ENVIRONMENTAL METAL POLLUTANTS, REACTIVE OXYGEN INTERMEDIARIES AND GENOTOXICITY

Molecular Approaches to Determine Mechanisms of Toxicity

ENVIRONMENTAL METAL POLLUTANTS, REACTIVE OXYGEN INTERMEDIARIES AND GENOTOXICITY

Molecular Approaches to Determine Mechanisms of Toxicity

by

Maria E. Ariza University of Arizona

Arizona Cancer Center

Gautam N. Bijur Behavioral Neurobiology University of Alabama at Birmingham

Marshall V. Williams

Department of Medical Microbiology & Immunology The Ohio State University

SPRINGER SCIENCE+BUSINESS MEDIA, LLC

ISBN 978-1-4613-7346-9 ISBN 978-1-4615-5153-9 (eBook) DOI 10.1007/978-1-4615-5153-9

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Copyright © 1999 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 1999 Softcover reprint of the hardcover 1st edition 1999

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

CONTENTS

PREFACE

vii

1 DETERMINANTS OF TOXICITY

1.1	Introduction	1
1.2	Sources of metal and metalloid pollutants	3
1.3	Determinants of metal toxicity	5
1.4	Summary	12
REF	ERENCES	12

2 TOXICOLOGICAL PROFILES

2.1	Introduction	17
2.2	Mechanisms of metal and metalloid toxicity	17
2.3	Toxicological profiles of selected environmental	
	metals and metalloid pollutants	18
2.4	Does low level exposure pose a health risk	39
2.5	Summary	40
REF	ERENCES	41

3 METALS, METALLOIDS AND OXIDATIVE STRESS

3.1	Introduction	53
3.2	What are radicals	53
3.3	Oxygen radicals and reactive oxygen intermediates	55
3.4	Nitric oxide and reactive oxynitrogen intermediates	57
3.5	Types of cellular damage induced by radicals: lipid	
	peroxidation and protein modification	58
3.6	Cellular protection mechanisms	61
3.7	Roles of ROIs and RONIs in normal cellular metabolism	64
3.8	Oxidative stress	71
3.9	Signal transduction and gene expression	76
3.1	Summary	79
REF	ERENCES	82

4 METALS, METALLOIDS AND GENOMIC STABILITY

4.1	Introduction	97
4.2	Interactions of metal and metalloid ions with DNA	98
4.3	Types of DNA damage induced by metal and metalloid ions	99
4.4	Effects of ROIs and RONIs on genomic stability	104

Other mechanisms by which metals and metalloids effect	
106	
109	
112	
119	
120	
120	

5. CELL CYCLE AND APOPTOSIS

5.1	Introduction	131
5.2	Cell cycle	131
5.3	Metals, metalloids and cell cycle	134
5.4	Apoptosis	135
5.5	Mitochondria and apoptosis	149
5.6	Reactive oxynitrogen intermediates as regulators	
	of apoptosis	152
5.7	Metals and apoptosis	152
5.8	Apoptosis and disease	156
5.9	Summary	157
REF	FERENCES	157

6. EFFECTS OF ENVIRONMENTAL METAL AND METALLOID POLLUTANTS ON HUMAN HEALTH

Introduction	171
Cancer	171
Lead and hypertension	173
Neurological diseases	174
Summary	176
REFERENCES	
	Cancer Lead and hypertension Neurological diseases Summary

PREFACE

Humans are exposed daily to low concentrations of metals that are released into the environment by both natural and industrial processes. Recently, concerns have been raised about the acute and/or chronic exposure of humans to concentrations of these metals that are below the threshold levels established by various federal regulatory agencies. Because some of these metals are accumulated in various tissues, over time this may result in the accumulation of a significant body burden. This could increase the risk of developing a variety of diseases later in life at a time when thresholds for such effects may already be reduced by the processes of aging. Such possibilities could only further compromise the quality of life in the senior population and could contribute to the rising cost of health care in this country.

Studies that have been conducted to determine the possible risks associated with exposure to relatively non-toxic concentrations of environmental metals have been hampered by a lack of appropriate models and a lack of funding. It has also been difficult for researchers to demonstrate a correlation between the exposure of humans or animals to low concentrations of environmental pollutants and disease.

This book examines the recent technological advances in the areas of molecular biology, biochemistry, and computer enhanced image analyses that provide researchers with the tools to begin elucidating the mechanisms by which environmental metal pollutants cause DNA damage.

Several recent studies indicate that environmental metal pollutants may cause the deterioration of biological molecules through an oxidative mechanism. Our recent studies have shown that two environmental metal pollutants, lead and mercury, induce genotoxic DNA damage and that these metals are mutagenic by virtue of their ability to induce reactive oxygen intermediates in cells. However, lead and mercury do not induce reactive oxygen intermediates by the classical Fenton reaction, but rather by the activation of cellular enzymes (superoxide dismutase and xanthine oxidase) that produce superoxide anion and hydrogen peroxide.

One of the goals of this book is to demonstrate that the acute and chronic exposure of humans to environmental metal pollutants at concentrations below the threshold values recommended by federal protection agencies may pose a potential health hazard, since these metals induce the formation of reactive oxygen intermediates in cells. A second objective is to describe the mechanisms by which environmental metal pollutants induce reactive oxygen intermediates in cells. A third objective is to describe the processes by which these reactive oxygen intermediates that are induced by environmental metal pollutants are genotoxic (mutagenic). Last, the authors will discuss the ways that these reactive oxygen intermediates induced by environmental metal pollutants can have a role in aging, carcinogenesis and certain neurovascular and cardiovascular diseases.

viii

The authors will demonstrate that certain environmental metal pollutants are genotoxic (mutagenic), describing the role of reactive oxygen intermediates in causing the DNA damage induced by environmental metal pollutants and discussing the possible role that metal-induced reactive oxygen intermediates may have in human disease. The discussion of environmental metal pollutants will be limited to arsenic, cadmium, chromium, cobalt, lead, mercury, nickel, and zinc, all of which have been associated with causing disease in either animals or humans. These metals represent the most common environmental metal pollutants. Relevant studies on copper and iron will also be included, since these are the most commonly studied transition metals.