Skip to main content

The Molecular Genetics of Conotruncal Defects

  • Chapter
Molecular Genetics of Cardiac Electrophysiology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 231))

  • 109 Accesses

Abstract

Although conotruncal defects account for approximately 16% of all types of congenital heart disease (1), little is known about the molecular genetics of these malformations. Epidemiologic studies, naturally occurring animal models and animal experimentation support a genetic contribution to this class of disorders. However, identification of specific genetic etiologies has been difficult to accomplish for several reasons. First, unlike many of the disorders discussed previously in this textbook, most probands with severe conotruncal defects have not historically survived to reproduce so that families with many affected members do not exist. Most cases of conotruncal defects appear to be sporadic rather than familial. Therefore, investigators have not been able to perform linkage analyses to identify chromosomal disease loci or genes. Second, until more recently, very little was known of the developmental pathways and specific proteins involved in conotruncal and cardiac development so that candidate genes for human disease could not be proposed. Third, most probands with a conotruncal defect have normal standard karyotypes, so clues as to where disease genes might map are also uncommon. Nonetheless, significant progress has been made recently and more discoveries are likely to be made through the analysis of genetic syndromes in which congenital heart disease is a major feature. Moreover, a multitude of genes that contribute to conotruncal development are now being identified in mammalian models. These genes begin to unravel the developmental pathways that contribute to outflow tract formation and may turn out to be disease-related in some cases. Though much work remains to be done, the prospects of understanding specific genetic etiologies of these malformations are increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perry LW, Neill CA, Ferencz C, Rubin JD, Loffredo CA.. Infants with congenital heart disease: the cases. In Perspectives in Pediatric Cardiology. Epidemiology of Congenital Heart Disease, the Baltimore-Washington Infant Study 1981-1989. C. Ferencz, J. D. Rubin, C. A. Loffredo, and C. A. Magee, editors. Futura, NY. 1993, 33–62.

    Google Scholar 

  2. Pankau R, Siekmeyer W, Stoffregen R. Tetralogy of Fallot in three sibs. Am J Med Genet 1990;37:532–533.

    Article  PubMed  CAS  Google Scholar 

  3. Wulfsberg EA, Zintz EJ, Moore JW. The inheritance of conotruncal malformations: a review and report of two siblings with tetralogy of Fallot with pulmonary atresia. Clin Genet 1991;40:12–16.

    Article  PubMed  CAS  Google Scholar 

  4. Pacileo G, Musewe NN, Calabro R. Tetralogy of Fallot in three siblings. Eur J Pediatr 1992;151:726–727.

    Article  PubMed  CAS  Google Scholar 

  5. Friedberg DZ. Tetralogy of Fallot with right aortic arch in three successive generations. Am J Dis Child 1974;127:877–878.

    PubMed  CAS  Google Scholar 

  6. Brunson SC, Nudel DB, Gootman N, Aftalion B. Truncus arteriosus in a family. Am Heart J 1978;96:419–420.

    Article  PubMed  CAS  Google Scholar 

  7. Gobel JW, M. E. M. Pierpont, J. H. Moller, A. Singh, and J. E. Edwards. 1993. Familial interruption of the aortic arch. Ped. Card. 14:110–115.

    Article  CAS  Google Scholar 

  8. Rein, A. J. J. T. and R. Sheffer. 1994. Genetics of conotruncal malformations: further evidence of autosomal recessive inheritance. Am. J. Med. Genet 50:302–303.

    Article  PubMed  CAS  Google Scholar 

  9. Miller, M. E. and D. W. Smith. 1979. Conotruncal malformation complex: examples of possible monogenic inheritance. Pediatrics 63:890–893.

    PubMed  CAS  Google Scholar 

  10. Jones, M. C. and J. D. Waldman. 1985. An autosomal dominant syndrome of characteristic facial appearance, preauricular pits, fifth finger clinodactyly, and tetralogy of Fallot. Am. J. Med Genet. 22:135–141.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, S.-C. and N. D’Souza. 1990. Familial tetralogy of Fallot and glaucoma. Am. J. Med. Genet. 37:40–41.

    Article  PubMed  CAS  Google Scholar 

  12. Boon, A. R., M. B. Farmer, and D. F. Roberts. 1972.A family study of Fallot’s tetralogy.J Med. Genet. 9:179–192.

    Article  PubMed  CAS  Google Scholar 

  13. Ando, M., A. Takao, and K. Mori. 1977. Genetic and environmental factors in congenital heart disease. In Gene-Environmental Interaction in Common Diseases. E. Inouye and H. Nishimura, editors. Baltimore University Park Press, Baltimore. 71–88.

    Google Scholar 

  14. Sanchez-Cascos, A. 1978. The recurrence risk in congenital heart disease. Eur. J. Cardiol. 7/2-3:197–210.

    Google Scholar 

  15. Dennis, N. R., and J. Warren. 1981. Risks to the offspring of patients with some common congenital heart defects. J. Med. Genet. 18:8–16.

    Article  PubMed  CAS  Google Scholar 

  16. Nora, J. J. and H. H. Nora. 1976a. Genetics and environmental factors in the etiology of congenital heart disease. South. Med. J. 69:919–926.

    Article  PubMed  CAS  Google Scholar 

  17. Zellers, T. M., D. J. Driscoll, and V. V. Michels. 1990. Prevalence of significant congenital heart defects in children of parents with Fallot’s tetralogy. Am. J. Cardiol. 65:523–526.

    Article  PubMed  CAS  Google Scholar 

  18. Nora, J. J. and A. H. Nora. 1988. Update on counseling the family with a first-degree relative with a congenital heart defect. Am. J. Med. Genet. 29:137–142.

    Article  PubMed  CAS  Google Scholar 

  19. Burn, J., P. Brennan, J. Little, et al. 1998. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. The Lancet 351:311–316.

    Article  CAS  Google Scholar 

  20. Digilio, M. C, B. Marino, A. Giannotti, A. Toscano, and B. Dallapiccola. 1997. Recurrence risk figures for isolated tetralogy of Fallot after screening for 22q11 microdeletion. J. Med. Genet. 34:188–190.

    Article  PubMed  CAS  Google Scholar 

  21. Singh, H., P. J. Bolton, and C. M. Oakley. 1982. Pregnancy after surgical correction of tetralogy of Fallot. Br. Med J. 285:168–170.

    Article  CAS  Google Scholar 

  22. Nora, J. J. and A. H. Nora. 1976b. Recurrence risks in children having one parent with a congenital heart disease. Circulation 53:701–702.

    Article  PubMed  CAS  Google Scholar 

  23. Nora, J. J. and A. H. Nora. 1987. Maternal transmission of congenital heart diseases: new recurrence risk figures and the questions of cytoplasmic inheritance and vulnerability to teratogens. Am. J. Cardiol. 59:459–463.

    Article  PubMed  CAS  Google Scholar 

  24. Czeizel, A., A. Pornoi, E. Peterffy, and E. Tarcal. 1982. Study of children of parents operated on for congenital cardiovascular malformations. Br. Heart J. 47:290–293.

    Article  PubMed  CAS  Google Scholar 

  25. Emmanuel, R., J. Somerville, A. Inns, and R. Withers R. 1983. Evidence of congenital heart disease in the offspring of parents with atrioventricular defects. Br. Heart J. 49:144–147.

    Article  Google Scholar 

  26. Rose, V., R. J. M. Gold, G. Lindsay, and M. Allen. 1985. A possible increase in the incidence of congenital heart defects among offspring of affected parents. J. Am. Coll. Cardiol 6:376–382.

    Article  PubMed  CAS  Google Scholar 

  27. Whittemore, R., J. A. Wells, and X. Castellsague. 1994. A second-generation study of 427 probands with congenital heart defects and their 837 children. J. Am. Coll. Cardiol. 23:1459–1467.

    Article  PubMed  CAS  Google Scholar 

  28. Pierpont, M. E. M., J. W. Gobel, J. H. Moller, and J. E. Edwards. 1988. Cardiac malformations in relatives of children with truncus arteriosus or interruption of the aortic arch. Am. J. Cardiol. 61:423–427.

    Article  PubMed  CAS  Google Scholar 

  29. Becker, T. A., R. van Amber, J. H. Moller, and M. E. M. Pierpont. 1996. Occurrence of cardiac malformations in relatives of children with transposition of the great arteries. Am. J. Med. Genet. 66:28–32.

    Article  PubMed  CAS  Google Scholar 

  30. Ferencz, C, C. A. Loffredo, A. Correa-Villasenor, and P. D. Wilson, editors. 1997. Malformations of the Cardiac Outflow Tract. In Genetic & Environmental Risk Factors of Major Cardiovascular Malformations: The Baltimore-Washington Infant Study 1981-1989. Armonk, NY: Futura Publishing Co., Inc., 59–102.

    Google Scholar 

  31. DiGeorge, A. M. 1965. Discussion on a new concept of the cellular basis of immunology. J. Pediatr. 67:907–908.

    Article  Google Scholar 

  32. Conley, M.E., J. B. Beckwith, J. F. K. Mancer, and I. Tenckhoff. 1979. The spectrum of Di George syndrome. J. Pediatr. 94:883–890.

    Article  PubMed  CAS  Google Scholar 

  33. Van Mierop, L. H. S. and L. M. Kutsche. 1986. Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am. J. Cardiol. 58:133–137.

    Article  PubMed  Google Scholar 

  34. de la Chapelle,A., R. Herva, M. Koivisto, and P. A. Aula. 1981. Deletion in chromosome 22 can cause Di George syndrome. Hum. Genet. 57:253–256.

    Article  PubMed  Google Scholar 

  35. Kelley, R. I., E. H. Zackai, B. S. Emanuel, M. Kistenmacher, F. Greenberg, and H. H. Punnell. 1982. The association of the DiGeorge anomalad with partial monosomy of chromosome 22. J. Pediatr. 101:197–200.

    Article  PubMed  CAS  Google Scholar 

  36. Greenberg, F., W. E. Crowder, V. Paschall, J. Colon-Linares, B. Lubianski, and D. H. Ledbetter. 1984. Familial DiGeorge syndrome and associated partial monosomy of chromosome 22. Hum. Genet. 65:317–319.

    Article  PubMed  CAS  Google Scholar 

  37. Greenberg, F., F. F. B. Elder, P. Haffner, H. Northrup, and D. H. Ledbetter. 1988. Cytogenetic findings in a prospective series of patients with DiGeorge anomaly.Am. J. Hum. Genet. 43:605–611.

    PubMed  CAS  Google Scholar 

  38. Bowen, P., H. Pabst, D. Berry, R. Collins-Nakai, and J. J. Hoo. 1986. Thymic deficiency in an infant with a chromosomet(l8;22) t(ql2.2;pl 1.2) pat rearrangement. Clin. Genet. 29:174–177.

    Article  PubMed  CAS  Google Scholar 

  39. Faed, M. J. W., J. Robertson, J. Swanson Beck, J. I. Carter, B Bose, and M. M. Madlon. 1987. Features of DiGeorge syndrome in a child with 45,XX,-3,-22,+der(3)t(3;22)(p25;q11). J. Med. Genet. 24:255–234.

    Article  Google Scholar 

  40. Mascarello, J. T., J. F. Bastian, and M. C. Jones. 1989. Interstitial deletion of chromosome 22 in a patient with the DiGeorge malformation sequence. Am. J. Med. Genet. 32:112–114.

    Article  PubMed  CAS  Google Scholar 

  41. Driscoll, D. A., M. L. Budarf, H. McDermid, and B. S. Emanuel. 1990. Molecular analysis of DiGeorge syndrome: 22q11 interstitial deletions. Am. J. Hum. Genet. 47(suppl):A215.

    Google Scholar 

  42. Driscoll, D. A., M. L. Budarf, and B. S. Emanuel. 1992a. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am. J. Hum. Genet. 50:924–933.

    PubMed  CAS  Google Scholar 

  43. Driscoll, D. A., J. Salvin, B. Sellinger, M. L. Budarf, D. M. McDonald-McGinn, E. H.Zackai, and B. S. Emanuel. 1993. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counseling and prenatal diagnosis. J. Med. Genet. 30:813–817

    CAS  Google Scholar 

  44. Scambler, P. J., A. H. Carey, R. K. H. Wyse, S. Roach, J. P. Dumanski, M. Nordenskjold, and R. Williamson. 1991. Microdeletions within 22q11 associated with sporadic and familial DiGeorge syndrome. Genomics 10:201–206.

    Article  PubMed  CAS  Google Scholar 

  45. Carey, A. H., D. Kelly, S. Halford, R. et al. 1992. Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am. J. Hum. Genet. 51:964–970.

    PubMed  CAS  Google Scholar 

  46. Shprintzen, R. J., R. B. Goldberg, M. L. Lewin, et al. 1978. A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: Velo-Cardio-Facial syndrome. Cleft Palate J. 15:56–62.

    PubMed  CAS  Google Scholar 

  47. Stevens, C. A., J. C. Carey, and A. O. Shigeoka. 1990. DiGeorge anomaly and velo-cardio-facial syndrome. Pediatr. 85:526–530.

    CAS  Google Scholar 

  48. Young, D., R. J. Shprintzen, and R. B. Goldberg. 1980.Cardiac malformations in the velo-cardio-facial syndrome. Am. J. Cardiol 46:643–647.

    Article  PubMed  CAS  Google Scholar 

  49. Driscoll, D. A., N. B. Spinner, M. L. Budarf, et al. 1992. Deletions and microdeletions of 22q11.2 in velo-cardio-facial syndrome. Am. J. Med. Genet. 44:261–268.

    Article  PubMed  CAS  Google Scholar 

  50. Kinouchi, A., K. Mori, M. Ando, and A. Takao. 1976. Facial appearance of patients with conotruncal anomalies. Pediatr. Jpn. 17:84.

    Google Scholar 

  51. Kinouchi, A. 1980. A study on specific peculiar facial features of conotruncal anomaly. J Tokyo Women’s Med. Coll. (in Japanese) 50:396–409.

    Google Scholar 

  52. Burn, J., A. Takao, D. Wilson, I. Cross, K. Momma, R. Wadey, P. Scambler, and J. Goodship. 1993. Conotruncal anomaly face syndrome is associated with a deletion within chromosome 22. J. Med. Genet. 30:822–824.

    Article  PubMed  CAS  Google Scholar 

  53. Ryan, A. K., J. A. Goodship, D. I. Wilson, et al. 1997. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J. Med. Genet. 34:798–804.

    Article  PubMed  CAS  Google Scholar 

  54. McDonald-McGinn, D. M., D. LaRossa, E. Goldmuntzet al. 1997. The 22q11.2 deletion: Screening, diagnostic workup, and outcome of results; report on 181 patients. Genetic Testing 1:99–108.

    Article  PubMed  CAS  Google Scholar 

  55. Leana-Cox, J., S. Pangkanon, K. R. Eanet, M. S. Curtin, and E. A. Wulfsberg. 1996. Familial DiGeorge/velocardiofacial syndrome with deletions of chromosome area 22q11: report of five families with a review of the literature. Am. J. Med. Genet. 65:309–316.

    Article  PubMed  CAS  Google Scholar 

  56. Driscoll, D. A., M. Li, P. Chien, S. et al. 1995. Familial 22q11 deletions: phenotypic variability and determination of deletion boundaries by FISH [Abstract]. A m. J. Hum. Genet. 57:A33.

    Google Scholar 

  57. Carlson C, H. Sirotkin, R. Pandita, et al. 1997. Molecular definition of 22q11 deletions in 151 velo-cardio-facial syndrome patients. Am. J. Hum. Genet. 61:620–629.

    Article  PubMed  CAS  Google Scholar 

  58. Kurahashi, H., E. Tsuda, R. Kohama, et al. 1997. Another critical region for deletion of 22q 11: a study of 100 patients. Am. J. Med. Genet. 72:180–185.

    Article  PubMed  CAS  Google Scholar 

  59. Rauch, A., R. A. Pfeiffer, G. Leipold, H. Singer, M. Tigges, and M. Hofbeck. 1999. A novel 22q11.2 microdeletion in DiGeorge syndrome. Am. J. Hum. Genet. 64:659–667.

    Article  PubMed  CAS  Google Scholar 

  60. Emanuel, B. S., M. L. Budarf, and P. J. Scambler. 1999. The genetic basis of conotruncal cardiac defects: the chromosome 22q11.2 deletion. In Heart Development. R. P. Harvey and N. Rosenthal, editors. Academic Press, New York. 463–478.

    Chapter  Google Scholar 

  61. Galili, N., H. S. Baldwin, J. Lund, et al. 1997. A region of mouse chromosome 16 issyntenic to the DiGeorge, velocardiofacial syndrome minimal critical region.Genome Research 7:17–26.

    Article  PubMed  CAS  Google Scholar 

  62. Lewin, M. B., E. A. Lindsay, V. Jurecic, V. Goytia, J. A. Towbin, and A. Baldini. 1997. A genetic etiology for interruption of the aortic arch type B. Am. J. Cardiol. 80:493–497.

    Article  PubMed  CAS  Google Scholar 

  63. Goldmuntz, E., B. J. Clark, L. E. Mitchell, et al. 1998. Frequency of 22q11 deletionsin patients with conotruncal defects. J. Am. Coll. Cardiol. 32:492–498.

    Article  PubMed  CAS  Google Scholar 

  64. Rauch, A., M. Hofbeck, G. Leipold, et al.. 1998. Incidence and significance of 22q11.2 hemizygosity in patients with interrupted aortic arch. Am. J. Med. Genet. 78:322–331.

    Article  PubMed  CAS  Google Scholar 

  65. Momma, K., M. Ando, and R Matsuoka. 1997. Truncus arteriosuscommunis associated with chromosome 22q11 deletion. J. Am. Coll Cardiol. 30:1067–1071.

    Article  PubMed  CAS  Google Scholar 

  66. Amati, F., F. Mari, M. C. Digilio, et al. 1995. 22q11 deletions in isolated and syndromic patients with tetralogy of Fallot. Hum. Genet. 95:472–482.

    Article  Google Scholar 

  67. Takahashi, K., S. Kido, K. Hoshino, K. Ogawa, H. Ohashi, and Y. Fukushima. 1995. Frequency of a 22q11 deletion in patients with conotruncal cardiac malformations: a prospective study. Eur. J. Pediat. 154:878–881.

    Article  CAS  Google Scholar 

  68. Trainer, A.H., N. Morrison, A. Dunlop, N. Wilson, and J Tolmie. 1996. Chromosome 22q11 microdeletions in tetralogy of Fallot. Arch. Dis. Child. 74:62–63.

    CAS  Google Scholar 

  69. Digilio, M. C, B. Marino, S Grazioli, D. Agostino, A. Giannotti, and B. Dallapiccola. 1996. Comparison of occurrence of genetic syndromes in ventricular septal defect with pulmonic stenosis (classic tetralogy of Fallot) versus ventricular septal defect with pulmonic atresia. Am. J. Cardiol. 77:1375–1376.

    Article  PubMed  CAS  Google Scholar 

  70. Chessa, M, G. Butera, P. Bonhoeffer, et al. 1998. Relation of genotype 22q11 deletion to phenotype of pulmonary vessels in tetralogy of Fallot and pulmonary atresia-ventricular septal defect. Heart 79:186–190.

    PubMed  CAS  Google Scholar 

  71. Johnson, M. C, A. W. Strauss, S. B. Dowton, et al. 1995. Deletion within chromosome 22 is common in patients with absent pulmonary valve syndrome. Am. J. Cardiol. 76:66–69.

    Article  PubMed  CAS  Google Scholar 

  72. Melchionda, S., M. C. Diglio, R. Mingarelli et al. 1995. Transposition of the great arteries associated with deletion of chromosome 22q11. Am. J. Cardiol. 75:95–98.

    Article  PubMed  CAS  Google Scholar 

  73. Marble, M., E. Morava, R. Lopez, M. Pierce, and R. Pierce. 1998. Report of a new patient with transposition of the great arteries with deletion of 22q11.2. Am. J. Med. Genet. 78:317–318.

    Article  PubMed  CAS  Google Scholar 

  74. Momma, K., C. Kondo, M. Ando, R. Matsuoka, and A. Takao. 1995. Tetralogy of Fallot associated with chromosome 22q11 deletion. Am. J. Cardiol 76:618–621.

    Article  PubMed  CAS  Google Scholar 

  75. Momma, K., C. Kondo, and R. Matsuoka. 1996. Tetralogy of Fallot with pulmonary atresia associated with chromosome 22q11 deletion. J. Am. Coll. Cardiol 27:198–202.

    Article  PubMed  CAS  Google Scholar 

  76. Yates, R. W. M., F. L. Raymond, A. Cook, and G. K. Sharland. 1996. Isomerism of the atrial appendages associated with 22q11 deletion in a fetus. Heart 76:548–549.

    Article  PubMed  CAS  Google Scholar 

  77. Consevage, M. W., J. R. Seip, D. A. Belchis, A. T. Davis, B. G. Baylen, and P. K. Rogan. 1996. Association of a mosaic chromosomal 22q11 deletion with hypoplastic left heart syndrome. Am. J. Cardiol 77:1023–1025.

    Article  PubMed  CAS  Google Scholar 

  78. Webber, S. A., E. Hatchwell, J. C. K. Barber, et al. 1996. Importance of microdeletions of chromosomal region 22q11 as a cause of selected malformations of the ventricular outflow tracts and aortic arch: a three-year prospective study. J. Pediatr. 129:26–32.

    Article  PubMed  CAS  Google Scholar 

  79. Digilio, M. C, B. Marino, A. Giannotti, R. Mingarelli, and B. Dallapiccola. 1999. Guidelines for 22q11 deletion screening of patients with conotruncal defects. J. Am. Coll. Cardiol 33:1746–1747.

    Article  PubMed  CAS  Google Scholar 

  80. Johnson, M. C, M. S. Watson, and A. W. Strauss. 1996. Chromosome 22q11 monosomy and the genetic basis of congenital heart disease. J. Pediatr. 129:1–3.

    Article  PubMed  CAS  Google Scholar 

  81. Goldmuntz, E., B. J. Clark, L. E. Mitchell, et al. 1999. Guidelines for 22q11 deletion screening of patients with conotruncal defects [Reply]. J. Am. Coll Cardiol 33:1747–1748.

    Article  Google Scholar 

  82. Van Essen, A. J., C. J. F. Schoots, R. A. van Lingen, M. J. E. Mounts, J. H. A. M. Tuerlings, and B. Leegte. 1993. Isochromosome 18q in a girl with holoprosencephaly, DiGeorge anomaly, and streak ovaries. Am. J. Med. Genet. 47:85–88.

    Article  PubMed  Google Scholar 

  83. Lindgren, V., B. Rosinsky, J. Chin, and E. Berry-Kravis. 1994. Two patients with overlapping de novo duplications of the long arm of chromosome 9, including one case with DiGeorge sequence. Am. J. Med. Genet. 49:67–73.

    Article  PubMed  CAS  Google Scholar 

  84. Monaco, G., C. Pignata, E. Rossi, O. Mascellaro, S. Cocozza, and F. Ciccimarra. 1991. DiGeorge anomaly associated with 10p deletion. Am. J. Med. Genet. 39:215–216.

    Article  PubMed  CAS  Google Scholar 

  85. Lipson, A., K. Fagan, A. Colley, P. Colley, G. Sholler, D. Isaacs, and R. K. Oates. 1996. Velo-cardio-facial and partial DiGeorge phenotype in a child with interstitial deletion at 10p13-implications for cytogenetics and molecular biology. Am. J. Med. Genet. 65:304–308.

    Article  PubMed  CAS  Google Scholar 

  86. Daw, S. C. M., C. Taylor, M. Kraman, et al. 1996. A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nature Genet. 13:458–460.

    Article  PubMed  CAS  Google Scholar 

  87. Schuffenhauer, S., P. Lichtner, P. Peykar-Derakhshandeh, et al. 1998. Deletion mapping on chromosome 10p and definition of a critical region for the second DiGeorge syndrome locus (DGS2). Eur. J. Hum. Genet. 6:213–225.

    Article  PubMed  CAS  Google Scholar 

  88. Dasouki, M., V. Jurecic, J. A. Phillips, III, J. A. Whitlock, and A. Baldini. 1997. DiGeorge anomaly and chromosome 10p deletions: one or two loci? Am. J. Med. Genet. 73:72–75.

    Article  PubMed  CAS  Google Scholar 

  89. Gottlieb, S., D. A. Driscoll, H. H. Punnett, B. Sellinger, B. S. Emanuel, and M. L. Budarf. 1998. Characterization of 10p deletions suggests two nonoverlapping regions contribute to the DiGeorge syndrome phenotype. Am. J. Hum. Genet. 62:495–498.

    Article  PubMed  CAS  Google Scholar 

  90. Emerick, K. M, E. B. Rand, E. Goldmuntz, I. D. Krantz, N. B. Spinner, and D. A. Piccoli. 1999. Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829.

    Article  PubMed  CAS  Google Scholar 

  91. Li, L., I. D. Krantz, Y. Deng, et al.. 1997. Alagille syndrome is caused by mutations in human Jaggedl, which encodes a ligand for Notch 1. Nat. Genet. 16:243–251.

    Article  PubMed  CAS  Google Scholar 

  92. Oda, T., A. G. Elkahloun, B. L. Pike, et al. 1997. Mutations in the human Jaggedl gene are responsible for Alagille syndrome. Nat. Genet. 16:235–242.

    Article  PubMed  CAS  Google Scholar 

  93. Watson, G. H. and V. Miller. 1973.. Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch. Dis. Child. 48:459–466.

    Article  PubMed  CAS  Google Scholar 

  94. Krantz, I.,R. Smith, R.P. Colliton, H. Tinkel, E. H. Zackai, D. A. Piccoli, E. Goldmuntz, and N. B. Spinner. 1999. Jaggedl mutations in patients ascertained with isolated congenital heart defects. Am. J. Med. Genet. 84:56–60.

    Article  PubMed  Google Scholar 

  95. Smith, R. E. Goldmuntz, J. Shin, I. D. Krantz, and N. B. Spinner. 1998. Human Jaggedl mutations in patients presenting with Tetralogy of Fallot [Abstr]. Am. J. Hum. Genet. 63(suppl 4):A3.

    Google Scholar 

  96. Korenberg, J. R., C. Bradley, and C. M. Disteche. 1992. Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis. Am. J. Hum. Genet. 50:294–302.

    PubMed  CAS  Google Scholar 

  97. Korenberg, J. R., X.-N. Chen, R. Schipper, Z. Sun, R. Gonsky, S. Gerwehr, N. Carpenter, C. Daumer, P. Dignan, C. Disteche, J. M. Graham, Jr., L. Hugdins, B. McGillivray, K. Miyazaki, N. Ogasawara, J. P. Park, R. Pagon, S. Pueschel, G. Sack, B. Say, S. Schuffenhauer, S. Soukup, and T. Yamanaka. 1994. Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc. Natl. Acad. Sci. USA. 91:4997–5001

    Article  PubMed  CAS  Google Scholar 

  98. Gelb, B. D., Towbin, J. A., E. R. B. McCabe, and E. Sujansky.1991. San Luis Valley recombinant chromosome 8 and tetralogy of Fallot: a review of chromosome 8 anomalies and congenital heart disease. Am. J. Med. Genet. 40:471–

    Article  PubMed  CAS  Google Scholar 

  99. Schott, J. J., D. W. Benson, C. T. Basson, W. Pease, G. M. Silberbach, J. P. Moak, B. J. Maron, C. E. Seidman, and J. G. Seidman. 1998. Congenital heart disease caused by mutations in the transcription factor NKX2–5. Science 281:108–111.

    Article  PubMed  CAS  Google Scholar 

  100. Stephenson, D.A., M. Mercola, E. Anderson, et al. 1991. Platelet-derived growth factor receptor a-subunit gene (Pdgfra) is deleted in the mouse patch (Ph) mutation. Proc. Natl. Acad. Sci. U.S.A. 88:6–10.

    Article  PubMed  CAS  Google Scholar 

  101. Schatteman, G. C, S. T. Motley, E. L. Effmann, and D. F. Bowen-Pope. 1995. Platelet-derived growth factor receptor alpha subunit deleted Patch mouse exhibits severe cardiovascular dysmorphogenesis. Teratology 51:351–366.

    Article  PubMed  CAS  Google Scholar 

  102. Tremblay P. and P. Gruss. 1994. Pax: Genes for mice and men. Pharmac. Ther. 61:205–225.

    Article  CAS  Google Scholar 

  103. Patterson, D. F., T. Pexleder, W. R. Schnarr, T. Navratil, and R. Alaili. 1993. A single major-gene defect underlying cardiac conotruncal malformations interferes with myocardial grown during embryonic development: studies in the CTD line ofkeeshond dogs. Am. J. Hum. Genet. 52:388–397.

    PubMed  CAS  Google Scholar 

  104. Kurihara, Y., H. Kurihara, H. Oda, K. Maemura, R. Nagai, T. Ishikawa, and Y. Yazaki. 1995. Aortic arch malformations and ventricular septal defect in mice deficient in endothelion-1. J. Clin. Invest. 96:293–300.

    Article  PubMed  CAS  Google Scholar 

  105. Chisaka, I. and Capecchi, M.R. 1991. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350:473–479.

    Article  PubMed  CAS  Google Scholar 

  106. Franz, T. 1989. Persistent truncus arteriosus in the splotch mutant mouse. Anat. Embryol. 180:457–464.

    Article  PubMed  CAS  Google Scholar 

  107. Brannan, C. I., A. S. Perkins, K. S. Vogel, et al. 1994. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes & Dev. 8:1019–1029.

    Article  CAS  Google Scholar 

  108. Schilham, M. W., M. A. Oosterwegel, P. Moerer, et al. 1996. Defects in cardiac outflow tract formation and PRO-B lymphocyte expansion in mice lacking Sox-4. Nature 380:711–714.

    Article  PubMed  CAS  Google Scholar 

  109. Donovan, M. J., R. Hahn, L. Tessarollo, and B. L. Hempstead. 1996. Identification of an essential nonneuronal function of neutrophin 3 in mammalian cardiac development. Nature Genet. 14:210–213.

    Article  PubMed  CAS  Google Scholar 

  110. Suzuki, H. R., B. J. Padanilam, B. Vitale, F. Ramirez, and M. Solursh. 1991. Repeating developmental expression of G-Hox7, a novel homeobox-containing gene in the chicken.. Devel. Biol. 148:375–388.

    Article  CAS  Google Scholar 

  111. Pelton, R. W., B. Saxena, M. Jones, H. L. Moses and L. I. Gold. 1991. Immunohistochemical localization of TGFαl, TGFα2, and TFGα3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J. Cell Biol. 115:1091–1105.

    Article  PubMed  CAS  Google Scholar 

  112. Wall, N. A. and B. L. M. Hogan. 1994. TGF-α related genes in development. Curr. Opin Genet. Dev. 4:517–522.

    Article  PubMed  CAS  Google Scholar 

  113. Kingsley, D. M. 1996. The TGF-α superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes & Dev. 8:133–146.

    Google Scholar 

  114. Nishimura, D. Y., A. F. Purchio, and J. C. Murray. 1993.Linkage localization of TGFα2 and the human homeobox gene HLX1 to chromosome 1q. Genomics 15:357–364.

    Article  PubMed  CAS  Google Scholar 

  115. Gruber, P. J., S. W. Kubalak., T. Pexieder., H. M. Suvoc, R. M. Evans, and K. R. Chien. 1996. RXRα deficiency confers genetic susceptibiliy for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J. Clin. Invest. 98:1332–1343.

    Article  PubMed  CAS  Google Scholar 

  116. Lee, R. Y., R. M. Evans, V. Giguere, and H. M. Sucov. 1997. Compartment-selective sensitivity of cardiovascular morphogenesis to combinations ofretinoic acid receptor gene mutations. Circ. Res. 80:757–764.

    Article  PubMed  CAS  Google Scholar 

  117. Sucov, H. M., E. Dyson, C. L Gumeringer, J. Price, K. R. Chien, and R. M. Evans. 1994. RXRa mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes & Dev. 8:1007–1018.

    Article  CAS  Google Scholar 

  118. Mendelsohn, C, M. Mark, P. Dolle, et al. 1994. Retinoic acid receptor beta 2 (RAR beta 2) null mutant mice appear normal. Dev. Biol. 166:246–258.

    Article  PubMed  CAS  Google Scholar 

  119. Li, J.-Y., X.-E. Hou, and A. Dahlstrom. 1995. GAP-43 and its relation to autonomic and sensory neurons in sciatic nerve and gastrocnemius muscle in the rat. J. Auton. Nerv. Sys 50:299–309.

    Article  CAS  Google Scholar 

  120. Baldini A. Is the genetic basis of DiGeorge syndrome all in the HAND? Nat Genet 1999:21:246–247.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldmuntz, E. (2000). The Molecular Genetics of Conotruncal Defects. In: Berul, C.I., Towbin, J.A. (eds) Molecular Genetics of Cardiac Electrophysiology. Developments in Cardiovascular Medicine, vol 231. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4517-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4517-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7037-6

  • Online ISBN: 978-1-4615-4517-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics