Skip to main content

Molecular Basis of Virus Transmission

  • Chapter
Molecular Biology of Plant Viruses

Abstract

Knowledge of the molecular mechanisms underlying virus transmission is a prerequisite to the creation of new approaches to modulate vector competence and to reduce the multiplication of initial infection sites in seed and pollen. In this chapter the recent advances made in identifying the virus, vector and host determinants involved in transmission processes are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, M.J. (1991). Transmission of plant viruses by fungi. Ann. Appl. Biol. 118, 479–492.

    Google Scholar 

  • Adams, M.J., Swaby, A.G., and McFarlane, I. (1998). The susceptibility of barley cultivars to barley yellow mosaic virus (BaYMV) and its fungal vector Polymyxa graminis. Ann. Appl. Biol. 109,561–572.

    Google Scholar 

  • Alexopoulos, C.J., Mims, C.W., and Blackwell, M. (1996). Introductory Mycology 4th ed. John Wiley & Sons, New York.

    Google Scholar 

  • Angenent, G.C., Posthumus, E., Brederode, F.T., and Bol, J.F. (1989). Genome structure of tobacco transmissibility and helper-component activity correlates with non-retention of virions in aphid stylets rattle virus strain PLB: further evidence on the occurrence of RNA recombination among tobraviruses. Virology 171, 271–274.

    PubMed  CAS  Google Scholar 

  • Ammar, E.D. (1994). Propagative transmission of plant and animal viruses by insects: factors affecting vector specificity and competence. Adv. Dis. Vector Res. 10, 289–331.

    Google Scholar 

  • Atreya, C.D., and Pirone, T.P. (1993). Mutational analysis of the helper component-proteinase gene of a potyvirus: effects of amino acid substitutions, deletions, and gene replacement on virulence and aphid transmissibility, Proc. Natl. Acad. Sci. U.S.A. 90, 11919–11923.

    PubMed  CAS  Google Scholar 

  • Atreya, C.D., Raccah, B., and Pirone, T.P. (1990). A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178, 161–165.

    PubMed  CAS  Google Scholar 

  • Atreya, C.D., Atreya, P.L., Thornbury, D.W., and Pirone, T. (1992). Site directed mutagenesis in the potyvirus HC-Pro gene affect helper component activity, virus accumulation and symptom expression in infected tobacco plants. Virology 191, 106–111.

    PubMed  CAS  Google Scholar 

  • Bandla, M.D., Campbell, L.R., Ullman, D.E., and Sherwood, J.L. (1998). Interaction of tomato spotted wilt tospovirus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathology 88, 98–104.

    PubMed  CAS  Google Scholar 

  • Berinstein, A., Roivainen, M., Hovi, T., Mason, P., and Baxt, B. (1995). Antibodies to the vitronectin receptor (integrin avB3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J. Virol. 69, 2664–2666.

    PubMed  CAS  Google Scholar 

  • Blanc, S., Lopez-Moya, J.-J., Wang, R., García-Lampasona, S., Thornbury, D., and Pirone, T.P. (1997). A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231, 141–147.

    PubMed  CAS  Google Scholar 

  • Blok, V.C., Wardell, J., Jolly, C.A., Manoukian, A., Robinson, D.J., Edwards, M.L., and Mayo, M.A. (1992). The nucleotide sequence of RNA-2 of raspberry ringspot nepovirus. J Gen. Virol. 73, 2189–2194.

    PubMed  CAS  Google Scholar 

  • Bowers, G.R., and Goodman, R.M. (1979). Soybean mosaic virus: Infection of soybean seed parts and seed transmission. Phytopathology 69, 569–572.

    Google Scholar 

  • Brault, V., Van den Heuvel, J.F.J.M., Verbeek, M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., Garaud, J.-C., Guilley, H., Richards, K., and Jonard, G. (1995). Aphid transmission of beet western yellows virus requires the minor capsid read-through protein P74. EMBO J 114, 650–659.

    Google Scholar 

  • Briddon, R.W., Pinner, M.S., Stanley, J., and Markham, P.G. (1990). Geminivirus coat protein gene replacement alters insect specificity. Virology 177, 85–94.

    PubMed  CAS  Google Scholar 

  • Brown, D.J.F., Robertson, W.M., and Trudgill, D.L. (1995). Transmission of viruses by plant nematodes. Ann, Rev. Phytopath. 33, 223–249.

    CAS  Google Scholar 

  • Brown, D.J.F., Trudgill, D.L., and Robertson, W.M. (1996). “Nepoviruses: transmission by nematodes”. In The Plant Viruses Vol. V. Polyhedral Virions and Bipartite RNA Genomes (B. D. Harrison and A. F. Murant, Eds.), pp. 187–209. Plenum, New York.

    Google Scholar 

  • Bruyère, A., Brault, V., Ziegler-Graff, V., Simonis, M.-T., Van den Heuvel, J.F.J.M., Richards, K., Guilley, H., Jonard, G., and Herrbach, E. (1997). Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging, and on virus accumulation, symptoms, and aphid transmission. Virology 230, 323–334.

    PubMed  Google Scholar 

  • Buchner, P. (1953). Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Birkhaeuser Verlag.

    Google Scholar 

  • Campbell, R.N. (1993). Persistence: a vector relationship not applicable to fungal vectors. Phytopathology 83, 363–364.

    Google Scholar 

  • Campbell, R.N. (1996). Fungal transmission of plant viruses. Annu. Rev. Phytopathol. 34, 87–108.

    PubMed  CAS  Google Scholar 

  • Campbell, R.N., Sim, S.T., and LeCoq, H. (1995). Virus transmission by host-specific strains of Olpidium bornovanus and Olpidium brassicae. Eur. J. Plant Pathol. 101, 273–282.

    Google Scholar 

  • Campbell, R.N., Wipf-Scheibel, C., and Lecoq, H. (1996). Vector-assisted seed transmission of melon necrotic spot virus in melon. Phytopathology 86, 1294–1298.

    Google Scholar 

  • Carroll, T.W., Gossel, P.L., and Hockett, E.A. (1979). Inheritance of resistance to seed transmission of barley stripe mosaic virus in barley. Phytopathology 69, 431–433.

    Google Scholar 

  • Caroll, T.W., and Mayhew, D.E. (1976). Anther and pollen infection in relation to the seed transmissibility of two strains of barley stripe mosaic virus in barley. Can. J. Bot. 54, 1604–1621.

    Google Scholar 

  • Chay, C.A., Gunasinge, U.B., Dinesh-Kumar, S.P., Miller, W.A., and Gray, S.M. (1996). Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virolcgy 219, 5765.

    Google Scholar 

  • Chu, P.W.G. and Helms, K. (1988). Novel virus-like particles containing circular single-stranded DNAs associated with subterranean clover stunt disease. Virology 167, 38–49.

    PubMed  CAS  Google Scholar 

  • Coburn, J., Magoun, L., Bodary, S.C., and Leong, J.M. (1998). Integrins alpha(v)beta3 and alpha5betal mediate attachment of Lyme disease spirochetes to human cells. Infect Immun. 66, 1946–1952.

    CAS  Google Scholar 

  • Dernier, S.A., Rucker-Feeney, D.G., Skaf, J.S., and De Zoeten, G.A. (1997). Expression and suppression of circulative aphid transmission in pea enation mosaic virus. J. Gen. Virol. 78, 511–523.

    Google Scholar 

  • Dessens, J.T., and Meyer, M. (1996). Identification of structural similarities between putative transmission proteins of Polymyxa and Spongospora transmitted bymoviruses and furoviruses. Virus Genes 12, 95–99.

    PubMed  CAS  Google Scholar 

  • Dessens, J.T., Nguyen, M., and Meyer, M. (1995). Primary structure and sequence analysis of RNA2 of a mechanically transmitted barley mild mosaic virus isolate: An evolutionary relationship between bymo-and furoviruses. Arch. Virol. 140, 325–333.

    PubMed  CAS  Google Scholar 

  • Donald, R.K.G., and Jackson, A.O. (1994). The barley stripe mosaic virus yb gene encodes a multifunctional cysteine-rich protein that affects pathogenesis. Plant Cell 6, 1593–1606.

    PubMed  CAS  Google Scholar 

  • Donald, R.K.G., and Jackson, A.O. (1996). RNA-binding activities of barley stripe mosaic virus yb fusion proteins. J. Gen. Virol. 77, 879–888.

    PubMed  CAS  Google Scholar 

  • Edwards, M.C. (1995). Mapping of the seed transmission determinants of barley stripe mosaic virus. Mol. Plant-Microbe Interact. 6, 906–915.

    Google Scholar 

  • Filichkin, S.A., Brumfield, S., Filichkin, T.P., and Young, M.J. (1997). In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus. J. Virol. 71, 569–577.

    PubMed  CAS  Google Scholar 

  • Gal-On, A., Antignus, Y., Rosner, A., and Raccah, B. (1992). A zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Gen. Virol. 73, 2183–2187.

    PubMed  CAS  Google Scholar 

  • Giband, M., Mesnard, J.M., and Lebeurier, G. (1986). The gene Ill product (P15) of cauliflower mosaic virus is a DNA-binding protein while an immunologically related P11 polypeptide is associated with virions. EMBO J. 5, 2433–2438.

    PubMed  CAS  Google Scholar 

  • Gildow, F.E. (1987). Virus-membrane interactions involved in circulative transmission of luteoviruses by aphids. Curr. Top. Vector Res. 4, 93–120.

    Google Scholar 

  • Gildow, F., and Gray, S.M. (1993). The aphid salivary gland basal lamina as a selective barrier associated with vector-specific transmission of barley yellow dwarf luteovirus. Phytopathology 83, 1293–1302.

    Google Scholar 

  • Goldbach, R., and Peters, D. (1996). “Molecular and biological aspects of tospoviruses.” In The Bunyaviridae (R.M. Elliot, Ed.), pp. 127–159. Plenum, New York.

    Google Scholar 

  • Harrison, B.D. (1964). Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses. Virology 22, 544–550.

    PubMed  CAS  Google Scholar 

  • Harrison, B.D. and Murant, A.F. (1977). Nematode transmissibility of pseudo-recombinant isolates of tomato black ring virus, Ann. Appl. Biol. 86, 209–212.

    Google Scholar 

  • Harrison, B.D., Murant, A.F., Mayo, M.A., and Roberts, I.M. (1974). Distribution of determinants for symptom production, host range and nematode transmissibility between the two RNA components of raspberry ringspot virus. J Gen. Virol. 22, 233–247.

    Google Scholar 

  • Hartl, F.U. (1996). Molecular chaperones in cellular protein folding. Nature 381, 571–580.

    PubMed  CAS  Google Scholar 

  • Hernández, C., Mathis, A., Brown, D.J.F., and Bol, J.F. (1995). Sequence of RNA 2 of a nematode-transmissible isolate of tobacco rattle virus. J. Gen. Virol. 76, 2847–2851.

    PubMed  Google Scholar 

  • Hernández, C., Visser, P.B., Brown, D.J.F., and Bol, J.F. (1997). Transmission of tobacco rattle virus isolate PpK20 by its nematode vector requires one of the two non-structural genes in the viral RNA 2. J. Gen. Virol. 78, 465–467.

    PubMed  Google Scholar 

  • HSfer, P., Bedford, I.D., Markham, P.G., Jeske, H., and Frischmuth, T. (1997). Coat protein gene replacement results in whitefly transmission of an insect nontransmissible geminivirus isolate. Virology 236, 288–295.

    Google Scholar 

  • Hogenhout, S.A., Van der Wilk, F., Verbeek, M., Goldbach, R.W., and Van den Heuvel, J.F.J.M. (1998). Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic GroEL homolog. J. Virol. 72, 358–365.

    PubMed  CAS  Google Scholar 

  • Huet, H., Gal-On, A., Meir, E., Lecoq, H., and Raccah, B. (1994). Mutations in the helper component protease gene of zucchini yellow mosaic virus affect its ability to mediate aphid transmissibility. J. Gen. Virol. 75, 1407–1414.

    PubMed  CAS  Google Scholar 

  • Huijberts, N., Blystad, D.R., and Bos, L. (1990). Lettuce big-vein virus: Mechanical transmission and relationships to tobacco stunt virus. Ann. appl. Biol. 116, 463–475.

    Google Scholar 

  • Hull, R. (1994). Molecular biology of plant virus-vector interactions. Adv. Dis. Vector Res. 10, 361–386.

    Google Scholar 

  • Hunt, R.E., Nault, L.R., and Gingery, R.E. (1988). Evidence for infectivity of maize chlorotic dwarf virus and for a helper component in its leafhopper transmission. Phytopathology 78, 499–504.

    Google Scholar 

  • Hunter, D.G., and Bowyer, J.W. (1997). Cytopathology of developing anthers and pollen mother cells from lettuce plants infected by lettuce mosaic potyvirus. I Phytopathology 145, 521–524.

    Google Scholar 

  • Johansen, I.E., Dougherty, W.G., Keller, K.E., Wang, D., and Hampton, R.O. (1996). Multiple viral determinants affect seed transmission of pea seedborne mosaic virus in Pisum sativum. J. Gen. Virol. 77, 3149–3154.

    CAS  Google Scholar 

  • Jolly, C.A., and Mayo, M.A. (1994). Changes in the amino acid sequence of the coat protein readthrough domain of potato leafroll luteovirus affect the formation of an epitope and aphid transmission. Virology 201, 182–185.

    PubMed  CAS  Google Scholar 

  • Kasschau, K.D., Cronin, S., and Carrington, J.C. (1997). Genome amplification and long distance movement functions associated with the central domain of tobacco etch potyvirus helper component proteinase. Virology 228, 251–262.

    PubMed  CAS  Google Scholar 

  • Kikkert, M., Meurs, C., Van de Wetering, F., Dorfmüller, S., Peters, D., Kormelink, R., and Goldbach, R. (1998). Binding of tomato spotted wilt virus to a 94-kDa thrips protein. Phytopathology 88, 63–69.

    PubMed  CAS  Google Scholar 

  • Legorburu, F.J., Robinson, D.J., Torrance, L., and Duncan, G.H. (1995). Antigenic analysis of nematode-transmissible and non-transmissible isolates of tobacco rattle tobravirus using monoclonal antibodies. J. Gen. Virol. 76, 1497–1501.

    PubMed  CAS  Google Scholar 

  • Leh, V., Jacquot, E., Geldreich, A., Leclerc, D., Cerutti, M., Yot, P., Keller, M., and Blanc, S. (1998). A second helper protein is required for the aphid transmission of cauliflower mosaic virus. Abstracts, Volume 1, 7th International Congress of Plant Pathology; August 9–16; Edinburgh.

    Google Scholar 

  • Liu, S., Bedford, I.D., Briddon, R.W., and Markham, P.G. (1997). Efficient whitefly transmission of African cassava mosaic geminivirus requires sequences from both genomic components. J. Gen. Virol. 78, 1791–1794.

    PubMed  CAS  Google Scholar 

  • Ludwig, G.V., Israel, B.A., Christensen, B.M., Yuill, T.M., and Schultz, K.T. (1991). Role of La Crosse virus glycoproteins in attachment of virus to host cells. Virology 181, 564–571.

    PubMed  CAS  Google Scholar 

  • MacFarlane, S.A., and Brown, D.J.F. (1995). Sequence comparison of RNA2 of nematode-transmissible and nematode-non-transmissible isolates of pea early-browning virus suggests that the gene encoding the 29 kDa protein may be involved in nematode transmission. J. Gen. Virol. 76, 1299–1304.

    PubMed  CAS  Google Scholar 

  • MacFarlane, S.A., Brown, D.J.F., and Bol, J.F. (1995). The transmission by nematodes of tobraviruses is not determined exclusively by the virus coat protein. Eur. J. Plant Pathol. 101, 535–539.

    Google Scholar 

  • MacFarlane, S.A., Wallis, C.V., and Brown, D.J.F. (1996). Multiple virus genes involved in the nematode transmission of pea early browning virus. Virology 219, 417–422.

    PubMed  CAS  Google Scholar 

  • Maia, I.G., and Bernardi, F. (1996). Nucleic acid binding properties of a bacterially expressed potato virus Y helper component protease. J. Gen. Virol. 77, 869–877.

    PubMed  CAS  Google Scholar 

  • Mandahar, C. L. (1981). Virus transmission through seed and pollen. In “Plant Diseases and Vectors: Ecology and Epidemiology” (K. Maramorosch and K. F. Harris, Eds.). pp. 241–292. Academic Press, New York.

    Google Scholar 

  • Marsh, M., and Helenius, A. (1989). Virus entry into animal cells. Adv. Virus Res. 36, 107–151.

    PubMed  CAS  Google Scholar 

  • Martín, B., Collar, J.L., Tjallingii, W.F., and Fereres, A. (1997). Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J Gen.. Virol. 78, 2701–2705.

    PubMed  Google Scholar 

  • Maule, A.J., and Wang, D. (1996). Seed transmission of plant viruses: A lesson in biological complexity. Trends Microbial. 4, 153–158.

    CAS  Google Scholar 

  • Mayo, M.A., Robertson, W.M., Legorburu, J., and Brierly, K.M. (1994). “Molecular approaches to an understanding of the transmission of plant viruses by nematodes.” In Advance in Molecular Plant Nematology (F. Lamberti, C. de Giorgi, and D.McK. Bird, Eds.), pp. 277–293. Plenum, New York.

    Google Scholar 

  • McLean, M.A., Campbell, R.N., Hamilton, R.I., and Rochon, D.M. (1994). Involvement of the cucumber necrosis virus coat protein in the specificity of fungus transmission by Olpidium bornovanus. Virology 204, 840–842.

    CAS  Google Scholar 

  • Mink, G.I. (1993). Pollen-transmitted and seed-transmitted viruses and viroids. Annu. Rev. Phytopathol. 31, 375–402.

    PubMed  CAS  Google Scholar 

  • Morales F.J., and Castano M. (1987). Seed transmission characteristics of selected bean common mosaic virus strains in differential bean cultivars. Plant Disease 71:51–53.

    Google Scholar 

  • Morin, S., Ghanim, M., Zeidan, M., Czosnek, H., Verbeek, M., and van den Heuvel, J,F.J.M. (1998). A GroEL homologue from endosymbiotic bacteria of Bemisia tabaci is implicated in the circulative transmission of Tomato yellow leaf curl virus (TYLCV-Is). Submitted.

    Google Scholar 

  • Murphy, F.A., Fauquet, C.M., Bishop, D.H.L., Ghabrial, S.A., Jarvis, A.W., Martelli, G.P., Mayo, M.A., and Summers, M.D. (1995). Virus Taxonomy, Springer-Verlag, Wien.

    Google Scholar 

  • Nasu, S. (1965). Electron microscopic studies on transovarial passage of rice dwarf virus. Jpn. I Appl. Entomol. Zool. 9, 225–237.

    Google Scholar 

  • Ohtaka, C., Nakamura, H., and Ishikawa, H. (1992). Structures of chaperonins from an intracellular symbiont and their functional expression in Escherichia coli groE mutants. I Bacterial. 174, 1869–1874.

    CAS  Google Scholar 

  • Omura, T., Yan, J., Zhong, B., Wada, M., Zhu, Y., Tomaru, M., Maruyama, W., Kikuchi, A., Watanabe, Y., Kimura, I., and Hibino, H. (1998). The P2 protein of rice dwarf phytoreovirus is required for adsorption of the virus to cells of the insect vector. J. Virol. 72, 9370–9373.

    PubMed  CAS  Google Scholar 

  • Peerenboom, E., Cartwright, E.J., Foulds, I., Adams, M.J., Stratford, R., Rosner, A., Steinbiss, H.-H., and Antoniw, J.F. (1997). Complete RNA1 sequences of two UK isolates of barley mild mosaic virus: a wild-type fungus-transmitted isolate and a non-fungus-transmissible derivative. Virus Res. 50, 175–183.

    PubMed  CAS  Google Scholar 

  • Peiffer, M.L., Gildow, F.E., and Gray, S.M. (1997). Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. J. Gen. Virol. 7, 495–503.

    Google Scholar 

  • Peng, Y.-H., Kadoury, D., Gal-On, A., Huet, H., Wang, Y., and Raccah, B. (1998). Mutations in the HC-Pro gene of zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J. Gen. Virol. 79, 897–904.

    PubMed  CAS  Google Scholar 

  • Perry, K.L., Zhang, L., and Palukaitis, P. (1998). Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphid gossypii. Virology 242, 204–210.

    PubMed  CAS  Google Scholar 

  • Pirone, T.P., and Blanc, S. (1996). Helper-dependent vector transmission of plant viruses. Annu. Rev. Phytopathol. 34, 227–247.

    PubMed  CAS  Google Scholar 

  • Ploeg, A. T., Robinson, D. J., and Brown, D. J. F. (1993). RNA-2 of tobacco rattle virus encodes the determinants of transmissibility by trichodorid vector nematodes. J Gen. Virol. 74, 1463–1466.

    PubMed  CAS  Google Scholar 

  • Raghavan, V. (1986) Embryogenesis in angiosperms. Cambridge University Press.

    Google Scholar 

  • Robertson, W.M., and Henry, C.E. (1986). An association of carbohydrates with particles of arabis mosaic virus retained with Xiphinema diversicaudatum. Ann. Appl. Biol. 109, 299–305.

    CAS  Google Scholar 

  • Roivainen, M., Piirainen, L., and Hovi, T. (1996). Efficient RGD-independent entry process of coxsackievirus A9. Arch. Virol. 141, 1909–1919.

    PubMed  CAS  Google Scholar 

  • Schmidt, I., Blanc, S., Esperandieu, P., Kuhl, G., Devauchelle, G., Louis, C., and Cerutti, M. (1994). Interaction between the aphid transmission factor and virus particles is a part of the molecular mechanism of cauliflower mosaic virus aphid transmission. Proc. Natl. Acad. Sci. U.S.A. 91, 8885–8889.

    PubMed  CAS  Google Scholar 

  • Schmitt, C., Mueller, A.-M., Mooney, A., Brown, D., and MacFarlane, S. (1998). Immunological detection and mutational analysis of the RNA2-encoded nematode transmission proteins of pea early browning virus. J Gen. Virol. 79, 1281–1288.

    PubMed  CAS  Google Scholar 

  • Stobbs, L.W., Cross, G.W., Manocha, M.S. (1982). Specificity and methods of transmission of cucumber necrosis virus by Olpidium radicale zoospores. Can. J. Plant Pathol. 4, 134–142.

    Google Scholar 

  • Tamada, T., and Kusume, T. (1991). Evidence that the 75K readthrough protein of beet necrotic yellow vein virus RNA-2 is essential for transmission by the fungus Polymyxa betae. J. Gen. Virol. 72, 1497–1504.

    PubMed  CAS  Google Scholar 

  • Tamada, T., Schmitt, C., Saito, M., Guilley, H., Richards, K., and Jonard, G. (1996), High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: A KTER motif is important for efficient transmission of the virus by Polymyxa betae. J Gen. Virol. 77, 1359–1367.

    PubMed  CAS  Google Scholar 

  • Teakle, D.S. (1983). “Zoosporic fungi and viruses, double trouble.” In Zoosporic Plant Pathogens, a modern perspective (S.T. Buczacki, Ed.), pp. 233–248. Academic Press, London.

    Google Scholar 

  • Taylor, C.E. and Brown, D.J.F. (1997). Nematode Vectors of Plant Viruses. CAB International, London. 286 pp.

    Google Scholar 

  • Taylor, R.H., Grogan, R.G., and Kimble, K.A. (1961). Transmission of tobacco mosaic virus in tomato seed. Phytopathology 51, 837–842.

    Google Scholar 

  • Temmink, J.H.M. (1971). An ultrastructural study of Olpidium brassicae and its transmission of tobacco necrosis virus. Meded. Landbouwhogeschool Wageningen 71–6.

    Google Scholar 

  • Temmink, J.H.M., and Campbell, R.N. (1969). The ultrastructure of Olpidium brassicae. I1. Zoospores. Can. I Bot. 47, 421–424.

    Google Scholar 

  • Temmink, J.H.M., Campbell, R.N., and Smith, P.R. (1970). Specificity and site of in vitro acquisition of tobacco necrosis virus by zoospores of Olpidium brassicae. J. Gen. Virol. 9, 201–203.

    Google Scholar 

  • Tomaru, M., Maruyama, W., Kikuchi, A., Yan, J., Zhu, Y., Suzuki, N., Isogal, M., Oguma, Y., Kimura, I., and Omura, T. (1997). The loss of outer capsid protein P2 results in nontransmissibility by the insect vector of rice dwarf phytoreovirus. J. Virol. 71, 8019–8023.

    PubMed  CAS  Google Scholar 

  • Van den Heuvel, J.F.J.M., Bruyère, A., Hogenhout, S.A., Ziegler-Graff, V., Brault, V., Verbeek, M., Van der Wilk, F., and Richards, K. (1997). The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. J. Virol. 71, 7258–7265.

    PubMed  Google Scholar 

  • Van den Heuvel, J.F.J.M., Verbeek, M., and Van der Wilk, F. (1994). Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J Gen. Virol. 75, 2559–2565.

    PubMed  Google Scholar 

  • Wang, D., MacFarlane, S.A., and Maule, A.J. (1997). Viral determinants of pea early browning virus seed transmission in pea. Virology 234, 112–117.

    PubMed  CAS  Google Scholar 

  • Wang, D., and Maule, A.J. (1994). A model for seed transmission of a plant virus: Genetic and structural analysis of pea embryo invasion by pea seed-borne mosaic virus. Plant Cell 5, 777–787.

    Google Scholar 

  • Wang, D., and Maule, A.J. (1997). Contrasting patterns in the spread of two seed-borne viruses in pea embryos. Plant J. 11, 1333–1340.

    Google Scholar 

  • Wang, R.Y., Ammar, E.D., Thornbury, D.W., Lopez-Moya, J.J., and Pirone, T.P. (1996). Loss of potyvirus. J. Gen. Virol. 77, 861–867.

    PubMed  CAS  Google Scholar 

  • Wang, R.Y., Powell, G., Hardie, J., and Pirone, T.P. (1998). Role of the helper component in vector-specific transmission of potyviruses. J. Gen. Virol. 79, 1519–1524.

    PubMed  CAS  Google Scholar 

  • Wang, X., and Zhou, G. (1998). Identification of the proteins associated with circulative transmission of barley yellow dwarf luteoviruses from Sitobion avenae and Schizaphis graminum. Abstracts, Volume 2, 7th International Congress of Plant Pathology; 1998 August 9 — 16; Edinburgh.

    Google Scholar 

  • Yang, Y., Kim, K.S., and Anderson, E.J. (1997). Seed transmission of cucumber mosaic virus in spinach. Phytopathology 87, 924–931.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

van der Heuvel, J.F.J.M., Franz, A.W.E., van der Wilk, F. (1999). Molecular Basis of Virus Transmission. In: Mandahar, C.L. (eds) Molecular Biology of Plant Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5063-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5063-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7302-5

  • Online ISBN: 978-1-4615-5063-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics