���

biasing search� ��

pass by reference� see ADF� pass by ref�
erence

PGA� ���

point typing� ���

popcorn� inde�nite loops� ���

pre�x jump table� ��

e
cient� ���

GP�QUICK� ���

premature convergence� ��

change representation� ���

demes� ���

niches� ���

o�spring selection� ���

short test case� ���

Price�s theorem� ���

asexual reproduction� ���

genetic algorithms� ���

proof� ���

program size� see bloat� MDL� parsimony

boolean ��multiplexer� �����

CPU penalty

list problem� �������

limit� �����

bracket problem� ���

crossover� ��

dyck problem� ���

GP�QUICK� ���

list problem� ���� ���

loss of diversity� ��

Price�s theorem� �������

queue problem� ��� ��� ���� ���

���

random individuals� ��
RPN problem� ���
south wales problem� ���
stack problem� ��� ��

list problem� ���
mutation rate� ���
part of diversity� ���
queue problem� ��� ���
random trees� ��
south wales problem� ���
stack problem� ������ ��� ��

initial fall� ��
protected functions� ��
protected modulus� see mod
pUnRestrictWt� ��

e�ect in full binary trees� ���

random search� ine�ective� ��
rank selection� ��
rankone� ���
recursion

CPU usage� ��� ���
little research� ��
prevented

list problem� ���
queue problem� ��

references� ��
Red Queen� ���
Ross� ��� ���� ���� ���

scalar memory� see aux
scoping rules� ���

future work� ���
SDRS�� ���
search space

automatic program generation� ���
explore v
 exploit� ���� ���
impact of primitives and �tness� ��
indexed memory� ���
multiple solutions� ��� ���
poorly behaved� ���
program length� ���
scheduling problem� �������� ���� ���

size� �������
STGP� ��
techniques� �������

seeding
references� ���
software maintenance� ���
south wales� ���

semantic constraints
queue problem� ���

Set Aux� ���
list problem� ���
queue problem� ��� ������ ��� ��� ����

���
di�erent from stack� ���
harder than stack� �������
syntax restrictions� ���

size of random trees� ��
structured population� ��
su
ciency� ��
swap� ��

bracket problem� ���
de�nition� ���
list problem� ���
south wales problem� ���

syntax restrictions
list problem� ���� ���
queue problem� ��

tableau� ��
terminals� ��
tournament selection� ��

steady state� ���
transmission function� ��
tree leafs� ��
tree size limit� ���� ���

dyck problem� ���
list problem� ���
RPN problem� ���

virtual reality� ���

wrapper� ��
bracket problem� ���
dyck problem� ���
queue problem� ��� ��� ��� ���� ���

empty� ���
RPN problem� ���
south wales problem� ���
stack problem� ��� ��

write Aux
queue problem

di�erent from stack� ���
not used� �����

stack problem� ��� ��� ��
deceptive� ���� ���
essential in� ���
extinct� ���
�tness covariance� ���
use in solutions� ���

Yang� ��

