Skip to main content

Metabolic Effects of Chemotherapy on the Heart

  • Chapter
Book cover Cardiovascular Magnetic Resonance Spectroscopy

Abstract

Chemotherapy has led to significant improvement in the management of cancer 1. However, the use of common chemotherapeutic agents is limited by their toxicity to normal tissue 2–5. There are several drugs that are reported to have specific cardiotoxic effects, and these are summarized in table 8–1. Radiation therapy to the mediastinum is also limited by radiation-induced cardiotoxic effects, and its toxicity has been reported to be synergistic with adriamycin (ADR; doxorubicin hydrochloride) treatment 4, 6, 7. Furthermore, there are a variety of drugs, including actinomycin D, bleomycin, mithramycin, mitomycin C, and vincristine, that increase the incidence of ADR cardiotoxicity when administered simultaneously or subsequent to ADR therapy 6, 8–11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carter SK (1975). Adriamycin—a review. J Natl Cancer Inst 55:1265–1274.

    PubMed  CAS  Google Scholar 

  2. Guarino AM (1979). Pharmacologic and toxicologic studies. Meth Cancer Res 17:91–174.

    CAS  Google Scholar 

  3. Remer WA (1984). Antineoplastic Agents. New York: Wiley-Interscience.

    Google Scholar 

  4. Sinha BK (1982). Myocardial toxicity of anthracyclines and other antitumor agents. In Van Stee EW (ed.), Cardiovascular Toxicology. New York: Raven Press, pp. 181–197.

    Google Scholar 

  5. Carter SK, Hellman K (1987). Fundamentals of Cancer Chemotherapy. New York: McGraw Hill.

    Google Scholar 

  6. Praga C, Beretta G, Vigo PL, Lenaz C, Pollini C, Bonadonna G, Canetta R, Castellani R, Villa E, Gallagher CG, Hayat M, Ribaud P, De Wasch G, Mattsson W, Heinz R, Waldner R, Kolaric K, Buehner R, Ten Bokkel-Huyninck W, Perevodchikova NI, Manziuk LA, Senn HJ, Mayr AC (1979). Adriamycin cardiotoxicity: A survey of 1273 patients. Cancer Treat Rep 63:827–834.

    PubMed  CAS  Google Scholar 

  7. Bristow MR, Billingham ME, Mason JW, Daniels JR (1978). Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat Rep 62:873–879.

    PubMed  CAS  Google Scholar 

  8. Minow RA, Benjamin RS, Lee ET, Gottlieb JA (1977). Adriamycin cardiomyopathy—Risk factors. Cancer 39:1397–1402.

    Article  PubMed  CAS  Google Scholar 

  9. Kushner JP, Hansen VL, Hammar SP (1975). Cardiomyopathy after widely separated courses of adriamycin exacerbated by actinomycin-D and mithramycin. Cancer 36:1577–1584.

    Article  PubMed  CAS  Google Scholar 

  10. Buzdar AU, Legha SS, Tashima CK, Hortobagyi GN, Yap HY, Krutchik AN, Luna MA, Blumenschein GR (1978). Adriamycin and mitomycin C: Possible synergistic cardiotoxicity. Cancer Treat Rep 62:1005–1008.

    PubMed  CAS  Google Scholar 

  11. Porembka DT, Lowder JN, Orlowski JP, Bastulli J, Lockrem J (1989). Etiology and management of doxorubicin cardiotoxicity. Crit Care Med 17:569–572.

    Article  PubMed  CAS  Google Scholar 

  12. Torti FM, Bristow MR, Howes AE, Aston D, Stockdale FE, Carter SK, Kohler M, Brown BW, Billingham ME (1983). Reduced cardiotoxicity of doxorubicin delivered on a weekly schedule. Assessment by endomyocardial biopsy. Ann Intern Med 99:745–749.

    PubMed  CAS  Google Scholar 

  13. Bristow MR, Mason JW, Billingham ME, Daniels JR (1981). Dose-effect and structure-function relationships in doxorubicin cardiomyopathy. Am Heart J 102:709–718.

    Article  PubMed  CAS  Google Scholar 

  14. Borow KM, Henderson IC, Neuman A, Colan S, Grady S, Papish S, Goorin A (1983). Assessment of left ventricular contractility in patients receiving doxorubicin. Ann Intern Med 99:750–756.

    PubMed  CAS  Google Scholar 

  15. Lefrak EA, Pitha J, Rosenheim S, Gottlieb J (1973). A clinico pathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–319.

    Article  PubMed  CAS  Google Scholar 

  16. Minow RA (1975). Adriamycin cardiomyopathy: An overview with determination of risk factors. Cancer Chemother Rep 6:195–201.

    Google Scholar 

  17. Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Soutz A, Manatunga A, Schwartz PE, Berger HJ, Setaro J, Surkin L, Wakers FJT, Zaret BL (1987). Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Am J Med 82:1109–1118.

    Article  PubMed  CAS  Google Scholar 

  18. Collins C, Weiden PL (1987). Cardiotoxicity of 5-fluorouracil. Cancer Treat Rep 71:733–736.

    PubMed  CAS  Google Scholar 

  19. Freeman NJ, Costanza ME (1988). 5-fluorouracil-associated cardiotoxicity. Cancer 61:36–45.

    Article  PubMed  Google Scholar 

  20. Labianca R, Beretta G, Clerici M, Fraschini P, Luporini G (1982). Cardiac toxicity of 5-fluorouracil: A study of 1083 patients. Tumori 68:505–510.

    PubMed  CAS  Google Scholar 

  21. Leone B, Rabinovich M, Ferrari CR, Boyer J, Rosso H, Strauss E (1985). Cardiotoxicity as a result of 5-fluorouracil therapy. Tumori 71:55–57.

    PubMed  CAS  Google Scholar 

  22. Patel B, Kloner RA, Ensley J, Al-Sarraf M, Kish J, Wynne J (1987). 5-fluorouracil cardiotoxicity: Left ventricular dysfunction and effect of coronary vasodilators. Am J Med Sci 294:238–243.

    Article  PubMed  Google Scholar 

  23. Pottage A, Holt S, Ludgate S, Langlands AO (1978). Fluorouracil cardiotoxicity. Br Med J 1:547.

    Article  PubMed  CAS  Google Scholar 

  24. Mills BA, Roberts RW (1979). Cyclophos-phamide-induced cardiomyopathy—a report of two cases and a review of the English literature. Cancer 43:2223–2226.

    Article  PubMed  CAS  Google Scholar 

  25. Slavin RE, Millan JC, Mullins GM (1975). Pathology of high dose intermittent cyclophosphamide therapy. Hum Pathol 6:693–709.

    Article  PubMed  CAS  Google Scholar 

  26. Gottdiener JS, Applebaum FR, Ferrans VJ, Deisseroth A, Ziegler J (1981). Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med 141:758–763.

    Article  PubMed  CAS  Google Scholar 

  27. Buckner CD, Randolph RA, Fefer A, Clift RA, Epstein RB, Funk DD, Neiman PE, Slichter SJ, Storb R, Thomas ED (1972). High-dose cyclophosphamide therapy for malignant disease: toxicity, tumor response, and the effects of stored autologous marrow. Cancer 29:357–365.

    Article  Google Scholar 

  28. Vorobiof DA, Iturralde M, Falkson G (1983). Amsacrine cardiotoxicity: Assessment of ventricular function by radionuclide angiography. Cancer Treat Rep 67:1115–1117.

    PubMed  CAS  Google Scholar 

  29. Von Hoff DD, Elson DGP, Coltman C (1979). Acute ventricular fibrillation and death during infusion of 4′-(9-acridinylamino)methanesulfon-m-anisidide (AMSA) therapy. Cancer Treat Rep 64:356–357.

    Google Scholar 

  30. Steinherz LJ, Steinherz PG, Mangiacasale D, Miller DR (1982). Cardiac abnormalities after AMSA administration. Cancer Treat Rep 66:483–488.

    PubMed  CAS  Google Scholar 

  31. Lindpaintner K, Lindpaintner LS, Wentworth M, Burns CP (1986). Acute myocardial necrosis during administration of amsacrine. Cancer 57:1284–1286.

    Article  PubMed  CAS  Google Scholar 

  32. Legha SS, Latreille JJ, McCredie KB, Bodey GP (1979). Neurologic and cardiac rhythm abnormalities associated with 4′-(9-acridinyl-amino) methanesulfon-m-anisidide (AMSA) therapy. Cancer Treat Rep 63:2001–2003.

    PubMed  CAS  Google Scholar 

  33. Saini J, Rich MW, Lyss AP (1987). Reversibility of severe left ventricular dysfunction due to doxorubicin cardiotoxicity. Ann Intern Med 106:814–816.

    PubMed  CAS  Google Scholar 

  34. Singer JW, Narahara KA, Ritchie JL, Hamilton GW, Kennedy JWT (1978). Time-and dose-dependent changes in ejection fraction determined by radionuclide angiography after anthracycline therapy. Cancer Treat Rep 62:945–948.

    PubMed  CAS  Google Scholar 

  35. Goorin AM, Borow KW, Goldman A, Williams RG, Henderson IC, Sallan SE, Cohen H, Jaffe N (1981). Congestive heart failure due to adriamycin cardiotoxicity: Its natural history in children. Cancer 47:2810–2816.

    Article  PubMed  CAS  Google Scholar 

  36. Von Hoff DP, Rosencweig M, Layard M, Slavick M, Muggia FM (1977). Daunomycin-induced cardiotoxicity in children: a review of 110 cases. Am J Med 62:200–208.

    Article  Google Scholar 

  37. Goorin AM, Chauvenet AR, Perezatayde AR, Cruz J, McKone R, Lipshultz SE (1990). Intial congestive heart failure, 6 to 10 years after doxorubicin chemotherapy for childhood cancer. J Pediatr 116(1): 144–147.

    Article  PubMed  CAS  Google Scholar 

  38. Marchandise B, Schroeder E, Bosley A, Doyen C, Weynants P, Kremer R, Pouleur H (1989). Early detection of doxorubicin cardiotoxicity—interest of doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J 118:92–98.

    Article  PubMed  CAS  Google Scholar 

  39. Mason JW, Bristow MR, Billingham ME, Daniels JR (1978). Invasive and non invasive methods of assessing adriamycin cardiotoxic effects in man. Superiority of histopathologic assessment using endomyocardial biopsy. Cancer Treat Rep 62:857–864.

    PubMed  CAS  Google Scholar 

  40. Ewer MS, Ali MK, Mackay B, Wallace S, Valdivieso M, Legha SS, Benjamin RS, Haynie TP (1984). A comparison of cardiac biopsy grades and ejection fraction estimations in patients recieving adriamycin. J Clin Oncol 2:112–117.

    PubMed  CAS  Google Scholar 

  41. Fraser CD, Chako VP, Jacobus WE, Soulen RL, Hutchins GM, Reitz Ba, Baumgartner WA (1988). Metabolic changes preceding functional and metabolic indices of rejection in heterotopic cardiac allografts. Transplantation 46:346–351.

    Article  PubMed  Google Scholar 

  42. Herfkens RJ, Charles HC, Negro-Vilar R, Van Trigt P (1988). In vivo phosphorus-31 NMR spectroscopy of human heart transplants. Abstr Soc Magn Reson Med 2:827.

    Google Scholar 

  43. Singal PK, Deally CMR, Weinberg LE (1987). Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol 19:817–828.

    Article  PubMed  CAS  Google Scholar 

  44. Myers CE, McGuire GP, Liss RH, Ifrim I, Grotzniger K, Young RL (1977). Adriamycin: The role of lipid peroxidation in cardiac toxicity and tumor response. Science 19:165–167.

    Article  Google Scholar 

  45. Rajagopolan S, Polti PM, Sinha BK, Myers CE (1988). Adriamycin induced free radical formation in the perfused rat heart. Cancer Res 48:4766–4769.

    Google Scholar 

  46. Singal PK, Pierce GN (1986). Adriamycin stimulates low affinity Ca2+ binding and lipid peroxidation but depresses myocardial function. Am J Physiol 250:H419–H425.

    PubMed  CAS  Google Scholar 

  47. Doroshaw JH, Locker GY, Baldinger J, Myers CE (1979). The effect of doxorubicin on hepatic and cardiac glutathione. Res Commun Chem Pathol Pharmacol 26:285–295.

    Google Scholar 

  48. Jackson JA, Reeves JP, Muntz K, Kruk D, Prough RA, Willerson JR, Buja LM (1984). Evaluation of free radical effects and catecholamine alterations in adriamycin cardiotoxcity. Am J Pathol 117:140–153.

    PubMed  CAS  Google Scholar 

  49. Singal PK, Panagia V (1984). Direct effects of adriamycin on the rat heart sarcolemma. Res Commun Chem Pathol Pharmacol 43:67–77.

    PubMed  CAS  Google Scholar 

  50. Bellini O, Solicia E (1985). Early and late sarcoplasmic reticulum changes in doxorubicin cardiomyopathy. Virchaus Arch 49:137–152.

    Article  CAS  Google Scholar 

  51. Olson HM, Young DM, Prieur DJ, LeRoy AF, Reagan RL (1974). Electrolyte and morphologic alterations of myocardium in adriamycin treated rabbits. Am J Pathol 77:439–454.

    PubMed  CAS  Google Scholar 

  52. Tomlinson CW, Godin DV, Rubkin SW (1985). Adriamycin cardiomyopathy: implications of cellular changes in a canine model with mild impairment of left ventricular function. Biochem Pharmacol 34:4033–4041.

    Article  PubMed  CAS  Google Scholar 

  53. Muhammed H, Ramasarma T, Kurup CKR (1982). Inhibition of mitochondrial oxidative phosphorylation by adriamycin. Biochim Biophys Acta 722:43–50.

    Google Scholar 

  54. Gosalev M, Blanco MF, Hunter J, Miko M, Chance B (1974). Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. Eur J Cancer 10:567–574.

    Google Scholar 

  55. Keller AM, Jackson JA, Peshock RM, Rehr RB, Willerson JT, Nunnally RL, Buja LM (1986). Nuclear magnetic resonance study of high energy phosphate stores in models of adriamycin cardiotoxicity. Magn Reson Med 3:834–843.

    Article  PubMed  CAS  Google Scholar 

  56. Nicolay K, Aue WP, Seelig J, van Echteld CJA, Ruigrok TJC, de Kruijff B (1987). Effects of the anticancer drug adriamycin on the energy metabolism of rat heart as measured by in vivo 31P NMR. Implications for adriamycin induced cardiotoxicity. Biochim Biophys Acta 925:5–13.

    Article  Google Scholar 

  57. Bachman E, Zbinden G (1979). Effect of doxorubicin and rubidazone on respiratory function and Ca2+ transport in rat heart mitochondria. Toxicol Lett 3:29–34.

    Article  Google Scholar 

  58. Newman RA, Hucker MD, Fagan MA (1982). Adriamycin mediated inibition of creatine kinase binding to heart mitochondrial membrane. Biochem Pharmacol 31:109–111.

    Article  PubMed  CAS  Google Scholar 

  59. Muller M, Moser R, Cheneval D, Carafoli E (1985). Cardiolipin is the membrane receptor for mitochondrial creatine phosphokinase. J Biol Chem 260:3839–3843.

    PubMed  CAS  Google Scholar 

  60. Lewis W, Gonzalez B (1986). Anthracycline effects of actin and actin containing thin filaments in cultured neonatal rat myocardial cells. Lab Invest 54:416–423.

    PubMed  CAS  Google Scholar 

  61. Lewis W, Beckenstein K, Sharpiro L, Puszkin S (1985). Doxorubicin and covalently crosslinked doxorubicin derivatives binding to cardiac thin filament proteins. Exp Mol Pathol 43:64–73.

    Article  PubMed  CAS  Google Scholar 

  62. Ng TC, Daugherty JP, Evanochko WT, Digerness SB, Durant JR, Glickson JD (1983). Detection of antineoplastic agent induced cardiotoxicity by 3lP NMR of perfused rat hearts. Biochem Biophys Res Commun 110:339–347.

    Article  PubMed  CAS  Google Scholar 

  63. Ohhara H, Kanaide H, Nakamura M (1981). A protective effect of coenzyme Q10 on the adriamycin-induced cardiotoxicity in the isolated perfused rat heart. J Mol Cell Cardiol 13:741–752.

    Article  PubMed  CAS  Google Scholar 

  64. Pelikan PC, Weisfeldt ML, Jacobus WE, Miceli MV, Bulkley BH, Gerstenblith G (1986). Acute doxorubicin cardiotoxicity: functional, metabolic, and morphologic alterations in the isolated, perfused rat heart. J Cardiovasc Pharmacol 8:1058–1066.

    Article  PubMed  CAS  Google Scholar 

  65. Chatham JC, Glickson JD (1990). 31P and 13C NMR studies of acute and chronic adriamycin cardiotoxicity. In Evelhoch JL, Negendank W, Valeriote FA, Baker LH (eds.), Magnetic Resonance in Experimental and Clinical Oncology. Boston: Kluwer Academic Publishers, pp. 1–22.

    Chapter  Google Scholar 

  66. Kingsley-Hickman PB, Sako EY, Mohanakrishnan P, Robitaille PML, From AHL, Foker JE, Ugurbil K (1988). 31P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium. Biochemistry 26:7501–7510.

    Google Scholar 

  67. Chatham JC, Gilbert HF, Radda GK (1988). Inhibition of glucose phosphorylation by fatty acids in the perfused rat heart. FEBS Lett 238:445–449.

    Article  PubMed  CAS  Google Scholar 

  68. Nohl H (1988). Identification of the site of adriamycin-activation in the heart cell. Biochem Pharmacol 37:2633–2637.

    Article  PubMed  CAS  Google Scholar 

  69. Katz LA, Koretsky AP, Balaban RS (1987). Respiratory control in the glucose perfused heart. A 31P NMR and NADH flourescence study. FEBS Lett 221:270–276.

    Article  PubMed  CAS  Google Scholar 

  70. Chapman JB, Gibbs CL, Gibson WR (1976). Heat and flourescence changes in cardiac muscle: effects of substrate and calcium. J Mol Cell Cardiol 8:545–558.

    Article  PubMed  CAS  Google Scholar 

  71. Bailey IA, Gadian DG, Matthews PM, Radda GK, Seeley PJ (1981). Studies of metabolism in the isolated perfused rat heart using 13C NMR. FEBS Lett 123:315–318.

    Article  PubMed  CAS  Google Scholar 

  72. Neurohr KJ, Barrett EJ, Shulman RG (1983). In vivo carbon-13 nuclear magnetic resonance studies of heart metabolism. Proc Natl Acad Sci USA 80:1603–1607.

    Article  PubMed  CAS  Google Scholar 

  73. Weiss RG, Chacko VP, Glickson JD, Gerstenblith G (1989). Comparative 13C and 31P NMR assessment of altered metabolism during graded reductions in coronary flow in intact rat hearts. Proc Natl Acad Sci USA 86:6426–6430.

    Article  PubMed  CAS  Google Scholar 

  74. Malloy CR, Sherry AD, Jeffrey FMH (1988). Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J Biol Chem 263:6964–6971.

    PubMed  CAS  Google Scholar 

  75. Chatham JC, Cousins JP, Glickson JD (1990). The relationship between cardiac function and metabolism in acute adriamycin-treated perfused rat hearts studied by 31P and 13C NMR spectroscopy. J Mol Cell Cardiol 22:1187–1197.

    Article  PubMed  CAS  Google Scholar 

  76. Chance EM, Seeholzer SH, Kobayashi K, Williamson JR (1983). Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J Biol Chem 258:13785–13794.

    PubMed  CAS  Google Scholar 

  77. Malloy CR, Sherry AD, Jeffery FMH (1987). Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett 212:58–62.

    Article  PubMed  CAS  Google Scholar 

  78. Nohl H (1987). Demonstration of the existence of an organo-specific NADH dehydrogenase in heart mitochondria. Eur J Biochem 169:585–591.

    Article  PubMed  CAS  Google Scholar 

  79. Bradamante S, Monti E, Paracchini L, Perletti G (1989). Hypoxia as a risk factor for doxo-rubicin-induced cardiotoxicity—A NMR evaluation. Biochem Biophys Res Commun 163(2):682–688.

    Article  PubMed  CAS  Google Scholar 

  80. Herman EH, Ferrans VJ, Myers CE, van Vleet JF (1985). Comparison of the effectivness of (±)-1,2-bis(3,5-dioxopiperazinyl-1-yl) propane (ICRF-187) and N-acetylcysteine in preventing chronic doxorubicin cardiotoxicity in beagles. Cancer Res 45:276–281.

    PubMed  CAS  Google Scholar 

  81. Bottomley PA (1985). Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. Science 229:769–772.

    Article  PubMed  CAS  Google Scholar 

  82. Dekker T, van Echteld CJA, de Jong WH, Kirkels JH, Schornagel JH (1989). Chronic cardiotoxicity of adriamycin. J Mol Cell Cardiol 21:S88.

    Google Scholar 

  83. Dekker T, Kasbergen C, van Echteld CJA (1990). In vivo 31P NMR study of chronic cardiotoxicity of adriamycin. Abstr Soc Magn Reson Med 2:909.

    Google Scholar 

  84. Bittner V, Reeves RC, Dignerness SB, Caulneld JB, Pohost GM (1991). 31P NMR spectroscopy in chronic adriamycin cardiotoxicity Magn Reson Med 17:69–81.

    Article  PubMed  Google Scholar 

  85. Thompson RT, Butland T, Marsh MA, Sprague C, Driedger AA, Sanford SE, Inch WR (1989). An in vivo serial P-31 study of chronic cardiotoxicity induced by adriamycin. Abstr Soc Magn Reson Med 2:516.

    Google Scholar 

  86. Chatham JC, Hutchins GM, Glickson JD (1992). Altered glucose metabolism in adriamycin-induced heart failure: Biochim Biophys Acta 1138:1–5.

    Article  PubMed  CAS  Google Scholar 

  87. Herman EH, El-Hage AN, Ferrans VJ, Ardalan B (1985). Comparison of the severity of the chronic cardiotoxicity produced by doxorubicin in normotensive and hypertensive rats. Toxicol Appl Pharmacol 78:202–214.

    Article  PubMed  CAS  Google Scholar 

  88. Schaefer S, Camacho SA, Gober J, Obregon RG, DeGroot MA, Botvinick EH, Massie B, Weiner MW (1989). Response of myocardial metabolites to graded regional ischemia: 31P NMR spectroscopy of porcine myocardium in vivo. Circ Res 64:968–976.

    Article  PubMed  CAS  Google Scholar 

  89. Clarke K, Willis RJ (1987). Energy metabolism and contractile function in rat hearts during graded isovolumic perfusion using 31P nuclear magnetic resonance spectroscopy. J Mol Cell Cardiol 19:1153–1160.

    Article  PubMed  CAS  Google Scholar 

  90. Chance B, Leigh JS, Keni J, McCully K, Nioka S, Clarke BJ, Maris JM, Graham T (1986). Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 83:9458–9462.

    Article  PubMed  CAS  Google Scholar 

  91. Zimmer H-G, Bunger R, Koschine H, Steinkopff G (1981). Rapid stimulation of the hexose monophosphate shunt in the isolated perfused rat heart: possible involvement of oxidized glutathione. J Mol Cell Cardiol 13:531–535.

    Article  PubMed  CAS  Google Scholar 

  92. Wood HG, Katz J, Landau BR (1963). Estimation of pathways of carbohydrate metabolism. Biochem Zeit 338:809–847.

    CAS  Google Scholar 

  93. Tamatsu H, Nakazawa M, Imai S, Watari H (1984). 31P-topical nuclear magnetic resonance (31P-TMR) studies of cardiotoxic effects of 5-fluorouracil (5-FU) and 5′-deoxy-5-fluorouridine (5′-DFUR). Jpn J Pharmacol 34:375–379.

    Article  PubMed  Google Scholar 

  94. Bottomley PA. Herfkens RJ, Smith LS, Bashore TM (1987). Altered phosphate metabolism in myocardial infarction: P-31 MR spectroscopy. Radiology 165:703–707.

    CAS  Google Scholar 

  95. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990). Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323:1593–1600.

    Article  PubMed  CAS  Google Scholar 

  96. Schaefer S, Gober J, Camacho SA, Botvinick EH, Massie BM, Weiner MW (1988). 31P MRS of normal and diseased human myocardium: localization with ISIS and MRSI. Abstr Soc Magn Reson Med 1:296.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chatham, J.C., Glickson, J.D. (1993). Metabolic Effects of Chemotherapy on the Heart. In: Schaefer, S., Balaban, R.S. (eds) Cardiovascular Magnetic Resonance Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3490-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3490-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6547-1

  • Online ISBN: 978-1-4615-3490-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics