Skip to main content

Nonseparation Electrochemical Enzyme Immunoassay Using Microporous Gold Electrodes

  • Chapter
Biosensors and Their Applications
  • 426 Accesses

Abstract

In recent years, the coupling of immunological reactions to electrochemical and optical detectors has led to a flurry of research in the area of immunosensor technology. 1 - 15 While there have been extensive efforts to devise so-called “direct” immunosensors, where antibodies are immobilized on the surface of a transducer and the immunological binding reaction is monitored via a change in, e.g., innate fluorescence, surface refractive index, or electrical capacitance, the most successful immunosensors from a practical analytical point of view are those that involve the use of labeled reagents (e.g., enzymes, fluorophores). Indeed, such methods are rather similar to their more classical immunoassay counterparts, except that the antibodies are immobilized on the surface of the transducer (e.g., electrode, optical fiber), rather than on the walls of microtiter plates, magnetic particles, or some other solid-phase material. Hence, in many of the immunosensor methods reported to date, where labeled reagents are utilized, extensive washing steps to remove unbound labeled species are required 6 - 13, 14. Hrein, we review recent efforts to devise a novel electrochemical enzyme immunoassay arrangement capable of detecting both large and small molecules at low concentrations without the need for any discrete separation or washing steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Place JF, Sutherland RM, Dahne C. Opto-electronic immunosensors: a review of optical immunoassay at continuous surfaces. Biosensors 1985;1:321-353.

    Article  PubMed  CAS  Google Scholar 

  2. Di Gleria H, Hill HA, McNeil CJ. Homogeneous ferrocene-mediated amperometric immunoassay. Anal Chem 1986;58:1203-1205.

    Article  PubMed  CAS  Google Scholar 

  3. Bush DL, Rechnitz GA. Monoclonal antibody biosensor for antigen monitoring. Anal Lett 1987;20:1781-1790.

    Article  CAS  Google Scholar 

  4. Bier FF, Stochlein W, Bocher M, et al. Use of a fibre optic immunosensor for the detection of pesticides. Sens Act B 1992;7:509-512.

    Article  Google Scholar 

  5. Lu B, Lu C, Wei Y. A planar quartz waveguide immunosensor based on TIRF principle. Anal Lett 1992;25:1-10.

    Article  CAS  Google Scholar 

  6. Miura N, Higobashi H, Sakai G, et al. Piezoelectric crystal immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Sens Act B 1993;13/14:188-191.

    Article  Google Scholar 

  7. Wong RB, Anis N, Eldefrawi ME. Reusable fiber-optic-based immunosensor for rapid detection of imazethapyr herbicide. Anal Chim Acta 1993;279:141-147.

    Article  CAS  Google Scholar 

  8. Souteyrand E, Martin JR, Martelet C. Direct detection of biomolecules by electrochemical impedance measurements. Sens Act B 1994;20:63-69.

    Article  CAS  Google Scholar 

  9. Bier GG, Jockers R, Schmid RD. Integrated optical immunosensor for s-triazine determination: regeneration, calibration and limitations. Analyst 1994;119:437-441.

    Article  CAS  Google Scholar 

  10. Bier FF, Schmid RD. Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection. Biosens Bioelectron 1994;9:125-130.

    Article  CAS  Google Scholar 

  11. Dubrovsky T, Vakula S, Nicolini C. Preparation and immobilization of Langmuir-Blodgett films of antibodies conjugated to enzymes for potentiometric sensor application. Sens Act B 1994;22:69-73.

    Article  Google Scholar 

  12. Minunni M, Skladal P, Mascini M. A piezoelectric quartz crystal biosensor as a direct affinity sensor. Anal Lett 1994;27:1475-1487.

    Article  CAS  Google Scholar 

  13. Deasy B, Dempsey E, Smyth MR, et al. Development of an antibody-based biosensor for determination of 7-hydroxycoumarin (umbilliferone) using horseradish peroxidase labeled anti-7-hydroxycoumarin antibody. Anal Chim Acta 1994;294:291-297.

    Article  CAS  Google Scholar 

  14. Kalab T, Skladal P. A disposable amperometric immunosensor for 2,4-dichlorophenoxyacetic acid. Anal Chim Acta 1995;304:361-368.

    Article  CAS  Google Scholar 

  15. Morgan CL, Newman DJ, Price CP. Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 1996;42:193-209.

    PubMed  CAS  Google Scholar 

  16. Rubenstein KE, Schneider RS, Ullman EF. Homogeneous enzyme immunoassay: new immunochemical technique. Biochem Biophys Res Commun 1972;47:846-851.

    Article  PubMed  CAS  Google Scholar 

  17. Ullman EF, Yoshida RA, Blakemore JI, et al. Mechanism of inhibition of malate dehydrogenase by thyroxine derivatives and reactivation by antibodies. Biochim Biophys Acta 1979;567:66-74.

    Article  PubMed  CAS  Google Scholar 

  18. Ullman EF, Maggio ET. Principles of homogeneous enzyme-immunoassay. In: Maggio ET, ed. Enzyme Immunoassay. Boca Raton: CRC Press, 1980:105-134.

    Google Scholar 

  19. Kabakoff DS, Greenwood HM. Homogeneous enzyme assay. In: Albert KGM, Price CP, eds. Recent Advances in Clinical Biochemistry. Edinburgh: Churchill Livingstone, 1981, pp 1-30.

    Google Scholar 

  20. Van Leite F, Galen RS. Determination of thyroxin by enzyme-immunoassay. In: Maggio ET, ed. Enzyme Immunoassay. Boca Raton: CRC Press, 1980, pp 135-153.

    Google Scholar 

  21. Gibbons I, Skold C, Rowley GL, et al. Homogeneous enzyme immunoassay for proteins employing ß-galactosidase. Anal Biochem 1980;102:167-170.

    Article  PubMed  CAS  Google Scholar 

  22. Henderson DR, Firedman SB, Harris JB, et al. ‘CEDIA’, a new homogeneous immunoassay system. Clin Chem 1986;32:1637-1641.

    PubMed  CAS  Google Scholar 

  23. Khanna PL, Worthy TE. A recombinant protein-based homogeneous immunoassay. Am Clin Lab 1989; October: 14-19.

    Google Scholar 

  24. Khanna PL, Dworschack RT, Mannin WB, et al. A new homogeneous enzyme immunoassay using recombinant enzyme fragments. Clin Chim Acta 1989;185:231-240.

    Article  PubMed  CAS  Google Scholar 

  25. Khana P. Homogeneous enzyme immunoassay. In: Price CP, Newman DJ, eds. Principles and Practice of Immunoassay. New York: Stockton Press, 1991, pp 326-364.

    Google Scholar 

  26. Badley RA, Drake RAL, Shanks IA, et al. Optical biosensors for immunoassays: the fluorescence capillary device. Phil Trans R Soc London Ser 1987;316:143-160.

    Article  CAS  Google Scholar 

  27. Kronick MN, Little WA. A new fluorescent immunoassay. Bull Amer Phys Soc 1973;18:782.

    Google Scholar 

  28. Kronick MN, Little WA. A new immunoassay based on fluorescence excitation by internal reflection spectroscopy. J Immunol Meth 1975;8:235-242.

    Article  CAS  Google Scholar 

  29. Sutherland RM, Dahne C, Place JF, et al. Optical detection of antibody-antigen reactions at a glass-liquid interface. Clin Chem 1984;30:1533-1538.

    PubMed  CAS  Google Scholar 

  30. Parry RP, Love C, Robinson GA. Detection of rubella antibody using an optical immunosensor. J Virol Meth 1990;27:39-48.

    Article  CAS  Google Scholar 

  31. Duan C, Meyerhoff ME. Separation-free sandwich enzyme immunoassays using microporous gold electrodes and self-assembled monolayer/immobilized capture antibodies. Anal Chem 1994;66:1369-1377

    Article  PubMed  CAS  Google Scholar 

  32. Duan C, Meyerhoff ME. Immobilization of proteins on gold coated porous membranes via an activated self-assembled monolayer of thioctic acid. Mikrochim Acta 1995;117:195-206.

    Article  CAS  Google Scholar 

  33. Meyerhoff ME, Duan C, Meusel M. Novel nonseparation sandwich-type electrochemical enzyme immunoassay system for detecting marker proteins in undiluted blood. Clin Chem 1995;41:1378-1384.

    PubMed  CAS  Google Scholar 

  34. Ducey MW, Smith AM, Guo X, et al. Competitive nonseparation electrochemical enzyme binding/ immunoassay (NEEIA) for small molecule detection. Anal Chim Acta 1997;357:5-12.

    Article  CAS  Google Scholar 

  35. Tang H, Lunte C, Halsall H, et al. p-Aminophenyl phosphate: an improved substrate for electrochemical enzyme immunoassay. Anal Chim Acta 1988;214:187-195.

    Article  CAS  Google Scholar 

  36. Christie I, Treloar P, Koochaki Z, et al. Simplified measurement of serum alkaline phosphatase utilizing electrochemical detection of 4-aminophenol. Anal Chim Acta 1992; 257:21-28.

    Article  CAS  Google Scholar 

  37. Duan C. Development of a separation-free sandwich type electrochemical enzyme immunoassay for measuring proteins in undiluted whole blood. Ph.D. Dissertation. University of Michigan, 1995:199-205.

    Google Scholar 

  38. Chen I, Heminger LA. Digoxin and digitoxin. In: Pesce AJ, Kaplan LA eds. Methods in Clinical Chemistry. St. Louis: CV Mosby Co., 1987 pp 897-902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ducey, M.W., Smith, A.M., Smith, R., Duan, C., Meyerhoff, M.E. (2000). Nonseparation Electrochemical Enzyme Immunoassay Using Microporous Gold Electrodes. In: Yang, V.C., Ngo, T.T. (eds) Biosensors and Their Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4181-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4181-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6875-5

  • Online ISBN: 978-1-4615-4181-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics