Skip to main content

Age-Linked Changes in the Genotype and Phenotype of Mitochondria

  • Chapter
Frontiers of Cellular Bioenergetics

Abstract

Photophosphorylation and oxidative phosphorylation (OXPHOS) are the main energy-generating systems of higher organisms. During the evolution of eukaryotic cells, the energy (ATP)-producing enzyme complexes related to the production of oxygen—photosynthetic phosphorylation in chloroplasts—as well as to the consumption of oxygen—OXPHOS in mitochondria—became encoded partly by nuclear DNA (nDNA) and partly by extranuclear DNA, the chloroplast DNA and the mitochondrial DNA (mtDNA), respectively. Mammalian mitochondrial DNA (mtDNA) is a molecule of about 16,000 nucleotide pairs (np). It codes for two rRNAs, 22 tRNAs, and 13 proteins, which represent exclusively subunits of the four proton-pumping enzyme complexes of OXPHOS: seven subunits of NADH-dehydrogenase (complex I), one of cytochrome c reductase (complex III), three of cytochrome c oxidase (complex IV), and two of ATP synthase (complex V) (Wallace et al., 1995). Since all eukaryotic cells synthesize ATP also by glycolysis, the enzyme complexes involved in OXPHOS, and thus the extrachromosomal genome (mtDNA), are not essential for the survival of individual cells. In fact, animal cells lacking mtDNA but still containing mitochondria (rho0 cells) (King and Attardi, 1989) or containing pathogenetic mutations of mtDNA (Chomyn et al., 1991) can be kept in culture indefinitely. The life of an animal and the proper function of its organs, however, are inevitably dependent on mitochondrial OXPHOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J. F., 1993, Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes, J. Theor. Biol. 165:609–631.

    PubMed  CAS  Google Scholar 

  • Allen, C. A., Håkansson G., and Allen, J. E, 1995, Redox conditions specify the proteins synthesised by isolated chloroplasts and mitochondria, Redox Rep. 1:119–123.

    CAS  Google Scholar 

  • Annex, B. H., and Williams, R. S., 1990, Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle, Mol. Cell. Biol. 10:5671–5678.

    PubMed  CAS  Google Scholar 

  • Antoshechkin, I., and Bogenhagen, D. F., 1995, Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA, Mol. Cell. Biol. 15:7032–7042.

    PubMed  CAS  Google Scholar 

  • Attardi, G., and Schatz, G., 1988, Biogenesis of mitochondria, Annu. Rev. Cell Biol 4:289–333.

    PubMed  CAS  Google Scholar 

  • Attardi, G., Chomyn, A., King, M. P., Kruse, B., Loguercio Polosa, P., and Narasimhan Murdter, N., 1990, Biogenesis and assembly of the mitochondrial respiratory chain: Structural, genetic and pathological aspects, Biochem. Soc. Trans. 18:509–513.

    PubMed  CAS  Google Scholar 

  • Barat-Gueride, M., Dufresne, C., and Rickwood, D., 1989, Effect of DNA conformation on the transcription of mitochondrial DNA, Eur. J. Biochem. 183:297–302.

    PubMed  CAS  Google Scholar 

  • Barrientos, A., Casademont, J., Rötig, A., Mirò, O., Urbano-Márquez, A., Rustin, P., and Cardel-lach, E, 1996, Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle, Biochem. Biophys. Res. Commun. 229:536–539.

    PubMed  CAS  Google Scholar 

  • Baumer, A., Zhang, C., Linnane, A. W., and Nagley, P., 1994, Age-related human mtDNA deletions: A heterogeneous set of deletions arising at a single pair of directly repeated sequences, Am. J. Hum. Genet. 54:618–630.

    PubMed  CAS  Google Scholar 

  • Becker, A., Reith, A., Napiwotzk, J., and Kadenbach, B., 1996, A quantitative method of determining initial amounts of DNA by polymerase chain reaction cycle titration using digital imaging and a novel DNA stain, Anal. Biochem. 237:204–207.

    PubMed  CAS  Google Scholar 

  • Beckman, K. B., and Ames, B. N., 1996, Detection and quantification of oxidative adducts of mitochondrial DNA, Methods Enzym. 264:442–453.

    CAS  Google Scholar 

  • Boffoli, D., Scacco, S. C., Vergali, R., Solarino, G., Santacroce, G., and Papa, S., 1994, Decline with age of the respiratory chain activity in human skeletal muscle, Biochim. Biophys. Acta 1226:73–82.

    PubMed  CAS  Google Scholar 

  • Boffoli, D., Scacco, S. C., Vergari, R., Persio, M. T., Solarino, G., Laforgia, R., and Papa, S., 1996, Ageing is associated in females with a decline in the content and activity on the b-cl complex in skeletal muscle mitochondria, Biochim. Biophys. Acta 1315:66–72.

    PubMed  Google Scholar 

  • Bowling, A. C., Mutisya, E. M., Walker, L. C., Price, D. L., Cork, L. C., and Hint Beal, M., 1993, Age-dependent impairment of mitochondrial function in primate brain, J. Neurochem. 60: 1964–1967.

    PubMed  CAS  Google Scholar 

  • Brossas J.-Y., Barreau, E., Courtois, Y., and Tréton, J., 1994, Multiple deletions in mitochondrial DNA are present in senescent mouse brain, Biochem. Biophys. Res. Commun. 202:654–659.

    PubMed  CAS  Google Scholar 

  • Brown, M. D., and Wallace, D. C., 1994, Molecular basis of mitochondrial disease, J. Bioenerg. Biomembr. 26:273–289.

    PubMed  CAS  Google Scholar 

  • Buzan, J. M., and Low, R. L., 1988, Preference of human mitochondrial RNA polymerase for superhelical templates with mitochondrial promoters, Biochem. Biophys. Res. Commun. 152: 22–29.

    PubMed  CAS  Google Scholar 

  • Calleja, M., Peña, P., Ugalde, C., Ferreiro, C., Marco, R., and Garesse, R., 1993, Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced, J. Biol. Chem. 268:18891–18897.

    PubMed  CAS  Google Scholar 

  • Callen, J. C., Tourte, M., Dennebouy, N., and Monoulou, J. C., 1983, Changes in D-loop frequency and superhelicity among the mitochondrial DNA molecules in relation to organelle biogenesis in oocytes of Xenopus laevis, Exp. Cell Res. 143:115–125.

    PubMed  CAS  Google Scholar 

  • Cantatore, P., and Saccone, C., 1987, Organization, structure, and evolution of mammalian mitochondrial genes, Int. Rev. Cytol. 108:149–208.

    PubMed  CAS  Google Scholar 

  • Cantatore, P., Loguercio Polosa, P., Fracasso, F., Flagella, Z., and Gadaleta, M. N., 1986, Quantitation of mitochondrial RNA species during rat liver development: The concentration of cytochrome oxidase subunit I (Col) mRNA increases at birth, Cell Different. 19:125–132.

    CAS  Google Scholar 

  • Cantatore, P., Daddabbo, L., Fracasso, F., and Gadaleta, M. N., 1995, Identification by in organello footprinting of protein contact sites and of single-stranded DNA sequences in the regulatory region of rat mitochondrial DNA, J. Biol. Chem. 270:25020–25027.

    PubMed  CAS  Google Scholar 

  • Cavelier, L., Jazin, E. E., Eriksson, I., Prince, J., Båve, U., Oreland, L., and Gyllensten, U., 1995, Decreased cytochrome c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics, Genomics 29:217–224.

    PubMed  CAS  Google Scholar 

  • Chen, X., Simonetti, S., DiMauro, S., and Schon, E. A., 1993, Accumulation of mitochondrial DNA deletions in organisms with various lifespans, Bull. Mol. Biol. Med. 18:57–66.

    CAS  Google Scholar 

  • Chen, X., Prosser, R., Simonetti, S., Sadlock, J., Jagiello, G., and Schon, E. A., 1995a, Rearranged mitochondrial genomes are present in human oocytes, Am. J. Hum. Genet. 57:239–247.

    PubMed  CAS  Google Scholar 

  • Chen, X., Bonilla, E., Sciacco, M., and Schon, E. A., 1995b, Paucity of deleted mitochondrial DNAs in brain regions of Huntington’s disease patients, Biochim. Biophys. Acta 1271:229–233.

    PubMed  Google Scholar 

  • Cheng, S., Higuchi, R., and Stoneking, M., 1994, Complete mitochondrial genome amplification, Nature Genet. 7:350–351.

    PubMed  CAS  Google Scholar 

  • Chomyn, A., Meola, G., Bresolin, N., Lai, S. T., Scarlato, G., and Attardi, G., 1991, In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria, Mol. Cell Biol. 11:2235–2244.

    Google Scholar 

  • Chung, S. S., Windruch, R., Schwarze, S. R., McKenzie, D. I., and Aiken, J. M., 1994, Multiple age-associated mitochondrial DNA deletions in skeletal muscle of mice, Aging Clin. Exp. Res. 6:193–200.

    CAS  Google Scholar 

  • Chung, S. S., Eimon, P. M., Windruch, R., and Aiken, J. M., 1996, Analysis of age-associated mitochondrial DNA deletion breakpoint regions from mice suggests a novel model of deletion formation, Age 19:117–128.

    CAS  Google Scholar 

  • Cingolani, G., Capaccio, L., D’Elia, D., and Gadaleta, G., 1997, In organetto footprinting analysis of rat mitochondrial DNA:protein interaction upstream of the Ori-L, Biochem. Biophys. Res. Commun. 231:856–860.

    PubMed  CAS  Google Scholar 

  • Clayton, D. A., 1991, Replication and transcription of vertebrate mitochondrial DNA, Annu. Rev. Cell. Biol. 2:453–478.

    Google Scholar 

  • Cooper, J. M., Mann, V. M., and Schapira, A. H. V., 1992, Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: Effect of ageing, J. Neurol Sci. 113:91–98.

    PubMed  CAS  Google Scholar 

  • Corral-Debrinski, M., Stepien, G., Shoffner, J. M., Lott, M. T., Kanter, K., and Wallace, D. C., 1991, Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease, J. Am. Med. Assoc. 266:1812–1816.

    CAS  Google Scholar 

  • Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., Flint Beal, M., and Wallace, D. C., 1992a, Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age, Nature Genet. 2:324–329.

    PubMed  CAS  Google Scholar 

  • Corral-Debrinski, M., Shoffner, J. M., Lott, M. T., and Wallace, D. C., 1992b, Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease, Mutat. Res. 275:169–180.

    PubMed  CAS  Google Scholar 

  • Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., McKee, A. C., Flint Beal, M., Graham, B. H., and Wallace, D. C., 1994, Marked changes in mitochondrial DNA deletion levels in Alzheimer brains, Genomics 23:471–476.

    PubMed  CAS  Google Scholar 

  • Cortopassi, G. A., and Arnheim, N., 1990, Detection of a specific mitochondrial DNA deletion in tissues of older humans, Nucleic Acids Res. 18:6927–6933.

    PubMed  CAS  Google Scholar 

  • Daga, A., Micol, V., Hess, D., Aebersold, R., and Attardi, G., 1993, Molecular characterization of the transcription termination factor from human mitochondria, J. Biol Chem. 268:8123–8130.

    PubMed  CAS  Google Scholar 

  • Davis, A. F., Ropp, P. A., Clayton, D. A., and Copeland, W. C., 1996, Mitochondrial DNA polymerase γ is expressed and translated in the absence of mitochondrial DNA maintenance and replication, Nucleic Acids Res. 24:2753–2759.

    PubMed  CAS  Google Scholar 

  • Demonacos, C. V., Karayanni, N., Hatzoglou, E., Tsiriyiotis, C., Spandidos, D. A., and Sekeris, C. E., 1996, Mitochondrial genes as sites of primary action of steroid hormones, Steroids 61: 226–232.

    PubMed  CAS  Google Scholar 

  • Di Donato, S., Zeviani, M., Giovannini, F., Savarese, N., Rimoldi, M., Mariottini, C., Girotti, F., and Caraceni, T., 1993, Respiratory chain and mitochondrial DNA in muscle and brain in Parkinson’s disease patients, Neurology 43:2262–2268.

    Google Scholar 

  • DiMauro, S., and Hirano, M., 1995, Diseases due to mutations of mitochondrial DNA: Problems in pathogenesis, Bull. Mol. Biol. Med. 20:169–175.

    Google Scholar 

  • DiMauro, S., and Wallace, D. C., eds., 1993, Mitochondrial DNA in Human Pathology, Raven Press, New York.

    Google Scholar 

  • Edris, W., Burgett, S., Stine, O. C., and Filburn, C. R., 1994, Detection and quantitation by competitive PCR of an age-associated increase in a 4.8-kb deletion in rat mitochondrial DNA, Mutat. Res. 316:69–78.

    PubMed  CAS  Google Scholar 

  • Enriquez, J. A., Fernandez-Silva, P., Perez-Martos, A., Lopez-Perez, M. J., and Montoya, J., 1996, The synthesis of mRNA in isolated mitochondria can be maintained for several hours and is inhibited by high levels of ATP, Eur. J. Biochem. 237:601–610.

    PubMed  CAS  Google Scholar 

  • Fernandez-Silva, P., Petruzzella, V., Fracasso, F., Gadaleta, M. N., and Cantatore, P., 1991, Reduced synthesis of mtRNA in isolated mitochondria of senescent rat brain, Biochem. Biophys. Res. Commun. 176:645–653.

    PubMed  CAS  Google Scholar 

  • Filser, N., Margue, C., and Richter, C., 1997, Quantification of wild-type mitochondrial DNA and its 4.8-kb deletion in rat organs, Biochem. Biophys. Res. Commun. 233:102–107.

    PubMed  CAS  Google Scholar 

  • Fisher, R. P., Lisowsky, T., Parisi, M. A., and Clayton, D. A., 1992, DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein, J. Biol. Chem. 276:3358–3367.

    Google Scholar 

  • Flint Beal, M., 1992, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann. Neurol. 31:119–130.

    Google Scholar 

  • Gadaleta, G., D’Elia, D., Capaccio, L., Saccone, C., and Pepe, G., 1996, Isolation of a 25-kDa protein binding to a curved DNA upstream the origin of the L strand replication in the rat mitochondrial genome, J. Biol. Chem. 271:13537–13541.

    PubMed  CAS  Google Scholar 

  • Gadaleta, M. N., Loguercio Polosa, P., Lezza, A., Fracasso, F., and Cantatore, P., 1985, Mitochondrial transcription in rat liver under different physiological conditions, in Achievements and Perspectives of Mitochondrial Research (E. Quagliariello, E. C. Slater, F. Palmieri, C. Saccone, and A. M. Kroon, eds.), pp. 417–425, Elsevier, Amsterdam.

    Google Scholar 

  • Gadaleta, M. N., Petruzzella, V., Renis, M., Fracasso, F., and Cantatore, P., 1990a, Reduced transcription of mitochondrial DNA in the senescent rat. Tissue dependence and effect of acetyl-L-carnitine, Eur. J. Biochem. 187:501–506.

    PubMed  CAS  Google Scholar 

  • Gadaleta, M. N., Petruzzella, V., Renis, M., Fracasso, F., and Cantatore, P., 1990b, Reduced mitochondrial DNA transcription in two brain regions of senescent rat: Effect of acetyl-L-carnitine, in Structure, Function and Biogenesis of Energy Transfer Systems (E. Quagliariello et al, eds.), pp. 135–138, Elsevier, Amsterdam.

    Google Scholar 

  • Gadaleta, M. N., Petruzzella, V., Fracasso, F., Fernandez-Silva, P., and Cantatore, P., 1990c, Acetyl-L-carnitine increases cytochrome oxidase subunit I mRNA content in hypothyroid rat liver, FEBS Lett. 277:191–193.

    PubMed  CAS  Google Scholar 

  • Gadaleta, M. N., Rainaldi, G., Lezza, A. M. S., Milella, F., Fracasso, F., and Cantatore, P., 1992, Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rat, Mutat. Res. 275:181–193.

    PubMed  CAS  Google Scholar 

  • Gadaleta, M. N., Petruzzella, V., Daddabbo, L., Olivieri, C., Fracasso, F., Loguercio Polosa, P., and Cantatore, P., 1994, Mitochondrial DNA transcription and translation in aged rat: Effect of acetyl-L-carnitine, Ann. NY Acad. Sci. 717:150–160.

    PubMed  CAS  Google Scholar 

  • Gadaleta, M. N., Rainaldi, G., Lezza, A. M. S., Marangi, L. C., Milella, F., Daddabbo, L., Fracasso, F., Loguercio Polosa, P., and Cantatore, P., 1995, Structure and expression of mitochondrial DNA in aging rat: DNA deletions and protein synthesis, in Progress in Cell Research, vol. 5 (F. Palmieri et al., eds.), pp. 231–235, Elsevier, Amsterdam.

    Google Scholar 

  • Gadaleta, M. N., Lezza, A. M. S., and Cantatore, P., 1999, Mitochondrial DNA deletions, in Methods in Aging Research (B. Yu, ed.), pp. 475–511, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ghivizzani, S. C., Madsen, C. S., Nelen, M. R., Ammini, C. V., and Hauswirth W. W., 1994, In organello footprint analysis of human mitochondrial DNA: Human mitochondrial transcription factor A interactions at the origin of replication, Mol. Cell. Biol. 14:7717–7730.

    PubMed  CAS  Google Scholar 

  • Gray, H., and Wong, T. W., 1992, Purification and identification of subunit structure of human mitochondrial DNA polymerase, J. Biol. Chem. 267:5835–5841.

    PubMed  CAS  Google Scholar 

  • Gudikote, J. P., and Van Tuyle, G. C., 1996, Rearrangements in the shorter arc of rat mitochondrial DNA involving the region of the heavy and light strand promoters, Mutat. Res. 356:275–286.

    PubMed  Google Scholar 

  • Guerrieri, F., Capozza, G., Kalous, M., Zanotti, F., Drahota, Z., and Papa, S., 1992, Age-dependent changes in the mitochondrial F0F1 ATP synthase, Arch. Gerontol. Geriatr. 14:299–308.

    PubMed  CAS  Google Scholar 

  • Gyllensten, U., Wharton, D., Josefsson, A., and Wilson, A. C., 1991, Paternal inheritance of mitochondrial DNA in mice, Nature 352:255–257.

    PubMed  CAS  Google Scholar 

  • Hansford, R. G., 1983, Bioenergetics in aging, Biochim. Biophys. Acta 726:41–80.

    PubMed  CAS  Google Scholar 

  • Harding, A. E., 1992, Growing old: The most common mitochondrial disease of all? Nature Genet. 2:251–252.

    PubMed  CAS  Google Scholar 

  • Harman, D., 1972, The biological clock: The mitochondria? J. Am. Geriat. Soc. 20:145–147.

    PubMed  CAS  Google Scholar 

  • Hattori, K., Tanaka, M., Sugiyama, S., Obayashi, T., Ito, T., Satake, T., Hanaki, T., Asai, J., Nagano, M., and Ozawa, T., 1991, Age-dependent increase in deleted mitochondrial DNA in the human heart: Possible contributory factor to presbycardia, Am. Heart J. 121:1735–1742.

    PubMed  CAS  Google Scholar 

  • Hayakawa, M., Sugiyama, S., Hattori, K., Takasawa, M., and Ozawa, T., 1993, Age-associated damage in mitochondrial DNA in human hearts, Mol. Cell. Biochem. 119:95–103.

    PubMed  CAS  Google Scholar 

  • Hehman, G. L., and Hauswirth, W. W., 1992, DNA helicase from mammalian mitochondria, Proc. Natl. Acad. Sci. USA 89:8562–8566.

    PubMed  CAS  Google Scholar 

  • Holt, I. J., Harding, A. E., and Morgan-Hughs, J. A., 1988, Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies, Nature 331:717–719.

    PubMed  CAS  Google Scholar 

  • Horton, T. M., Graham, B. H., Corral-Debrinski, M., Shoffner, J. M., Kaufman, A. E., Flint Beal, M., and Wallace, D. C., 1995, Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington’s disease patients, Neurology 45:1879–1883.

    PubMed  CAS  Google Scholar 

  • Hostetler, K. Y., 1991, Effect of thyroxine on the activity of mitochondrial cardiolipin synthase in rat liver, Biochim. Biophys. Acta 1086:139–140.

    PubMed  CAS  Google Scholar 

  • Hsie, R.-H., Hou, J.-H., Hsu, H.-S., and Wei, Y.-H., 1994, Age-dependent respiratory function decline and DNA deletions in human muscle mitochondria, Biochem. Mol. Biol. Int. 32:1009–1022.

    Google Scholar 

  • Johns, D. R., Rutledge S. L., Stune, O. C., and Hurko, O., 1989, Directly repeated sequences associated with pathogenic mitochondrial DNA deletions, Proc. Natl. Acad. Sci. USA 86: 8059–8062.

    PubMed  CAS  Google Scholar 

  • Joyal, J. L., Hagen, T., and Aprille, J. R., 1995, Intramitochondrial protein synthesis is regulated by matrix adenine nucleotide content and requires calcium, Arch. Biochem. Biophys. 319: 322–330.

    PubMed  CAS  Google Scholar 

  • Kadenbach, B., Münscher, C., Frank, V., Müller-Höcker, J., and Napiwotzki, J., 1995, Human aging is associated with stochastic somatic mutations of mitochondrial DNA, Mutat. Res. 338:161–172.

    PubMed  CAS  Google Scholar 

  • Katayama, M., Tanaka, M., Yamamoto, H., Ohbayashi, T., Nimura, Y., and Ozawa, T., 1991, Deleted mitochondrial DNA in the skeletal muscle of aged individuals, Biochem. Int. 25:47–56.

    PubMed  CAS  Google Scholar 

  • Kelly, J. L., Greenleaf, A. L., and Lehman, I. R., 1986, Isolation of the nuclear gene encoding a subunit of the yeast mitochondrial RNA polymerase, J. Biol. Chem. 261:10348–10351.

    PubMed  CAS  Google Scholar 

  • King, M. P., and Attardi, G., 1989, Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation, Science 246:500–503.

    PubMed  CAS  Google Scholar 

  • Kitagawa, T., Suganuma, N., Nawa, A., Kikkawa, F., Tanaka, M., Ozawa, T., and Tomoda, Y., 1993, Rapid accumulation of deleted mitochondrial deoxyribonucleic acid in postmenopausal ovaries, Biol. Reprod. 49:730–736.

    PubMed  CAS  Google Scholar 

  • Kunkel, T. A., and Loeb, L. A., 1981, Fidelity of mammalian DNA polymerases, Science 213: 765–768.

    PubMed  CAS  Google Scholar 

  • Larsson, N.-G., Oldfors, A., Garman, J. D., Barsh, G. S., and Clayton, D. A., 1997, Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans, Hum. Mol. Genet. 6:185–191.

    PubMed  CAS  Google Scholar 

  • Lauber, F., Marsac, C., Kadenbach, B., and Seibel, P., 1991, Mutations in mitochondrial tRNA genes: A frequent cause of neuromuscular disease, Nucleic Acids Res. 19:1393–1397.

    PubMed  CAS  Google Scholar 

  • Lee, C. M., Eimon, P., Weindruch, R., and Aiken, J. M., 1994, Direct repeat sequences are not required at the breakpoints of age-associated mitochondrial DNA deletions in rhesus monkeys, Mech. Ageing Dev. 75:69–79.

    PubMed  CAS  Google Scholar 

  • Lee, H.-C, Pang, C.-Y, Hsu, H.-S., and Wei, Y.-H., 1994, Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing, Biochim. Biophys. Acta 1226:37–43.

    PubMed  CAS  Google Scholar 

  • Lezza, A. M. S., Rainaldi, G., Cantatore, P., and Gadaleta, M. N., 1993, Quantitative determination of a 4.8 Kb deletion in mtDNA of aging rat liver, Bull. Mol. Biol. Med. 18:67–80.

    CAS  Google Scholar 

  • Lezza, A. M. S., Boffoli, D., Scacco, S., Cantatore, P., and Gadaleta, M. N., 1994, Correlation between mitochondrial DNA 4977-bp deletion and respiratory chain enzyme activities in aging human skeletal muscles, Biochem. Biophys. Res. Commun. 205:772–779.

    PubMed  CAS  Google Scholar 

  • Lezza, A. M. S., Cormio, A., Gerardi, P., Silvestri, G., Servidei, S., Serlenga, L., Cantatore, P., and Gadaleta, M. N., 1997, Mitochondrial DNA deletions in oculopharyngeal muscular dystrophy, FEBS Lett. 418:167–170.

    PubMed  CAS  Google Scholar 

  • Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M., 1989, Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases, Lancet 1:642–645.

    PubMed  CAS  Google Scholar 

  • Madsen, C. S., Ghivizzani, C., and Hauswirth, W. W., 1993, Protein binding to a single termination-associated sequence in the mitochondrial DNA D-loop region, Mol. Cell. Biol. 13:2162–2171.

    PubMed  CAS  Google Scholar 

  • Mann, V. M., Cooper, J. M., and Schapira, A. H. V., 1992, Quantitation of a mitochondrial DNA deletion in Parkinson’s disease, FEBS Lett. 299:218–222.

    PubMed  CAS  Google Scholar 

  • Martin, G. M., Austad, S. N., and Johnson, T. E., 1996, Genetic analysis of ageing: role of oxidative damage and environmental stress, Nature Genet. 13:25–34.

    PubMed  CAS  Google Scholar 

  • Melov, S., Hertz, G. Z., Stormo, G. D., and Johnson, T. E., 1994, Detection of deletions in the mitochondrial genome of Caenorhabditis elegans, Nucleic Acids Res. 22:1075–1078.

    PubMed  CAS  Google Scholar 

  • Melov, S., Shoffner, J. M., Kaufman, A., and Wallace, D. C., 1995, Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle, Nucleic Acids. Res. 23:4122–4126.

    PubMed  CAS  Google Scholar 

  • Melov, S., Hinerfeld, D., Esposito, L., and Wallace, D. C., 1997, Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age, Nucleic Acids Res. 25:974–982.

    PubMed  CAS  Google Scholar 

  • Miquel, J., and Fleming, J. E., 1986, Theoretical and experimental support for an “oxygen radical-mitochondrial injury hypothesis of cell aging,” in Free Radicals, Aging and Degenerative Disease (J. E. Johnson, Jr., R. Walford, D. Harman, and J. Miquel, eds.), pp. 51–74, Liss, New York.

    Google Scholar 

  • Moraes, C. T., DiMauro, S., Zeviani, M., Lombes, A., Shanske, S., Miranda, A. F., Nakase, H., Bonilla, E., Werneck, L. C., Servidei, S., Nonaka, I., Koga, Y., Spiro, A. J., Brownell, K. W, Schmidt, B., Schotland, D. L., Zupanc, M., DeVivo, D. C., Schon, E. A., and Rowland, L. P., 1989, Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome, N. Engl. J. Med. 320:1293–1299.

    PubMed  CAS  Google Scholar 

  • Moslemi, A.-R., Melberg, A., Holme, E., and Oldfors, A., 1996, Clonal expansion of mitochondrial DNA with multiple deletions in autosomal dominant progressive external ophthalmoplegia, Ann. Neurol. 40:707–713.

    PubMed  CAS  Google Scholar 

  • Müller-Höcker, J., Seibel, P., Schneiderbanger, K., and Kadenbach, B., 1993, Different in situ hybridization patterns of mitochondrial DNA in cytochrome c oxidase-deficient extraocular muscle fibers in the elderly, Virchows Archiv A Pathol. Anat. 422:7–15.

    Google Scholar 

  • Münscher, C., Lieger, T., Müller-Höcker, J., and Kadenbach, B., 1993, The point mutation of mitochondrial DNA characteristic for MERRF disease is found also in healthy people of different ages, FEBS Lett. 317:27–30.

    PubMed  Google Scholar 

  • Mutvei, A., Kuzela, S., and Nelson, B. D., 1989, Control of mitochondrial transcription by thyroid hormone, Eur. J. Biochem. 180:235–240.

    PubMed  CAS  Google Scholar 

  • Orr, W. C., and Sohal, R. S., 1994, Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster, Science 263:1128–1130.

    PubMed  CAS  Google Scholar 

  • Ostronoff, L. K., Izquierdo, J. M., and Cuezva, J. M., 1995, Mt-mRNA stability regulates the expression of the mitochondrial genome during liver development, Biochem. Biophys. Res. Commun. 217:1094–1098.

    PubMed  CAS  Google Scholar 

  • Ozawa, T., Tanaka, M., Ikebe, S., Ohno, K., Kondo, T., and Mizuno, Y., 1990, Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis, Biochem. Biophys. Res. Commun. 172:483–489.

    PubMed  CAS  Google Scholar 

  • Pallotti, F., Chen, X., Bonilla, E., and Schon, E. A., 1996, Evidence that specific mtDNA point mutations may not accumulate in skeletal muscle during normal human aging, Am. J. Hum. Genet. 59:591–602.

    PubMed  CAS  Google Scholar 

  • Pang, C.-Y, Lee, H.-C., Yang, J.-H., and Wei, Y.-H., 1994, Human skin mitochondrial DNA deletions associated with light exposure, Arch. Biochem. Biophys. 312:534–538.

    PubMed  CAS  Google Scholar 

  • Papa, S., 1996, Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications, Biochim. Biophys. Acta 1276:87–105.

    PubMed  Google Scholar 

  • Papa, S., Lorusso, M., and Capitario, N., 1994, Mechanistic and phenomenological features of proton pumps in the respiratory chain of mitochondria, J. Bioenerg. Biomembr. 26:609–618.

    PubMed  CAS  Google Scholar 

  • Paradies, G., Ruggiero, F. M., Gadaleta, M. N., and Quagliariello, E., 1992, The effect of aging and acetyl-L-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria, Biochim. Biophys. Acta 1103:324–326.

    PubMed  CAS  Google Scholar 

  • Paradies, G., Ruggiero, F. M., Petrosillo, G., Gadaleta, M. N., and Quagliariello, E., 1994, Effect of aging and acetyl-L-carnitine on the activity of cytochrome oxidase and adenine nucleotide translocase in rat heart mitochondria, FEBS Lett. 350:213–215.

    PubMed  CAS  Google Scholar 

  • Paradies, G., Ruggiero, F. M., Petrosillo, G., Gadaleta, M. N., and Quagliariello, E., 1995, Carnitine acylcarnitine translocase activity in cardiac mitochondria from aged rats: The effect of acetyl-L-carnitine, Mech. Ageing Dev. 84:103–112.

    PubMed  CAS  Google Scholar 

  • Paradies, G., Ruggiero, F. M., Petrosillo, G., and Quagliariello, E., 1997, Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: Role of cardiolipin, FEBS Lett. 406:136–138.

    PubMed  CAS  Google Scholar 

  • Parisi, M. A., and Clayton, D. A., 1991, Similarity of human mitochondrial transcription factor 1 to high mobility group proteins, Science 252:965–969.

    PubMed  CAS  Google Scholar 

  • Petruzzella, V., Baggetto, L. G., Penin, F., Cafagna, F., Ruggiero, F. M., Cantatore, P., and Gadaleta, M. N., 1992, In vivo effect of acetyl-L-carnitine on succinate oxidation, adenine nucleotide pool and lipid composition of synaptic and non-synaptic mitochondria from cerebral hemispheres of senescent rats, Arch. Gerontol. Geriatr. 14:131–144.

    PubMed  CAS  Google Scholar 

  • Petruzzella, V., Fracasso, F., Gadaleta, M. N., and Cantatore, P., 1995, Decrease of D-loop frequency in heart and cerebral hemispheres mitochondrial DNA of aged rat, Mol. Chem. Neuropathol. 24:193–202.

    PubMed  CAS  Google Scholar 

  • Pikò, L., 1992, Accumulation of mtDNA defects and changes in mtDNA content in mouse and rat tissues with aging, Ann. NY Acad. Sci. 663:450–452.

    PubMed  Google Scholar 

  • Pikò, L., Houghman, A. J., and Bulpitt, K. J., 1988, Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: Evidence for an increased frequency of deletions/ additions with aging, Mech. Ageing Dev. 43:279–293.

    PubMed  Google Scholar 

  • Pisano, C., Camerini, B., Castorina, M., Morabito, E., Carbonetti, A., Pucci, A., and Calvari, M., 1996, Acetyl-L-carnitine modulates histone H4 acetylation: Effects on gene expression and differentiation, in 24th Meeting of the Federation of European Biochemical Society, FEBS’ 96, Barcelona, 7–12 July 1996. Abstract p. 155.

    Google Scholar 

  • Radi, R., Turrens, J. F., Chang, L. Y., Bush, K. M., Crapo, J. D., and Freeman, B. A., 1991, Detection of catalase in rat heart mitochondria, J. Biol. Chem. 266:22028–22034.

    PubMed  CAS  Google Scholar 

  • Renis, M., Cantatore, P., Loguercio Polosa, P., Fracasso, F., and Gadaleta, M. N., 1989, Content of mitochondrial DNA and of three mitochondrial RNAs in developing and adult rat cerebellum, J. Neurochem. 52:750–754.

    PubMed  CAS  Google Scholar 

  • Richter, C., 1995, Oxidative damage to mitochondrial DNA and its relationship to aging, in Molecular Aspects of Aging (K. Esser and G. M. Martin, eds.), pp. 100–108, John Wiley & Sons, Chichester, England.

    Google Scholar 

  • Ropp, P. A., and Copeland, W. C., 1996, Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase γ, Genomics 36:449–458.

    PubMed  CAS  Google Scholar 

  • Scarpulla, R. C., 1996, Nuclear respiratory factors and the pathways of nuclear-mitochondrial interaction, Trends Cardiovasc. Med. 6:39–45.

    PubMed  CAS  Google Scholar 

  • Schon, E. A., Rizzuto, R., Moraes, C. T., Nakase, H., Zeviani, M., and DiMauro, S., 1989, A direct repeat is a hot spot for large-scale deletion of human mitochondrial DNA, Science 244: 346–349.

    PubMed  CAS  Google Scholar 

  • Seibel, P., Mell, O., Hannemann, A., Müller-Höcker, J., and Kadenbach, B., 1991, A method for quantitative analysis of deleted mitochondrial DNA by PCR in small tissue samples, Methods Mol Cell Biol 2:147–153.

    CAS  Google Scholar 

  • Shigenaga, M. K., Hagen, T. M., and Ames, B. N., 1994, Oxidative damage and mitochondrial decay in aging, Proc. Natl. Acad. Sci. USA 91:10771–10778.

    PubMed  CAS  Google Scholar 

  • Shoffner, J. M., Lott, M. T., Voljavec, A. S., Soueidan, S. A., Costigan, D. A., and Wallace, D. C., 1989, Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: A slip replication model and metabolic therapy, Proc. Natl. Acad. Sci. USA 86:7952–7956.

    PubMed  CAS  Google Scholar 

  • Siliprandi, N., Siliprandi, D., and Ciman, M., 1965, Stimulation of oxidation of mitochondrial fatty acids and of acetate by acetylcarnitine, Biochem. J. 96:777–780.

    PubMed  CAS  Google Scholar 

  • Simonetti, S., Chen, X., Di Mauro, S., and Schon, E. A., 1992, Accumulation of deletions in human mitochondrial DNA during normal aging: Analysis by quantitative PCR, Biochim. Biophys. Acta 1180:113–122.

    PubMed  CAS  Google Scholar 

  • Sohal, R. S., Svensson, I., and Brunk, U. T., 1990, Hydrogen peroxide production by liver mitochondria in different species, Mech. Ageing Dev. 53:209–215.

    PubMed  CAS  Google Scholar 

  • Soong, N. W., Hinton, D. R., Cortopassi, G., and Arnheim, N., 1992, Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain, Nature Genet. 2:318–323.

    PubMed  CAS  Google Scholar 

  • Soong, N. W., Dang, M. H., Hinton, D. R., and Arnheim, N., 1996, Mitochondrial DNA deletions are rare in the free radical-rich retinal environment, Neurol. Aging 17:827–831.

    CAS  Google Scholar 

  • Sugiyama, S., Hattori, K., Hayakawa, M., and Ozawa, T., 1991, Quantitative analysis of age-associated accumulation of mitochondrial DNA with deletion in human hearts, Biochem. Biophys. Res. Commun. 180:894–899.

    PubMed  CAS  Google Scholar 

  • Takai, D., Inoue, K., Shisa, H., Kagawa, Y., and Hayashi, J.-I., 1995, Age-associated changes of mitochondrial translation and respiratory function in mouse brain, Biochem. Biophys. Res. Commun. 217:668–674.

    PubMed  CAS  Google Scholar 

  • Tanhauser, S. M., and Laipis, P. J., 1995, Multiple deletions are detectable in mitochondrial DNA of aging mice, J. Biol. Chem. 270:24769–24775.

    PubMed  CAS  Google Scholar 

  • Tiranti, V., Rocchi, M., Di Donato, S., and Zeviani, M., 1993, Cloning of human and rat cDNAs encoding the mitochondria single stranded DNA-binding protein (SSB), Gene 126:219–225.

    PubMed  CAS  Google Scholar 

  • Tiranti, V., Savoia, A., Forti, F., D’Apolito, M. F., Centra, M., Rocchi, M., and Zeviani, M., 1997, Identification of the gene encoding the human mitochondrial RNA polymerase (H-mtRPOL) by cyberscreening of the expressed sequence tags data base, Hum. Mol. Genet. 6:615–625.

    PubMed  CAS  Google Scholar 

  • Torii, K., Sugiyama, S., Takagi, K., Satake, T., and Ozawa, T., 1992, Age-related decrease in respiratory muscle mitochondrial function in rats, Am. J. Respir. Cell Mol. Biol. 6:88–92.

    PubMed  CAS  Google Scholar 

  • Trounce, I., Byrne, E., and Marzuki, S., 1989, Decline in skeletal muscle mitochondrial respiratory chain function: Possible factor in aging, Lancet 1:637–639.

    PubMed  CAS  Google Scholar 

  • Trumpower, B. L., and Gennis, R. B., 1993, Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation, Annu. Rev. Biochem. 63:675–716.

    Google Scholar 

  • Van Tuyle, G. C., Gudikote, J. P., Hurt, V. R., Miller, B. B., and Moore, C. A., 1996, Multiple, large deletions in rat mitochondrial DNA: Evidence for a major hot spot, Mutat. Res. 349:95–107.

    PubMed  CAS  Google Scholar 

  • Wallace, D. C., 1992a, Mitochondrial genetics: A paradigm for aging and degenerative diseases? Science 126:628–632.

    Google Scholar 

  • Wallace, D. C., 1992b, Diseases of the mitochondrial DNA, Annu. Rev. Biochem. 61:1175–1212.

    PubMed  CAS  Google Scholar 

  • Wallace, D. C., Zheng, X., Lott, M. T., Shoffner, J. M., Hodge, J. A., Kelley, R. L., Epstein, C. M., and Hopkins, L. C., 1988, Familial mitochondrial encephalomyopathy (MERRF): Genetic, pathophysiological and biochemical characterization of a mitochondrial DNA disease, Cell 55:601–610.

    PubMed  CAS  Google Scholar 

  • Wallace, D. C., Bohr, V. A., Cortopassi, G., Kadenbach, B., Linn, S., Linnane, A. W., Richter, C., and Shay, J. W., 1995, The role of bioenergetics and mitochondrial DNA mutations in aging and age-related diseases, in Molecular Aspects of Aging (K. Esser and G. M. Martin, eds.), pp. 199–225, John Wiley & Sons, Chichester, England.

    Google Scholar 

  • Wiesner, R. J., Kurowski, T. T., and Zak, R., 1992, Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome c oxidase in rat liver and skeletal muscle, Mol. Endocrinol. 6:1458–1467.

    PubMed  CAS  Google Scholar 

  • Yen, T.-C., Pang, C.-Y., Hsieh, R.-H., Su, C.-H., King, K.-L., and Wei, Y-H., 1992, Age-dependent 6kb deletion in human liver mitochondrial DNA, Biochem. Int. 26:457–468.

    PubMed  CAS  Google Scholar 

  • Yu, B. P., 1995, Putative interventions, in Aging (E. J. Masoro, ed.), pp. 613–631, Handbook of Physiology, Oxford University Press.

    Google Scholar 

  • Zeviani, M., Moraes, C. T., DiMauro, S., Nakase, H., Bonilla, E., Schon, E. A., and Rowland, L. P., 1988, Deletions of mitochondrial DNA in Kearns-Sayre syndrome, Neurology 38:1339–1345.

    PubMed  CAS  Google Scholar 

  • Zhang, C., Baumer, A., Maxwell, R. J., Linnane, A. W., and Nagley, P., 1992, Multiple mitochondrial DNA deletions in an elderly human individual, FEBS Lett. 297:34–38.

    PubMed  CAS  Google Scholar 

  • Zhang, C., Linnane, A. W., and Nagley, P., 1993, Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans, Biochem. Biophys. Res. Commun. 195:1104–1110.

    PubMed  CAS  Google Scholar 

  • Zhang, C., Peters, L. E., Linnane, A. W., and Nagley, P., 1996, Comparison of different quantitative PCR procedures in the analysis of the 4977-bp deletion in human mitochondrial DNA, Biochem. Biophys. Res. Commun. 223:450–455.

    PubMed  CAS  Google Scholar 

  • Zhang, C., Liu, V. W S., and Nagley, P., 1997a, Gross mosaic pattern of mitochondrial DNA deletions in skeletal muscle tissues of an individual adult human subject, Biochem. Biophys. Res. Commun. 233:56–60.

    PubMed  CAS  Google Scholar 

  • Zhang, C., Bills, M., Quigley, A., Maxwell, R. J., Linnane, A. W., and Nagley, P., 1997b, Varied prevalence of age-associated mitochondrial DNA deletions in different species and tissues: A comparison between human and rat, Biochem. Biophys. Res. Commun. 230:630–635.

    PubMed  CAS  Google Scholar 

  • Zucchini, C., Pugnaloni, A., Pallotti, F., Solmi, R., Climi, M., Castaldini, C., Biagini, G., and Lenaz, G., 1995, Human skeletal muscle mitochondria in aging: Lack of detectable morphological and enzymic defects, Biochem. Mol. Biol. Int. 37:607–616.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gadaleta, M.N. et al. (1999). Age-Linked Changes in the Genotype and Phenotype of Mitochondria. In: Papa, S., Guerrieri, F., Tager, J.M. (eds) Frontiers of Cellular Bioenergetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4843-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4843-0_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7196-0

  • Online ISBN: 978-1-4615-4843-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics