Skip to main content

Interpretation of Endothelial Structure Related to Tumor and Atherosclerotic Blood Vessels

  • Chapter
Scanning Electron Microscopy of Vascular Casts: Methods and Applications

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 10))

  • 146 Accesses

Abstract

Scanning electron microscopy (SEM) of vascular corrosion casts provides an opportunity to gain specific information about the luminal cellular lining of blood conduits. In addition to observation of the pattern, distribution, and density of this cellular layer, more subtle changes may be detectable. However, the determination of any of this information requires appropriate preparative procedures for highlighting the features being evaluated. For the purposes of this chapter, the discussion is primarily limited to the cellular lining of blood vessels, the vascular endothelium, and the alterations that are associated with experimental tumors and atherosclerosis. It is then possible to use the proper interpretation of endothelial surface structure to comment on the disease process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark ER, Clark EL. Observations on living arteriovenous anastomoses as seen in transparent chambers introduced into the rabbit’s ear. Am J Anat 54: 229–286, 1934.

    Article  Google Scholar 

  2. Warren BA. Tumor angiogenesis. In: Peterson HI (ed.), Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors, CRC Press, Boca Raton, FC pp 49–75, 1979.

    Google Scholar 

  3. Richardson M, Parbtani A. Identification of nondenuding endothelial injury by scanning electron microscopy. Scann Microsc 1: 1315–1326, 1987.

    CAS  Google Scholar 

  4. Reidy MA. Biology of disease. A reassessment of endothelial injury and arterial lesion formation. Lab Invest 53: 513–520, 1985.

    PubMed  CAS  Google Scholar 

  5. Reidy MA, Schwartz SM. Endothelial injury and regeneration. IV. Endotoxin: A nondenuding injury to aortic endothelium. Lab Invest 48: 25–34, 1983.

    PubMed  CAS  Google Scholar 

  6. Gotlieb AI, Wong MKK, Boden P, Fone AC. The role of the cytoskeleton in endothelial repair. Scann Microsc 1: 1715–1726, 1987.

    CAS  Google Scholar 

  7. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Folkman J, Klagsbrun M. Angiogenic factors. Science 235: 442–447, 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Nilsson J. Growth factors in the pathogenesis of atherosclerosis. Atherosclerosis 62: 185–199, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Old LJ. Tumor necrosis factor (TNF). Science 230: 630–632, 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Bell FP, Adamson IL, Schwartz CJ. Aortic endothelial permeability to albumin: Focal and regional patterns of uptake and transmural distribution of 131I-albumin in the young pig. Exper Mol Pathol 20: 57–68, 1974.

    Article  CAS  Google Scholar 

  12. Bellet RE, Mastrangelo MJ. Malignant melanoma: Investigations in the nude mouse. In: Fogh J, Giovanella BC (eds.), The Nude Mouse in Experimental and Clinical Research, Academic Press, pp 511–5519, 1982.

    Google Scholar 

  13. Ingerman-Wojenski CM, Sedar AW, Nissenbaum M, Silver MJ, Klurfeld DM, Kritchevsky D. Early morphological changes in the endothelium of a peripheral artery of rabbits fed an atherogenic diet. Exp Mol Pathol 38: 48–60, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz SM, Benditt EP. Cell replication in the aortic endothelium: A new method for study of the problem. Lab Invest 28: 699–707, 1973.

    PubMed  CAS  Google Scholar 

  15. Laschi R, Pasquinelli G, Versura P. Scanning electron microscopy application in clinical research. Scann Microsc 1: 1771–1795, 1987.

    CAS  Google Scholar 

  16. Moore S. Pathogenesis of atherosclerosis. Metabolism 34: 13–16, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Luscher EF. The role of blood cells and or the vessel wall in the induction of intravascular coagulation. Klin Wochenschr 60: 710–712, 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Haudenschild CC, Prescott MF, Chobanian AV. Effects of hypertension and its reversal on aortic intima lesions of the rat. Hypertension 2: 33–44, 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Langille BL, Adamson SL. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ Res 48: 481–488, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Reidy MA, Langille BL. The effect of local blood flow patterns on endothelial cell morphology. Exp Mol Pathol 32: 276–289, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Warren BA. The vascular morphology of tumors. In: Peterson HI (ed.), Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors, CRC Press, Boca Raton, FL pp 1–47, 1979.

    Google Scholar 

  22. Konerding MA, Steinberg F, Budach V. The vascular system of xenotransplanted tumors — scanning electron and light microscopic studies. Scann Microsc 3: 327–336, 1989.

    CAS  Google Scholar 

  23. Walmsley JG, Granter SR, Hacker MP, Moor AL, Ershler WB. Tumor vasculature in young and old hosts: Scanning electron microscopy of microcorrosion casts with microangiography, light microscopy and transmission electron microscopy. Scann Microsc 1: 823–830, 1987.

    CAS  Google Scholar 

  24. Glagov S, Zarins CK. Quantitating atherosclerosis: Problems of definition. In: Bond MG, Insull W Jr., Glagov S, Chandler AB, Cornhill JF (eds.), Clinical Diagnosis of Atherosclerosis: Quantitative Methods of Evaluation, Springer-Verlag, New York, pp 11–35, 1983.

    Google Scholar 

  25. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53: 502–514, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Friedman MH, Deters OJ, Mark FF, Basgeron CB, Hutchins GM. Arterial geometry affects haemodynamics: A potential risk factor for atherosclerosis. Atherosclerosis 46: 225–231, 1983.

    Article  PubMed  CAS  Google Scholar 

  27. McMillan DE. Blood flow and the localization of atherosclerotic plaques. Stroke 16: 582–587, 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Rowland FN, Donovan JJ, Picciano PT, Wilner GD, Kreutzer DL. Fibrin-mediated vascular injury. Identification of fibrin peptides that mediate endothelial cell retraction. Am J Pathol 117: 418–428, 1984.

    PubMed  CAS  Google Scholar 

  29. DePalma RG. Angiography in atherosclerosis: Advantages and limitations. In: Bond MG, Insull W Jr., Glagov S, Chandler AB, Cornhill JF (eds.), Clinical Diagnosis of Atherosclerosis: Quantitative Methods of Evaluation, Springer-Verlag, New York, pp 99–125, 1983.

    Google Scholar 

  30. Cornhill JF, Levesque MJ, Hendrick EF, Nerem RM, Kilman JW, Vasko JS. Quantitative study of the rabbit aortic endothelium using vascular casts. Atherosclerosis 35: 321–337, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Cornhill JF, Akins D, Hutson M, Chandler AB. Localization of atherosclerotic lesions in the human basilar artery. Atherosclerosis 35: 77–86, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Underwood EE. Quantitative Stereology. Addison-Wesley Publishing, London, 1970.

    Google Scholar 

  33. Laschi R. Contribution of scanning electron microscopy and associated analytical techniques to the study of atherosclerotic disease. Scann Electron Microsc. III: 1215–1222, 1985.

    Google Scholar 

  34. Cornhill JF, Bond MG. Morphology: Morphometric analysis of pathology specimens. In: Bond MG, Insull W Jr., Glagov S, Chandler AB, Cornhill JF (eds.), Clinical Diagnosis of Atherosclerosis: Quantitative Methods of Evaluation Springer-Verlag, New York, pp 67–78, 1983.

    Google Scholar 

  35. Rosenfeld ME, Tsukada T, Chait A, Bierman EL, Gown AM, Ross. Fatty streak expansion and maturation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7: 24–34, 1987.

    Article  PubMed  CAS  Google Scholar 

  36. Rosenfeld ME, Tsukada T, Gown AM, Ross R. Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7: 9–23, 1987.

    Article  PubMed  CAS  Google Scholar 

  37. Goode TB, Davies PF, Reidy MA, Bowyer DE. Aortic endothelial cell morphology observed in situ by scanning electron microscopy during atherogenesis in the rabbit. Atherosclerosis 27: 235–251, 1977.

    Article  PubMed  CAS  Google Scholar 

  38. Svendsen E. Focal endothelial cell injury in rabbit aorta, aggravation of injury by 2 days of cholesterol feeding. Acta Path Microbiol Scand 87: 123–130, 1979.

    Google Scholar 

  39. Faggiotta A, Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 4: 341–351, 1984.

    Article  Google Scholar 

  40. Faggiotta A, Ross R, Harker L. Studies of hypercholesteremia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4: 323–340, 1984.

    Article  Google Scholar 

  41. Ershler WB, Berman E, Moore AL. Slower B16 melanoma growth but geater pulmonary colonization in calorie-restricted mice. J Nat Cancer Inst 76: 81–85, 1986.

    PubMed  CAS  Google Scholar 

  42. Ershler WB, Gamelli RL, Moore AL, Hacker MP, Blow AJ. Experimental tumors and aging: Local factors that may account for the observed age advantage in the B16 murine melanoma model. Exp Gerontol 19: 367–376, 1984.

    Article  PubMed  CAS  Google Scholar 

  43. Solesvik OV, Rofstad EK, Brustad T. Vascular structure of five human malignant melanomas grown in athymic nude mice. Br J Cancer 45: 557–567, 1982.

    Article  Google Scholar 

  44. Grunt TW, Lametschwandtner A, Karrer K. The characteristic structural features of the blood vessels of the Lewis lung carcinoma. (A light microscopic and scanning electron microscopic study.). Scann Electron Microsc. II: 575–589, 1986.

    Google Scholar 

  45. Grunt TW, Lametschwandtner A, karrer K, Staindl O. The angioarchitecture of the Lewis lung carcinoma in laboratory mice. (A light microscopic and scanning electron microscopic study.). Scann Electron Microsc II: 557–573, 1986.

    Google Scholar 

  46. Jain RK. Determinants of tumor blood flow: A review. Cancer Res 48: 2641–1658, 1988.

    PubMed  CAS  Google Scholar 

  47. Rubin P, Casarett G. Microcirculation of tumors. Part II: The supervascularized state of irradiated regressing tumors. Clin Radiol 17: 346–355, 1966.

    Article  PubMed  CAS  Google Scholar 

  48. Rubin P, Casarett G. Microcirculation of tumors. Part I: Anatomy, function, and necrosis. Clin Radiol 17: 220–229, 1966.

    Article  PubMed  CAS  Google Scholar 

  49. Song CW. Effect of hyperthermia on vascular functions of normal tissues and experimental tumors: Brief communication. J Natl Cancer Inst 60: 711–713, 1978.

    Google Scholar 

  50. Song CW, Rhee JG, Levitt SH. Blood flow in normal tissues and tumors during hyperthermia. J Nat Cancer Inst 64: 119–124, 1980.

    PubMed  CAS  Google Scholar 

  51. Steinberg V, Konerding MA, Korver G, Streffer C. Examination of the necrosis in xenotransplanted tumors — quantitative measurements and correlations with the vascular system, cell-proliferation and tumor growth. In: Int. Conf. on Tumor Necrosis Factor and Related Cytotoxins 175: 102, 1987.

    Google Scholar 

  52. Levesque MJ, Cornhill JF, Nerem RM. Vascular casting. A new method for the study of arterial endothelium. Atherosclerosis 34: 457–467, 1979.

    Article  PubMed  CAS  Google Scholar 

  53. Roach MR, Hinton P, Fletcher J. Artifacts of localization of atherosclerosis in pinned aortas. Atherosclerosis 31: 1–10, 1978.

    Article  PubMed  CAS  Google Scholar 

  54. Wetzel B, Albrecht RM. The evolution of correlative techniques for electron microscopy — An overview. Scann Microsc 3 (Suppl): 1–6, 1989.

    CAS  Google Scholar 

  55. Richardson M, Hatton MWC, Buchanan MR, Moore S. Scanning electron microscopy of normal rabbit aorta: Injury or artifact. J Ultrastruct Res 91: 159–173, 1985.

    Article  PubMed  CAS  Google Scholar 

  56. Tindall A, Svendsen E. Diameter changes in rabbit aorta during fixation at physiological pressure. Atherosclerosis 50: 223–231, 1984.

    Article  PubMed  CAS  Google Scholar 

  57. Hirsch EZ, Chisolm GM III, Gibbons A. Quantitative assessment of changes in aortic dimensions in response to in situ perfusion fixation at the physiological pressures. Atherosclerosis 38: 63–73, 1981.

    Article  PubMed  CAS  Google Scholar 

  58. Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis 17: 401–417, 1973.

    Article  PubMed  CAS  Google Scholar 

  59. Gordon D, Guyton JR, Karnovsky MJ. Intimai alterations in rat aorta induced by stressful stimuli. Lab Invest

    Google Scholar 

  60. 14–19, 1981.

    Google Scholar 

  61. Haudenschild CC, Gould KE, Quist WC, LoGerfo FW. Protection of endothelium in vessel segments excised for grafting. Circulation 64 (Suppl. II):II101-IIl 10, 1981.

    Google Scholar 

  62. Joris I, Majno G. Endothelial changes induced by arterial spasm. Am J Pathol 102: 346–358, 1981.

    PubMed  CAS  Google Scholar 

  63. Buchanan MR, Richardson M, Hass TA, Hirsch J, Madri JA. Basement membrane underlying the vascular endothelium is not thrombogenic: In vivo and in vitro studies with rabbit and human tissue. Thromb Haemost 58: 698–704, 1987.

    PubMed  CAS  Google Scholar 

  64. Miller BG, Evan AP, Bohlen HG. Exposure of vascular smooth muscle cells for analysis with the scanning electron microscope. Scann Microsc. 1: 1295–1313, 1987.

    CAS  Google Scholar 

  65. Murakami T. Vascular arrangement of the rat renal glomerulus. A scanning electron microscope study of corrosion casts. Arch Histol Jpn 34: 87–107, 1972.

    Article  PubMed  CAS  Google Scholar 

  66. Hodde KC, Miodonski A, Bakker C, Veltman WAM. Scanning electron microscopy of microcorrosion casts with special attention on arterio-venous differences and application to the rat’s cochlea. Scann Electron Microsc. II: 477–484, 1977.

    Google Scholar 

  67. Hodde KC, Miodonski A, Bakker C, Veltman WAM. Scanning electron microscopy of microcorrosion casts with special attention on arterio-venous differences and application to the rat’s cochlea. Scann Electron Microsc II: 477–484, 1979.

    Google Scholar 

  68. Kardon RH, Kessel RG. SEM studies on vascular casts of the rat ovary. Scann Electron Microsc III: 743–750, 1979.

    Google Scholar 

  69. Nopanitaya W, Aghajanian JG, Gray LD. An improved plastic mixture for corrosion casting of the gastrointestinal microvascular system. Scann Electron Microsc. III: 751–756, 1979.

    Google Scholar 

  70. Phillips SJ, Rosenberg A, Meir-Levi D, Pappas E. Visualization of the coronary microvascular bed by light and scanning electron microscopy and X-ray in the mammalian heart. Scann Electron Microsc III: 735–742, 1979.

    Google Scholar 

  71. Reidy MA, Levesque MJ. A scanning electron microscopic study of arterial endothelial cells using vascular casts. Atherosclerosis 28: 463–470, 1977.

    Article  PubMed  CAS  Google Scholar 

  72. Hodde KC, Nowell JA. SEM of microcorrosion casts. Scann Electron Microsc II (Suppl.): 89–106, 1980.

    Google Scholar 

  73. Kratky RG, Zeindler CM, Lo DKC, Roach MR. Quantitative measurements from vascular casts. Scann Microsc 3: 937–943, 1989.

    CAS  Google Scholar 

  74. Lametschwandtner A, Lametschwandtner U, Weiger T. Scanning electron microscopy of vascular corrosion casts — technique and applications. Scann Electron Microsc II: 663–695, 1984.

    Google Scholar 

  75. Steeber DA, Erickson CM, Hodde KC, Albrecht RM. Vascular changes in popliteal lymph nodes due to antigen challenge in normal and lethally irradiated mice. Scann Microsc 1: 831–839, 1987.

    CAS  Google Scholar 

  76. Poole JCF, Sanders AG, Florey HW. The regeneration of aortic endothelium. J Path Bact 125: 133–143, 1958.

    Article  Google Scholar 

  77. Castenholz A. Interpretation of structural patterns appearing on corrosion casts of small blood and initial lymphatic vessels. Scann Microsc 3: 315–325, 1989.

    CAS  Google Scholar 

  78. Konerding MA, Blank M. The vascularization of the vertebral column of rats. Scann Microsc 1: 1727–1732, 1987.

    CAS  Google Scholar 

  79. Kratky RG, Roach MR. Scanning electron microscopy of early atherosclerosis in rabbits using aortic casts. Scann Microsc 2: 465–470, 1988.

    CAS  Google Scholar 

  80. Kratky RG, Roach MR. Endothelial cell morphometry near branch junctions of rabbit aorta. Can J Physiol Pharm 65: 1864–1871, 1987.

    Article  CAS  Google Scholar 

  81. Zeindler CM, Kratky RG, Roach MR. Quantitative measurements of early atherosclerotic lesions on rabbit aortae from vascular casts. Atherosclerosis 76: 245–255, 1989.

    Article  PubMed  CAS  Google Scholar 

  82. Odgaard A, Jensen EB, Gundersen HJG. Estimation of structural anisotropy based on volume orientation: A new concept. J Microsc 157: 149–162, 1990.

    Article  PubMed  CAS  Google Scholar 

  83. Iannaccone PM. Fractal geometry in mosaic organs: A new interpretation of mosaic pattern. FASEB J 4: 1508–1512, 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walmsley, J.G. (1992). Interpretation of Endothelial Structure Related to Tumor and Atherosclerotic Blood Vessels. In: Motta, P.M., Murakami, T., Fujita, H. (eds) Scanning Electron Microscopy of Vascular Casts: Methods and Applications. Electron Microscopy in Biology and Medicine, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3488-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3488-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6546-4

  • Online ISBN: 978-1-4615-3488-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics