Skip to main content

Limits to Prediction of Phenotypes from Knowledge of Genotypes

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 32))

Abstract

The fact that natural selection acts on phenotypes but the transmission of traits to the next generation is indirectly accomplished through genes gives rise to a challenging set of problems in evolutionary Biology. In order to understand adaptive evolution, it appears to be essential to first understand how genotypes give rise to observed phenotypes, or more precisely, how variation in phenotypes is mediated by underlying variation in genotypes. As the tools of molecular genetics give an increasingly detailed view of the underlying genetic variation, one would hope that this problem would be solved by the sheer volume of genetic data. Human molecular genetics has produced many significant successes recently, particularly in identifying genes that cause Mendelian disorders. In stark contrast, chronic diseases that exhibit familial clustering but do not segregate like a Mendelian gene have been remarkably difficult to analyze genetically. The focus of this chapter is on the question, “What are the barriers to our understanding of the genetic basis for familiar clustering of chronic diseases?” We will focus on medical genetics rather than the more general problem of genotype-phenotype associations in evolutionary Biology, because knowledge of phenotypic variation is so extensive for humans and the quantity of data on genetic variation is soon going to eclipse that of all other species, if it has not already.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agresti, A., 1990, Categorical Data Analysis, John Wiley & Sons, New York.

    Google Scholar 

  • Beavis, W. D., 1994, The power and deceit of QTL experiments: Lessons from comparative QTL studies, in: Proceedings of the 49th Annual Corn and Sorghum Industry Research Conference, pp. 250–266, American Seed Trade Association, Chicago.

    Google Scholar 

  • Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W., 1975, Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Blyth, C. R., 1971, On Simpson’s paradox and the sure-thing principle, J. Am. Stat. Assoc. 67:364–367.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L., Menozzi, P., and Piazza, A., 1994, The History and Geography of Human Genes, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., Winkler, J., Lockhart, D. J., Morris, M. S., and Fodor, S. P., 1996, Accessing genetic information with high-density DNA arrays, Science 274:610–614.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud J. M., and Routman, E. J., 1995, Epistasis and its contribution to genetic variance components, Genetics 139:1455–1461.

    PubMed  CAS  Google Scholar 

  • Churchill, G. A., and Doerge, R. W., 1994, Empirical threshold values for quantitative trait mapping, Genetics 138:963–971.

    PubMed  CAS  Google Scholar 

  • Clark, A. G., 1987, A test of multilocus interaction in Drosophila melanogaster, Am. Nat. 130:283–299.

    Article  Google Scholar 

  • Clark, A. G., and Wang, L., 1997, Epistasis in measured genotypes: Drosophila P-element insertions, Genetics 147:157–163.

    PubMed  CAS  Google Scholar 

  • Cockerham, C. C., 1954, An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present, Genetics 39:859–882.

    PubMed  CAS  Google Scholar 

  • Damerval, C., Maurice, A., Josse, J. M., and de Vienne, D., 1994, Quantitative trait loci underlying gene product variation: A novel perspective for analyzing regulation of genome expression, Genetics 137:289–301.

    PubMed  CAS  Google Scholar 

  • Doebley, J., and Stec, A., 1991, Genetic analysis of the morphological differences between maize and teosinte, Genetics 129:285–295.

    PubMed  CAS  Google Scholar 

  • Doebley, J., Stec, A., and Gustus, C., 1995, Teosinte branched 1 and the origin of maize: Evidence for epistasis and the evolution of dominance, Genetics 141:333–346.

    PubMed  CAS  Google Scholar 

  • Doerge, R. W., and Churchill, G. A., 1996, Permutation tests for multiple loci affecting a quantitative character, Genetics 142:285–294.

    PubMed  CAS  Google Scholar 

  • Edwards, M. D., Stuber, C. W., and Wendel, J. F., 1987, Molecular-marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action, Genetics 116:113–125.

    PubMed  CAS  Google Scholar 

  • Gibson, G., 1996, Epistasis and pleiotropy as natural properties of transcriptional regulation, Theor. Pop. Biol. 49:58–89.

    Article  CAS  Google Scholar 

  • Haviland M. B., Lussier-Cacan, S., Davignon, J., and Sing, C. F., 1995, Impact of apolipoprotein E genotype variation on means, variances, and correlations of plasma lipid, lipoprotein, and apolipoprotein traits in octogenarians, Am. J. Med. Genet. 58:315–331.

    Article  PubMed  CAS  Google Scholar 

  • Kaprio, J., Farrell, R. E., Kottke, B. A., Kamboh, M. I., and Sing, C. E, 1991, Effects of polymorphisms in apolipoproteins E, A-IV, and H on quantitative traits related to risk for cardiovascular disease, Arterioscler. Thromb. 11:1330–1348.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, S. A., 1993, Origins of Order: Self-organization and Selection in Evolution, Oxford University Press, Oxford, England.

    Google Scholar 

  • Levins, R., and Lewontin, R., 1985, The Dialectical Biologist, Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Long, A. D., Mullaney, S. L., Reid, L. A., Fry, J. D., Langley, C. H., and Mackay, T. F. C., 1995, High resolution mapping of genetic factors affecting abdominal bristle number in D. melanogaster, Genetics 139:1273–1291.

    PubMed  CAS  Google Scholar 

  • Lusis, A. J., 1988, Genetic factors affecting blood lipoproteins: The candidate gene approach, J. Lipid Res. 29:397–429.

    PubMed  CAS  Google Scholar 

  • Malone, K. E., Daling, J. R., Thompson, J. D., O’Brien, C. A., Francisco, L. V., and Ostrander, E. A., 1998, BRCA1 mutations and breast cancer in the general population: Analyses in women before age 35 years and in women before age 45 years with first-degree family history, J. Am. Med. Assoc. 279:922–929.

    Article  CAS  Google Scholar 

  • Neter, J., Wasserman, W., and Kutner, M. H., 1983, Applied Linear Regression Models, Richard D. Irwin, Inc., Home wood, Illinois.

    Google Scholar 

  • Newman, B., Mu, H., Butler, L. M., Millikan, R. C., Moorman, P. C., and King, M. C., 1998, Frequency of breast cancer attributable to BRCA1 in a population-based series of American women, J. Am. Med. Assoc. 279:915–921.

    Article  CAS  Google Scholar 

  • Reilly, S. L., Farrell, R. E., Kottke, B. A., Kamboh, M. I., and Sing, G F., 1991, The gender-specific apolipoprotein E genotype influence on the distribution of lipids and apolipoproteins in the population of Rochester, MN. I. Pleiotropic effects on means and variances, Am. J. Hum. Genet. 49:1155–1166.

    PubMed  CAS  Google Scholar 

  • Schaffer, W. M., 1981, Ecological abstractions: The consequences of reduced dimensionality in ecological models, Ecol. Monog. 51:383–401.

    Article  Google Scholar 

  • Simpson, E. H., 1951,The interpretation of interaction in contingency tables, J. Roy. Stat. Soc. Ser. B 13:238–241.

    Google Scholar 

  • Sing, C. F., Haviland, M. B., and Reilly, S. L., 1996, Genetic architecture of common multifactorial diseases, in: Variation in the Human Genome (K. M. Weiss, ed.), pp. 211–229, John Wiley & Sons, Chichester, England.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J., 1995, Biometry, 3rd ed., W. H. Freeman and Co., New York.

    Google Scholar 

  • Stam, L. F., and Laurie, C. C., 1996, Molecular dissection of a major gene effect on a quantitative trait: The level of alcohol dehydrogenase expression in Drosophila melanogaster, Genetics 144:1559–1564.

    PubMed  CAS  Google Scholar 

  • Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T., and Lander, E. S., 1992, Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers, Genetics 132:823–839.

    PubMed  CAS  Google Scholar 

  • Tanksley, D. S., 1993, Mapping polygenes, Annu. Rev. Genet. 27:205–233.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock, M. C., Phillips, P. C., Moore, F. B. G., and Tonsor, S. J., 1995, Multiple fitness peaks and epistasis, Annu. Rev. Ecol. Syst. 26:601–629.

    Article  Google Scholar 

  • Xiao, J., Li, J., Yuan, L., and Tanksley, S. D., 1995, Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers, Genetics 140:745–754.

    PubMed  CAS  Google Scholar 

  • Zerba, K. E., Ferrell, R. E., and Sing, C. F., 1996, Genotype-environment interaction: Apolipoprotein E (ApoE) gene effects and age as an index of time and spatial context in the human, Genetics 143:463–478.

    PubMed  CAS  Google Scholar 

  • Zhivotovsky, L. A., and Gavrilets, S., 1992, Quantitative variability and multilocus polymorphism under epistatic selection, Theor. Pop. Biol. 42:254–283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, A.G. (2000). Limits to Prediction of Phenotypes from Knowledge of Genotypes. In: Clegg, M.T., Hecht, M.K., Macintyre, R.J. (eds) Evolutionary Biology. Evolutionary Biology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4135-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4135-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6854-0

  • Online ISBN: 978-1-4615-4135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics