Skip to main content

Reflections on the Chemistry and Affinities of the Major Commercial Condensed Tannins in the Context of their Industrial Use

  • Chapter
Plant Polyphenols

Part of the book series: Basic Life Sciences ((BLSC,volume 59))

Abstract

Traditional tannery practice based on empirical observation affords an accurate forecast of many of the physical properties of the commercially-important wattle (‘mimosa’) and quebracho extracts. Early research already indicated an inverse relationship between tannin solubility and affinity for collagen or gelatin, also a parallel between the relative affinities of various tannin oligomers for differing substrates, and a linear regression between the number average mass of discrete tannin fractions and their mobility (RM) on cellulose. A relationship between solubility, affinity, functionality, and molecular mobility exists for flavans. The foundation of the chemistry of 5-deoxyproanthocyanidins of wattle and quebracho tannins was laid by the synthesis of three resorcinol-based anthocyanidins and the first crystalline flavan-3,4-diol prototype, by the first recognition of enantiomorphism among flavanoids, and by the first detailed structural and stereochemical elucidation of biflavanoids. In view of the projected use of biflavanoids as synthons for higher oligomers, methods were developed for determining the point of in-terflavanoid bonding (1H-NMR parameters), for establishing the absolute stereochemistry at C-4 in substituent units (CD), and for verifying their purity by high-temperature 1H-NMR spectroscopy, after providing initial evidence of rotational isomerism about interflavanyl bonds. These methods provided the key to the identification and synthesis of derivatives of the complete series of ‘enantiomorphous’ natural bi-, and ‘angular’ tri-, tetra- and also pentaflavanoid analogues. Various syntheses showed asymmetric induction as limiting the complexity of tetraflavanoid mixtures, ‘cyclic’ conformations being established for those thermodynamically stable diastereoisomers among these (n.O .e difference spectroscopy). Synthesis also provided insights into the condensation process leading to natural emphasis on highly condensed procyanidins. Physical, structural, and compositional factors in traditional (and also expanding) industrial applications of wattle extract are significant.

This chapter is based on Dr. Roux’s address in acceptance of the Second North American Tannin Conference Award. Most of the author’s research presented in this chapter was conducted at the University of the Orange Free State, Bloemfontein, South Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hemingway, R.W.; Karchesy, J.J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York, 553 p. (1989).

    Google Scholar 

  2. Shuttleworth, S.G.; Cunningham, G.E. The theory of vegetable tannage. J. Soc. Leather Trades’ Chem. 32:183 (1948).

    CAS  Google Scholar 

  3. Roux, D.G. Study of the affinity of black wattle extract constituents. Part 1. Affinity of polyphenols for swollen collagen and cellulose in water. J. Soc. Leather Trades’ Chem. 39:80 (1955).

    CAS  Google Scholar 

  4. Sykes, R.L.; Roux, D.G. Study of the affinity of black wattle extract constituents. Part 4. Relative affinity of polyphenols for swollen chemically modified collagen. J. Soc. Leather Trades’ Chem. 41:14 (1957).

    CAS  Google Scholar 

  5. Ray, N.H. Measurement of high molecular weights by ebulliometry. Trans. Faraday Soc. 48:809 (1952).

    Article  CAS  Google Scholar 

  6. Evelyn, S.R. The molecular weight of black wattle tannin. Part 1. The application and standardization of apparatus for accurate measurement. J. Soc.Leather Trades’ Chem. 38:142 (1954).

    CAS  Google Scholar 

  7. Roux, D.G.; Evelyn, S.R. Condensed tannins. The distribution and deposition of tannins in the heartwoods of Acacia mollissima and Schinopsis spp. Biochem. J. 76:17 (1960).

    PubMed  CAS  Google Scholar 

  8. Roux, D.G.; Evelyn, S.R. The correlation between structure and paper Chromatographic behavior of some flavonoid compounds and tannins. J. Chromatogr. 1:539 (1958).

    Google Scholar 

  9. Roux, D.G. Molecular weight of condensed tannins as a factor determining their affinity for collagen. Nature (London) 181:1793 (1958).

    Article  CAS  Google Scholar 

  10. Pigman, W.; Anderson, E.; Fischer, R.; Buchanan, M.A.; Browning, B.L. Colour precursors in spruce in western hemlock woods and inner barks. TAPPI 36:4 (1953).

    CAS  Google Scholar 

  11. Drewes, S.E.; Roux, D.G. Stereochemistry and biogenesis of mopanols and peltogynols and associated flavonoids from Coleophospermum mopane. J. Chem. Soc (C):1644 (1966).

    Google Scholar 

  12. Drewes, S.E.; Roux, D.G. Condensed tannins 16. Synthesis of (−)-flavans from (∓)-dihydro-flavonols. Biochem. J. 87:435 (1963).

    Google Scholar 

  13. Roux, D.G. Structural and Chromatographic correlations of some flavanoid compounds. J. Chromatogr. 10:473 (1963).

    Article  PubMed  CAS  Google Scholar 

  14. Freudenberg, K.; Roux, D.G. Uber leuko-robinetinidinhydrat und leuko-fisetinidin-hidrat. Liebigs Ann.Chem. 613:56 (1958).

    Article  Google Scholar 

  15. Roux, D.G.; Evelyn, S.R. The penetration of wattle tannins into hide. J. Amer.Leather Chem. Assoc. 52:58 (1957).

    CAS  Google Scholar 

  16. Roux, D.G. Determination of gums in black wattle extract. J. Soc. Leather Trades’ Chem. 37:374 (1953).

    CAS  Google Scholar 

  17. Wilson, J.A.; Kern, E.J. Nature of the hide-tannin compound and its bearing on tannin analysis. J. Amer. Leather Chem. Assoc. 16:75 (1921).

    Google Scholar 

  18. Hemingway, R.W. Reactions at the interflavanoid bond of proanthocyanidins. In: Hemingway, R.W.; Karchesy, J.J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York, p. 265 (1989).

    Chapter  Google Scholar 

  19. Roux, D.G. Study of the affinity of black wattle extract constituents. Part 3. The bisulphite reaction on wattle polyphenols. J. Soc. Leather Trades’ Chem. 39:331 (1955).

    Google Scholar 

  20. Roux, D.G. The estimation of tannins in black wattle barks and commercial ‘mimosa’ extracts. Part 3. Critical examination of the official hide powder method. J. Soc. Leather Trades’ Chem. 41:275 (1957).

    CAS  Google Scholar 

  21. Stephen, A.M. Chemical constitution of wattle (mimosa) tannin. J. Chem. Soc.:3082 (1949).

    Google Scholar 

  22. Freudenberg, K.; Roux, D.G. Umwandlung des dihydrorobinetins in das zugehorige anthocyanidin. Naturwiss. 41:450 (1954).

    Article  CAS  Google Scholar 

  23. Roux, D.G. Identification of anthocyanidins, leucoanthocyanidins and 2,3-dihydroflavonols in plant tissues. Nature (London) 179:305 (1957).

    Article  CAS  Google Scholar 

  24. King, F.E.; Bottomley, W. The isolation from Acacia melanoxylon of a flavan-3,4-diol and its possible bearing on the constitution of phlobatannins. Chem. and Ind. (London):1368 (1953); Extractives from hardwoods.17. Occurrence of a flavan-3,4-diol (melacacidin) in Acacia melanoxylon. J. Chem. Soc.:1399 (1954).

    Google Scholar 

  25. Roux, D.G.; Bill, M.C. Mechanism of formation of anthocyanidins from leucoanthocyanidins. Nature (London) 183:42 (1959).

    Article  CAS  Google Scholar 

  26. Keppler, H.H. The isolation and constitution of mollisacacidin, a new leucoanthocyanidin from the heartwood of Acacia mollissima. J. Chem. Soc.:2721 (1957).

    Google Scholar 

  27. Drewes, S.E.; Roux, D.G. Condensed tannins 18. Stereochemistry of flavan-3,4-diol tannin precursors:(+)-mollisacacidin, (-)-leucofisetinidin and (+)-leucorobinetinidin. Biochem. J. 40:343 (1964).

    Google Scholar 

  28. Roux, D.G.; Maihs, E.A. Condensed tannins 3. Isolation of (-)-7,3’,4’,5’-tetrahydroxyflavan-3-ol, (+)-catechin and (+)-gallocatechin from black wattle bark extract. Biochem. J. 74:44 (1960).

    PubMed  CAS  Google Scholar 

  29. Roux, D.G. Prototypes of quebracho tannins. Chem. and Ind. (London):161 (1958).

    Google Scholar 

  30. Roux, D.G.; Evelyn, S.R. Condensed tannins 2. Biogenesis of condensed tannins based on leucoanthocyanidins. Biochem. J. 70:344 (1958).

    PubMed  CAS  Google Scholar 

  31. Clark-Lewis, J.W.; Roux, D.G. Natural occurrence of enantiomorphous leucoanthocyanidins: (+)-mollisacacidin (gleditsin) and quebracho (-)-leucofisetinidin. J. Chem. Soc.:1402 (1959).

    Google Scholar 

  32. Drewes, S.E.; Roux, D.G.; Saayman, H.M.; Feeney, J.; Eggers, S.H. The stereochemistry of biflavanoids from black wattle bark: leucofisetinidin-(+)-catechin, leucorobinetinidin-(+)-catechin and leucorobinetinidin-(+)-gallocatechin. J. Chem. Soc., Chem.Commun.:370 (1966).

    Google Scholar 

  33. Drewes, S.E.; Eggers, S.H.; Feeney, J.; Roux, D.G.; Saayman, H.M. Some stereochemically identical bifiavanols from the bark tannins of Acacia mearnsii. J. Chem. Soc.:1302 (1967).

    Google Scholar 

  34. Drewes, S.E.; Roux, D.G.; Feeney, J.; Eggers, S.H. Stereochemistry of a natural 4,6-linked (+)-bileucofisetinidin. J. Chem. Soc., Chem. Commun.:368 (1966).

    Google Scholar 

  35. Drewes, S.E.; Eggers, S.H.; Feeney, J.; Roux, D.G. Three diastereoisomeric 4,6-linked bileu-cofisetinidins from the heartwood of Acacia mearnsii. J. Chem. Soc.:1217 (1967).

    Google Scholar 

  36. Weinges, K.; Kaltenhauser, W.; Marx, H-D.; Nader, E.; Nader, F.; Perner, J.; Seiber, D. Zur kentnis der proanthocyanidine.10. Procyanidine aus fruchten. Liebigs Ann. Chem. 711:184 (1968).

    Article  CAS  Google Scholar 

  37. Geissman, T.A.; Dittmar, H.F.K. Proanthocyanidin from avocado seed. Phytochemistry 4:267 (1965).

    Article  Google Scholar 

  38. Du Preez, I.C.; Rowan, A.C.; Roux, D.G.; Feeney, J. Hindered rotation about the sp2-sp3 hybridized C-C bond between flavanoid units in condensed tannins. J. Chem. Soc., Chem. Commun.:315 (1971).

    Google Scholar 

  39. Weinges, K.; Marx, H-D.; Goritz, K. Die rotationsbehinderung an der C(sp2)-C(sp3)-bindung der 4-arylsubstituerten polymethoxyflavane. Chem. Ber. 103:2336 (1970).

    Article  CAS  Google Scholar 

  40. Fletcher, A.C.; Porter, L.J.; Haslam, E.; Gupta, R.K. Plant proanthocyanidins.Part 3. Conformational and configurational studies of natural procyanidins. J. Chem. Soc., Perkin Trans. 1:1628 (1977).

    Article  Google Scholar 

  41. Hundt, H.K.L.; Roux, D.G. Condensed tannins: chemical shifts of H-6 and H-8 in 8-and 6-substituted (+)-catechin units. J. Chem. Soc, Chem.Commun.:696 (1978).

    Google Scholar 

  42. Hundt, H.K.L.; Roux, D.G. Synthesis of condensed tannins.Part 3.Chemical shifts for determining the 6-and 8-bonding positions of‘terminal’(-t-)-catechin units. J. Chem. Soc., Perkin Trans. 1:1227 (1981).

    Article  Google Scholar 

  43. Engel, D.W.; Hattingh, M.; Hundt, H.K.L.; Roux, D.G. X-ray structure, conformation and absolute configuration of 8-bromo-tetra-0-methyl-(+)-catechin. J. Chem. Soc., Chem. Commun.:695 (1978).

    Google Scholar 

  44. Delcour, J.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 9. The condensation sequence of leucocyanidin with (+)-catechin and with the resultant procyanidins. J. Chem. Soc., Perkin Trans. 1:1711 (1983).

    Article  Google Scholar 

  45. Kolodziej, H.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins.Part 12.Direct access to [4,6]-and [4,8]-all-2,3-cis-procyanidin derivatives from (-)-epicatechin: Assessment of bonding positions in oligomeric analogues from Crataegus oxycantha L. J. Chem. Soc., Perkin Trans. 1:343 (1984).

    Article  Google Scholar 

  46. Botha, J.J.; Ferreira, D.; Roux, D.G. Condensed tannins.Circular dichroism method of assessing the absolute configuration at C-4 of 4-arylflavan-3-ols and stereochemistry of their formation from flavan-3,4-diols. J. Chem. Soc, Chem. Commun.:698 (1978).

    Google Scholar 

  47. Botha, J.J.; Ferreira, D.; Roux, D.G. Condensed tannins. Direct synthesis, structure and absolute configuration of four biflavanoids from black wattle bark (‘mimosa’) extract. J. Chem. Soc., Chem. Commun.:700 (1978).

    Google Scholar 

  48. Barrett, M.W.; Klyne, W.; Scopes, M.P.; Fletcher, A.C.; Porter, L.J.; Haslam, E. Plant proanthocyanidins. Part 6. Chiroptical studies. Part 95. Circular dichroism of procyanidins. J. Chem. Soc., Perkin Trans. 1:2375 (1979).

    Article  Google Scholar 

  49. Van der Westhuizen, J.H.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 2.Synthesis by photolytic rearrangement, stereochemistry and circular dichroism of the first 2,3-cis-3,4-cis-4-arylflavan-3-ols. J. Chem. Soc., Perkin Trans. 1:1220 (1981).

    Article  Google Scholar 

  50. Botha, J.J.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 4. A direct biomimetic approach to [4,6]-and [4,8]-biflavanoids. J. Chem. Soc., Perkin Trans. 1:1235 (1981).

    Article  Google Scholar 

  51. Botha, J.J.; Ferreira, D.; Roux, D.G.; Hull, W.E. Condensed tannins: Condensation mode and sequence during formation of synthetic and natural triflavanoids. J. Chem. Soc., Chem.Commun.:510 (1979).

    Google Scholar 

  52. Viviers, P.M.; Botha, J.J.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 7. Angular [4,6:4,8]-prorobinetindin triflavanoids from black wattle (‘mimosa’) extract. J. Chem. Soc., Perkin Trans. 1:17 (1983).

    Article  Google Scholar 

  53. Malan, J.C.S.; Steynberg, P.J.; Steynberg, J.P.; Young, D.A.; Bezuidenhoudt, B.C.B.; Ferreira, D. Oligomeric flavanoids. Part 14. Proguibourtinidins based on (-)-fisetinidol and (+)-epifisetinidol units. Tetrahedron 46:2883 (1990).

    Article  CAS  Google Scholar 

  54. Viviers, P.M.; Kolodziej, H.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins.Part 11. Intramolecular enantiomerism of the constituent units of tannins from the Anacardeaceae:Stoicheiometric control in direct synthesis:Derivation of 1H-NMR parameters applicable to higher oligomers. J. Chem. Soc., Perkin Trans. 1:2555 (1983).

    Article  Google Scholar 

  55. Botha, J.J.; Viviers, P.M.; Young, D.A.; Du Preez, I.C.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 5. The first angular [4,6:4,8]-triflavanoids and their natural counterparts. J. Chem. Soc., Perkin Trans. 1:527 (1982).

    Article  Google Scholar 

  56. Viviers, P.M.; Young, D.A.; Botha, J.J.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 6. Sequence of units, coupling positions and absolute configuration of the first linear [4,6:4,6]-triflavanoid with terminal 3,4-diol function. J. Chem.Soc., Perkin Trans. 1:535 (1982).

    Article  Google Scholar 

  57. Young, D.A.; Ferreira, D.; Roux, D.G.; Hull, W.E. Synthesis of condensed tannins. Part 15. Structure of natural ‘angular’ tetraflavanoids: asymmetric induction during oligomeric synthesis. J. Chem. Soc., Perkin Trans. 1:2529 (1985).

    Article  Google Scholar 

  58. Young, D.A.; Kolodziej, H.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 16. Sterochemical differentiation of the first ‘angular’ (2S,3R)-profisetinidin tetraflavanoids from Rhus lancea (karree) and varying dynamic behaviour of their derivatives. J. Chem. Soc., Perkin Trans. 1:2537 (1985).

    Article  Google Scholar 

  59. Young, D.A.; Ferreira, D.; Roux, D.G. Stereochemistry and dynamic behaviour of some synthetic ‘angular’ profisetinidin tetraflavanoid derivatives. J. Polymer Sci. Part A. Polymer Chem. 24:835 (1986).

    Article  CAS  Google Scholar 

  60. Brandt, E.V.; Young, D.A.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 20.Cycloconformations and conformational stability among derivatives of ‘angular’ tetraflavanoid profisetinidins. J. Chem. Soc., Perkin Trans. 1:2353 (1987).

    Article  Google Scholar 

  61. Saayman, H.M.; Roux, D.G. The origins of tannins and flavonoids in black wattle barks and heartwoods, and their associated non-tannin components. Biochem. J. 97:794 (1965).

    PubMed  CAS  Google Scholar 

  62. Fourie, T.G.; Du Preez, I.C.; Roux, D.G. 3’,4’,7,8-Tetrahydroxyflavanoids from the hearts woods of Acacia nigrescens and their conversion products. Phytochemistry 19:1763 (1972)

    Article  Google Scholar 

  63. Roux, D.G.; Ferreira, D. Rationalization of divergent condensation sequences in flavanoid oligomerization. Proc. Phytochem. Soc. Europe 25:221 (1985).

    Google Scholar 

  64. Foo, L.Y. A novel pyrogallol A-ring proanthocyanidin dimer from Acacia melanoxylon. J. Chem. Soc., Chem.Commun.:236 (1986).

    Google Scholar 

  65. Roux, D.G.; Ferreira, D. α-Hydroxychalcones as intermediates in flavonoid biogenesis. The significance of recent chemical analogies. Phytochemistry 13:2039 (1974).

    Article  CAS  Google Scholar 

  66. Clark-Lewis, J.W.; Jemison, R.W.; Nair, V. Cis-and trans-3-methoxyflavanones. Austral. J. Chem. 21:3015 (1968).

    Article  CAS  Google Scholar 

  67. Ferreira, D.; Van der Merwe, J.P.; Roux, D.G. Phytochemistry of the gum copal tree, Trachylobium verrucosum (Gaertn) Oliv. The first natural α-hydroxychalcone and 2,3-cis-and 2,3-trans-3-methoxyflavanones. J. Chem. Soc., Perkin Trans. 1:1492 (1974).

    Article  Google Scholar 

  68. Foo, L.Y. Configuration and conformation of dihydroflavonols from Acacia melanoxylon. Phytochemistry 26:813 (1987); The first natural 2,3-cis-dihydroflavonol and rationalization of the biogenesis of 2,3-cis-proanthocyanidins. J. Chem.Soc., Chem. Commun. 6:75 (1986).

    Article  CAS  Google Scholar 

  69. Tindale, M.D.; Roux, D.G. An extended phytochemical survey of Australian species of Acacia: Chemotaxonomic and phylogenetic aspects. Phytochemistry 13:829 (1974).

    Article  CAS  Google Scholar 

  70. Tindale, M.D.; Roux, D.G. Phytochemical studies on the heartwoods and barks of African and Australian species of Acacia. Boissiera 24:299 (1975).

    Google Scholar 

  71. Young, D.A.; Cronje, A.; Botes, A.L.; Ferreira, D.; Roux, D.G. Synthesis of condensed tannins. Part 14. Biflavanoid profisetinidins as synthons. The acid-induced ‘phlobaphene’ reaction. J. Chem. Soc., Perkin Trans. 1:2521 (1985).

    Article  Google Scholar 

  72. Steenkamp, J.A.; Steynberg, J.P.; Brandt, E.V.; Ferreira, D.; Roux, D.G. Phlobatannins, a novel class of ring-isomerised condensed tannins. J. Chem.Soc., Chem.Commun.:1678 (1985).

    Google Scholar 

  73. Ferreira, D.; Steynberg, J.P.; Burger, J.F.W.; Young, D.A. Base-catalysed pyran rearrangements of profisetinidins. In: Hemingway, R.W.; Karchesy, J.J. (eds.) Chemistry and significance of condensed tannins. Plenum Press, New York, p. 285 (1989).

    Chapter  Google Scholar 

  74. Pizzi, A.; Orovan, E.; Cameron, F.A. Cold-set tannin-resorcinol-formaldehyde adhesives of lower resorcinol content. Holz als Roh-und Werkstoff 46:67 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roux, D.G. (1992). Reflections on the Chemistry and Affinities of the Major Commercial Condensed Tannins in the Context of their Industrial Use. In: Hemingway, R.W., Laks, P.E. (eds) Plant Polyphenols. Basic Life Sciences, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3476-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3476-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6540-2

  • Online ISBN: 978-1-4615-3476-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics