Skip to main content

The Centrifugal Visual System: What can Comparative Studies Tell Us about Its Evolution and Possible Function?

  • Chapter
The Changing Visual System

Part of the book series: NATO ASI Series ((NSSA,volume 222))

Abstract

A wide variety of techniques has been used during the last century to investigate the possibility that some nerve fibers arise from neurons within the central nervous system and terminate in the retina. These techniques vary from the classical silver impregnation of what appear to be free nerve endings, the demonstration of differential rates of degeneration of axons in the proximal and distal stumps of the transected optic nerve, through the retrograde labelling of cell bodies after intraocular injection of a variety of tracers, to the immunohistochemical identification of cell bodies and fibers characterized by a particular neurotransmitter or neuropeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angaut, P. & J. Repérant (1978) A light-and electron-microscopic study of the nucleus isthmo-opticus in the pigeon. Archives d’Anatomie Microscopique et de Morphologie Expérimentale 67:63–78

    PubMed  CAS  Google Scholar 

  2. von Bartheld, C.S. & D.L. Meyer (1986a) Central projections of the nervus terminalis in the bichir, Polypterus palmas. Cell and Tissue Research 244:181–186

    Google Scholar 

  3. von Bartheld, C.S. & D.L. Meyer (1986b) Retinofugal and retinopetal projections in the teleost (Channa micropeltes) (Channiformes). Cell and Tissue Research 251:653–663

    Google Scholar 

  4. von Bartheld, C.S., H.W. Lindörfer & D.L. Meyer (1987) The nervus terminalis also exists in cyclostomes and birds. Cell and Tissue Research 250:431–434

    Google Scholar 

  5. Bingelli, RL. & W.J. Paule (1969) The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer. Journal of Comparative Neurology 137:1–18

    Google Scholar 

  6. Bons, N. & A. Petter (1986) Afférences rétiniennes d origine hypothalamique chez un primate prosimien: Microcebus murinus. Etude àl’aide de traceurs fluorescents rétrogrades. Comptes Rendus de l’Académie des Sciences (Paris) 303:719–722

    CAS  Google Scholar 

  7. Bravo, H. & J.D. Pettigrew (1981) The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl (Tyto alba) and the burrowing owl (Speotyto cunicularia). Journal of Comparative Neurology 199:419–441

    PubMed  CAS  Google Scholar 

  8. Brindley, G.S. & D.I. Hamasaki (1962) Histological evidence against the view that the cat’s optic nerve contains centrifugal fibres. Journal of Physiology 184:444–449

    Google Scholar 

  9. Bunt, S.M. & R.D. Lund (1981) Development of a transient retino-retinal pathway in hooded and albino rats. Brain Research 211:399–404

    PubMed  CAS  Google Scholar 

  10. Bunt, S.M., R.D. Lund & P.W. Land (1983) Prenatal development of the optic projection in albino and hooded rats. Developmental Brain Research 6:149–168

    Google Scholar 

  11. Byzov, A.L. & I.A. Utina (1971) Centrifugal influence on amacrine cells in frog retina. (in Russian) Neurofiziologia 3:293–300

    CAS  Google Scholar 

  12. Burkhalter, A., S.J. Wang & P. Streit (1979) Thalamic projection of retinal ganglion cells: distribution and classification. Neuroscience Letters (Supplement) 3: S285

    Google Scholar 

  13. Cajal, S.R. (1888) Estructura de la retina de las ayes. Revista Trimestral de Histologia Normal y Patologia 1, August 1888. Reprinted 1924 in Trabajos Escogidos 1:355–371 Madrid, Jimenez y Mollari

    Google Scholar 

  14. Catsicas, S., S. Thanos & P.G.H. Clarke (1987) Major role for neuronal death during brain development: refinement of topographical connections. Proceedings of the National Academy of Sciences of the USA 84:8165–8168

    PubMed  CAS  Google Scholar 

  15. Cervetto, L., P.L. Marchiafava & E. Pasina (1976) Influence of efferent retinal fibres on responsiveness of ganglion cells to light. Nature 260:56–57

    PubMed  CAS  Google Scholar 

  16. Cowan, W.M. & M. Cuénod (1975) The use of axonal transport for studies of neuronal connectivity Amsterdam, Elsevier

    Google Scholar 

  17. Cowan, W.M. & P.G.H. Clarke (1976) The development of the isthmo-optic nucleus. Brain, Behavior and Evolution 13:345–375

    CAS  Google Scholar 

  18. Cowan, W.M. & T.P.S. Powell (1963) Centrifugal fibres in the avian visual system. Proceedings of the Royal Society B 158:232–252

    CAS  Google Scholar 

  19. Crapon de Caprona M.-D. & B. Fritzsch (1983) The development of the retinopetal nucleus olfacto-retinalis of two cichlid fish as revealed by horseradish peroxidase. Developmental Brain Research 11:281–301

    Google Scholar 

  20. Crossland, W.J. & C.P. Hughes (1978) Observations on the afferent and efferent connections of the avian isthmo-optic nucleus. Brain Research 145:239–256

    PubMed  CAS  Google Scholar 

  21. Demski, L.S. & R.G. Northcutt (1983) The terminal nerve: a new chemosensory system in vertebrates? Science 220:43437

    Google Scholar 

  22. Dodt, E. (1956) Centrifuigal impulses in rabbit’s retina. Journal of Neurophysiology 19:301–307

    PubMed  CAS  Google Scholar 

  23. Dogiel, A.S. (1895) Die Retina der Vögel. Archiv für Mikroskopische Anatomie 44:622–648

    Google Scholar 

  24. Dowling, J.E. &W.M. Cowan (1966) An electron-microscope study of normal and degenerating centrifugal fibre terminals in the pigeon retina. Zeitschrift für Zellforschung und Mikroskopische Anatomie 71:14–28

    CAS  Google Scholar 

  25. Dräger, U.C., D.L. Edwards & C.J. Barnstable (1984) Antibodies against filamentous components in discrete cell types of the mouse retina. Journal of Neuroscience 4:2025–2042

    PubMed  Google Scholar 

  26. Eason, R.G., M. Oakley , L. Flowers (1983) Central neural influences on the human retina during selective attention. Physiological Psychology 11:18–28

    Google Scholar 

  27. Ebbesson, S.O.E. (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell and Tissue Research 213:179–212

    PubMed  CAS  Google Scholar 

  28. Ebbesson, S.O.E. & D.L. Meyer (1981)Efferents to the retina have multiple sopurces in teleost fish. Science 214:924–926

    PubMed  CAS  Google Scholar 

  29. Ebbesson, S.O.E. &D.L. Meyer (1989) Retinopetal cells exist in the optic tectum of steelhead trout. Neuroscience Letters 106:95–98

    PubMed  CAS  Google Scholar 

  30. Ferguson, J.L., P.J. Mulvanny & S.E. Brauth (1978) Distribution of neurons projecting to the retina of Caiman crocodilus. Brain, Behavior and Evolution 15:294–306

    CAS  Google Scholar 

  31. Fritzsch, B. & W. Himstedt (1981) Pretectal neurons project to the salamander retina. Neuroscience Letters 24:13–17

    PubMed  CAS  Google Scholar 

  32. Fritzsch, B. & S.P. Collin (1990)Dendritic distribution of two populations of ganglion cells and the retinopetal fibers in the retina of the silver lamprey (Ichthyomyzon unicuspis). Visual Neuroscience 4:533–545

    CAS  Google Scholar 

  33. Fritzsch, B., M.-D. Crapon de Caprona & P.G.H. Clarke (1990) Development of two morphological types of retinopetal fibers in chick embryos, as shown by the diffusion along axons of a carbocyanine dye in the fixed retina. Journal of Comparative Neurology 300:405–421

    PubMed  CAS  Google Scholar 

  34. Galifret, Y., F. Condé-Courtine, J. Repérant & J. Servière (1971) Centrifugal control in the visual system of the pigeon. Vision Research (Supplement) 3:185–200

    Google Scholar 

  35. Gewurtzhagen, K., M.J. Rickmann, D.L. Meyer & S.O.E. Ebbesson (1982) Optic tract cells projecting to the retina in the teleost (Pantodon buchholzO. Cell and Tissue Research 225:23–28

    Google Scholar 

  36. Goldberg, J.M. & C. Fernandez (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. Journal of Neurophysiology 43:986–1025

    PubMed  CAS  Google Scholar 

  37. Goodale, M.A. (1983) Visually guided pecking in the pigeon (Columba Livia). Brain, Behavior and Evolution 22:22–41

    CAS  Google Scholar 

  38. Halpern, M., R.T. Wang & D.R. Coleman (1976) Centrifigal fibers to the eye in a nonavian vertebrate: source revealed by horseradish peroxidase studies. Science 194:1185–1188

    PubMed  CAS  Google Scholar 

  39. Hayes, B.P. (1982) The structural organization of the pigeon retina. Progress in Retinal Research 1:197–226

    Google Scholar 

  40. Hayes, B.P. & A.L. Holden (1983) The distribution of centrifugal terminals in the pigeon retina. Experimental Brain Research 49:189–197

    CAS  Google Scholar 

  41. Hayes, B.P. & K.E. Webster (1981) Neurons situated outside the isthmo-optic nucleus and projecting to the eye in adult birds. Neuroscience Letters 26:107–112

    PubMed  CAS  Google Scholar 

  42. Hodos, W. & H.J. Karten (1974) Visual intensity and pattern discrimination deficits after esions of ectostriatum in pigeon. Journal of Comparative Neurology 140:53–68

    Google Scholar 

  43. Hökfelt, T., O. Johanson & M. Goldstein (1984) Chemical anatomy of the brain. Science 225:1326–1334

    PubMed  Google Scholar 

  44. Holden, A.L. (1982) Electrophysiology of the avian retina. Progress in Retinal Research 1:179–196

    Google Scholar 

  45. Holden, A.L. (1990) Centrifugal pathways to the retina: which way does the “searchlight” point? Visual Neuroscience 4:493–495

    PubMed  CAS  Google Scholar 

  46. Hoogland, P.V. &E. Welker (1981) Telencephalic projections to the eye in Python reticulatus. Brain Research 213:173–176

    CAS  Google Scholar 

  47. Hoogland, P.V.&A. Vanderkrans, F. Koole , H.J. Groenewegen (1985) A direct projection from the nucleus oculomotorius to the retina in rats. Neuroscience Letters 56:323–328

    CAS  Google Scholar 

  48. Itaya, S.K. (1980) Retinal efferents from the pretectal area in the rat. Brain Research 201:436–441

    PubMed  CAS  Google Scholar 

  49. Itaya, S.K. & P.W. Itaya (1985) Centrifugal fibers to the rat retina from the medial pretectal area and the periaqueductal grey matter. Brain Research 326:362–365

    PubMed  CAS  Google Scholar 

  50. Ito, H. & T. Murakami (1984) Retinal ganglion cells in two teleost species, Sebasticus marmoratus and Navodon modestus. Journal of Comparative Neurology 229:80–96

    PubMed  CAS  Google Scholar 

  51. Janvier, P. (1981) The phylogeny of the Craniata with particular reference to the significance of fossil “agnathans”. Journal of Vertebrate Palaeontology 1:121–159

    Google Scholar 

  52. Johns, P.R. (1981) Growth of fish retinas. American Zoologist 21:447–458

    Google Scholar 

  53. Kenigfest, N.B., J. Repérant & N.P. Vesselkin (1986) Retinal projections in the lizard Ophisaurus apodus revealed by autoradiographic and peroxidase methods. (in Russian) Journal of Evolutionary and Biochemical Physiology 22:181–187

    Google Scholar 

  54. Knipling, R.R. (1978) No deficit in near-field visual acuity of pigeons after transection of the isthmo-optic tract. Physiology and Behavior 21:813–816

    CAS  Google Scholar 

  55. Kuhlenbeck, H. (1977) The central nervous system of vertebrates,vol. 5, I. Derivatives of the prosencephalon: diencephalon and telencephalon. Basel, Karger

    Google Scholar 

  56. Lanchester, B.S. & R.F. Mark (1975) Pursuit and prediction in the tracing of moving food by a teleost fish Acanthaluteres spilomelanurus. Journal of Experimental Biology 63:627–645

    CAS  Google Scholar 

  57. Lankester, E.R. (1870) On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Annual Magazine of Natural History 4:34–43

    Google Scholar 

  58. Larsen, J.N.B. & M. Moller (1985) Evidence for efferent projections from the brain to the retina of the Mongolian gerbil Meriones unguiculatus. A horseradish peroxidase tracing study. Acta Ophthalmologica (Supplement) 63:11–14

    Google Scholar 

  59. Lazar, G. (1969) Distribution of optic terminals in the different optic centers of the frog. Brain Research 16:1–14

    PubMed  CAS  Google Scholar 

  60. Lorenz, K. (1962) The function of colour in coral reef fishes. Proceedings of the Royal Institute of Great Britain 39:282–296

    Google Scholar 

  61. Luiten, P.G.M. (1981) Two visual pathways to the telencephalon in the nurse shark (Ginglymostoma cirratum). I. Retinal projections. Journal of Comparative Neurology 196:531–538

    PubMed  CAS  Google Scholar 

  62. Mangun, G.R., J.C. Hansen & S.A. Hillyard (1986) Electroretinograms reveal no evidence for centrifugal modulation of retinal inputs during selective attention in man. sychophysiology 23:156–165

    CAS  Google Scholar 

  63. Marchiafava, P.L. (1976) Centrifugal actions on amacrine and ganglion cells in the retina of the turtle. Journal of Physiology 255:137–155

    PubMed  CAS  Google Scholar 

  64. Marin, G., J.C. Letelier & J. Wallman (1990) Saccade-related responses of centrifugal neurons projecting to the chicken retina. Experimental Brain Research 82:263–270

    CAS  Google Scholar 

  65. Matsumoto, N. (1975) Responses of the amacrine cells to optic nerve stimulation in the frog retina. Vision Research 15:509–514

    PubMed  CAS  Google Scholar 

  66. Matsutani, S., H. Uchiyama & H. Ito (1986) Cytoarchitecture, synaptic organization, and fiber connections of the nucleus olfactoretinalis in a teleost Navodon modestus. Brain Research 373:126–138

    CAS  Google Scholar 

  67. Maturana, H.R. & S. Frenk (1965) Synaptic connections of the centrifugal fibers of the pigeon retina. Science 150:359–362

    PubMed  CAS  Google Scholar 

  68. McLoon, S.C. & R.D. Lund (1982)Transient retinofugal pathways in the developing chick. Experimental Brain Research 45:277–284

    CAS  Google Scholar 

  69. de Miguel, E., M.C. Rodicio & R. Anadon (1987) HRP study of retinofugal and retinopetal projections in larval lampreys (Petromyzon marinus). Acta Anatomica 130:23

    Google Scholar 

  70. de Miguel, E., M.C. Rodicio & R. Anadon (1990) Organization of the visual system in larval lampreys: an HRP study. Journal of Comparative Neurology 302:529–542

    PubMed  Google Scholar 

  71. Miles, F.A. (1971) Centrifugal effects in the avian retina. Science 170:992–995

    Google Scholar 

  72. Miles, F.A. (1972a) Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Research 48:65–92

    PubMed  CAS  Google Scholar 

  73. Miles, F.A. (1972b) Centrifugal control of the avian retina. II. Receptive field properties of cells in the isthmo-optic nucleus. Brain Research 48:93–113

    PubMed  CAS  Google Scholar 

  74. Miles, F.A. (1972c) Centrifugal control of the avian retina. III. Effects of electrical stimulationof the isthmo-optic tract on the receptive field properties of retinal ganglion cells. Brain Research 48:115–129

    PubMed  CAS  Google Scholar 

  75. Miles, F.A. (1972d) Centrifugal control of the avian retina. IV. Effects of reversible cold block of the isthmo-optic tract on thereceptive field properties of cells in theretina and isthmo-optic nucleus. Brain Research 48:131–145

    PubMed  CAS  Google Scholar 

  76. Meyer, R.L. (1978) Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish. Experimental Neurology 59:99–111

    PubMed  CAS  Google Scholar 

  77. Meyer, D.L., K. Gerwerzhagen, E. Fiebig, F. Ahlswede & S.O.E. Ebbesson (1983) An isthmo­optic system in a bony fish. Cell and Tissue Research 231:129–133

    PubMed  CAS  Google Scholar 

  78. Morgan, M.J. & R. Ward (1985) Spatial and spatial-interval primitives in spatial-interval estimation. Journal of the Optical Society of America 2:1205–1210

    PubMed  CAS  Google Scholar 

  79. Molotchnikoff, S. & F. Tremblay (1983) Influence of the visual cortex on responses of retinal ganglion cells in the rat. Journal of Neuroscience Research 10:397–409

    PubMed  CAS  Google Scholar 

  80. Molotchnikoff, S. & F. Tremblay (1986) Visual cortex controls retinal output in the rat. Brain Research Bulletin 17:21–32

    PubMed  CAS  Google Scholar 

  81. Müller, M. & H. Holländer (1988) A small population of retinal ganglion cells projecting to the retina of the other eye. An experimental study in the rat and the rabbit. Experimental Brain Research 71:611–617

    Google Scholar 

  82. Murakami, M. & Y. Shimoda (1977) Identification of amacrine and ganglion cells in the carp retina. Journal of Physiology 264:801–818

    PubMed  CAS  Google Scholar 

  83. Northcutt, R.G. (1972) The Teiid prosencephalon and its bearing on squamate systematics. Abstracts of the 52nd Annual Meeting of the American Society for Ichthyology and Herpetology. pp. 75–79

    Google Scholar 

  84. Northcutt, R.G. (1978) Forebrain and midbrain organization in lizards and its phylogenetic significance. In N. Greenberg , P.D. Maclean (ed.) Behavior and Neurobiology of Lizards. Rockville MD, DHEW Publication #77–491

    Google Scholar 

  85. Northcutt, R.G. (1984) Evolution of the vertebrate central nervous system: patterns and processes. American Zoologist 24:701–716

    Google Scholar 

  86. Ogden, T.E. & K.T. Brown (1964) Intraretinal responses of the cynomologous monkey to electrical stimulation of the optic nerve and retina. Journal of Neurophysiology 27:682–705

    PubMed  CAS  Google Scholar 

  87. O’Leary, D.D.M. & W.M. Cowan (1982) Further studies on the development of the isthmo­optic nucleus with special reference to the occurrence and fate of ectopic and ipsilaterally projecting neurons. Journal of Comparative Neurology 212:399–416

    PubMed  Google Scholar 

  88. Pearlman, A.L. & C.P. Hughes (1976) Functional role of efferents to the avian retina. II. Effects of reversible cooling of the isthmo-optic nucleus. Journal of Comparative Neurology 166:123–132

    PubMed  CAS  Google Scholar 

  89. Peyrichoux, J., C. Weidner, J. Repérant & D. Miceli (1977) An experimental study of the visual system of cyprinid fish using the HRP methods. Brain Research 130:531–537

    PubMed  CAS  Google Scholar 

  90. Platel, R. (1975) Nouvelles données sur l’encéphalisation des Reptiles Squamates. Zeitschrift far Zoologische Systematik und Evolutionsforschung 13:65–87

    Google Scholar 

  91. Repérant, J. & A. Gallego (1976) Fibres centrifuges dans la rétine humaine. Archives d’Anatomie Microscopique et de Morphologie Expérimentale 65:103–120

    Google Scholar 

  92. Repérant, J., N.P. Vesselkin, T.V. Ermakova, N.B. Kenigfest & A.A. Kosareva (1980) Radio-autographic evidence for both orthograde and retrograde axonal transport of label compounds after intraocular injection of t3H1-proline in the lamprey (Lampetra f luviatilis). Brain Research 200:179–183

    Google Scholar 

  93. Repérant, J., N.P. Vesselkin, J.-P. Rio, Ermakova, D. Miceli, J. Peyrichoux & C. Weidner (1981) La voie visuelle centrifuge n’exist-t-elle que chez les oiseaux? Revue Canadienne de Biologie Expérimentale 40:29–46

    Google Scholar 

  94. Repérant, J., N.P. Vesselkin, D. Miceli & J.-P. Rio (1988) Anatolical organization of the centrifugal visual system in the lamprey. Abstracts of the 8th European Winter Conference on Brain Research p. 96

    Google Scholar 

  95. Repérant, J., D. Miceli, N.P. Vesselkin & S. Molotchnikoff (1989) The centrifugal visual system of vertebrates: a century-old search reviewed. International Review of Cytology 118:115–171

    PubMed  Google Scholar 

  96. Repérant, J., J.-P. Rio, R. Ward, D. Miceli, N.P. Vesselkin & S. Hergueta (199la) Sequential events of degeneration and synaptic remodelling in the viper optic tectum following retinal ablation. A degeneration, radioautographic and immunocytochemical study. Journal of Chemical Neuroanatomy, in press

    Google Scholar 

  97. Repérant, J., J.-P. Rio, R. Ward, S. Hergueta, D. Miceli & M. Lemire. (199 lb) Comparative analysis of the primary visual system in reptiles. In C. Gans, P.S. Ulinski (ed.) Biology of the Reptilia, vol. 17, Neurology C. Chicago, University of Chicago Press, in press

    Google Scholar 

  98. Rogers, L.J. & F.A. Miles (1972) Centrifugal control of the avian retina. V. Effects of lesions of the isthmo-optic nucleus on visual behaviour. Brain Research 48:147–156

    CAS  Google Scholar 

  99. Rusoff, A.C. & S.J. Hapner (1990) Development of retinopetal projections in the cichlid fish, Herotilapia multispinosa. Journal of Comparative Neurology 294:431–442

    CAS  Google Scholar 

  100. Russel, I.J. & B.L. Roberts (1974) Active reduction of lateral-line sensitivity in swimming dogfish. Journal of Comparative Physiology 94:7–15

    Google Scholar 

  101. Sandeman, D.O & N.P. Rosenthal (1974) Efferent axons in fish optic nerve and their effect on the retinal ganglion cell. Brain Research 68:41–54

    CAS  Google Scholar 

  102. Schilling, T.F & R.G. Northcutt (1987) Amniotes and anamniotes may posess homoplastic retinopetal projectiuons from the isthmic tegmentum. Society for Neuroscience Abstracts 13:130

    Google Scholar 

  103. Schnyder, H. & H. Künzle (1983) The retinopetal system in the turtle (Pseudemys scripta elegans). Cell and Tissue Research 234:219–224

    CAS  Google Scholar 

  104. Schnyder, H. & H. Künzle (1984) Is there a retinopetal system in the rat? Experimental Brain Research 56:502–508

    CAS  Google Scholar 

  105. Schroeder, D.M. (1981) Retinal afferents and efferents of an infrared sensitive snake, Crotalus viridis. Journal of Morphology 170:29–42

    PubMed  CAS  Google Scholar 

  106. Schütte, M. & R. Weiler (1988) Mesencephalic innervation of the turtle retina by a single serotonin-containing neuron. Neuroscience Letters 91:289–294

    PubMed  Google Scholar 

  107. Shortess, G.K. & E.F. Klose (1977) Effects of lesions involving efferent fibers to the retina in pigeons (Columba Livia). Physiology and Behavior 18:409–414

    Google Scholar 

  108. Spinelli, D.N. & M. Weingarten (1966) Afferent and efferent activity in single units of the cat’s optic nerve. Experimental Neurology 15:347–362

    PubMed  CAS  Google Scholar 

  109. Stell, W.K., S.E. Walker, K.S. Chohan & A.K. Ball (1984) The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway. Proceedings of the National Academy of Sciences of the USA 81:940–944

    PubMed  CAS  Google Scholar 

  110. Stell, W.K., S.E. Walker & A.K. Ball (1988) Functional - anatomical studies on the terminal nerve projection to the retina of bony fishes. Annals of the New York Academy of Science 519:80–96

    Google Scholar 

  111. Toth, P. & C. Straznicky (1989) Retino-retinal projections in three anuran species. Neuroscience Letters 104:43–47

    PubMed  CAS  Google Scholar 

  112. Terubayashi, H., H. Fujisawa, M. Itoi & Y. Ibata (1983) Hypothalamo-retinal centrifugal projection in the dog. Neuroscience Letters 40:1–6

    PubMed  CAS  Google Scholar 

  113. Uchiyama, H. (1989) Centrifugal pathways to the retina: influence of the optic tectum. Visual Neuroscience 3:183–206

    PubMed  CAS  Google Scholar 

  114. Uchiyama, H. & H. Ito (1984) Fiber connections and synaptic organization of the preoptic retinopetal nucleus in the filefish (Balistidae, Teleostei). Brain Research 298:11–24

    PubMed  CAS  Google Scholar 

  115. Uchiyama, H. & M. Watanabe (1985) Tectal neurons projecting to the isthmo-optic nucleus in the Japanses quail. Neuroscience Letters 58:381–385

    PubMed  CAS  Google Scholar 

  116. Uchiyama, H., S. Matsutani & H. Ito (1986) Tectal projections to the retinopetal nucleus in the filefish. Brain Research 369:260–266

    PubMed  CAS  Google Scholar 

  117. Uchiyama, H., T.A. Reh & W.K. Stell (1988) Immunocytchemical and morphological vidence for a retinopetal projection in anuran amphibians. Journal of Comparative Neurology 274:48–59

    PubMed  CAS  Google Scholar 

  118. Villar, M., M.L. Vitale & M.N. Parisi (1987) Dorsal raphe serotoninergic projection to the etina. A combined peroxidase tracing - neurochemical/high performance liquid chromatography study in the rat. Neuroscience 22:681–686

    PubMed  CAS  Google Scholar 

  119. Vesselkin, N.P., T.V. Ermakova, J. Repérant, A.A. Kosareva & N.B. Kenigfest (1980) The etinofugal and retinopetal systems in Lampetra fluviatilis. An experimental study using radioautographic and HRP methods. Brain Research 195:453–460

    PubMed  CAS  Google Scholar 

  120. Vesselkin, N.P., J. Repérant, N.B. Kenigfest, D. Miceli, T.V. Ermakova & J.-P. Rio (1984) An anatomical and electrophysiological study of the centrifugal visual system in the lamprey (Lampetra Jluviatilis). Brain Research 292:41–56

    PubMed  CAS  Google Scholar 

  121. Vesselkin, N.P., J. Repérant, N.B. Kenigfest, J.-P. Rio, D. Miceli & O.V. Shuplyakov (1989) Centrifugal innervation of the lamprey retina. Light-and electron microscopic and electrophysiological investigations. Brain Research 493:51–65

    PubMed  CAS  Google Scholar 

  122. Wakakura, M. & S. Ishikawa (1982) Ultrastructural study on centrifugal fibers in trhe feline retina. Japanese Journal of Ophthalmology 26:63–70

    Google Scholar 

  123. Wang, R. & M. Halpern (1977) Afferent and efferent connections of thalamic nuclei of the visual system of garter snake. The Anatomical Record 187:741–742

    Google Scholar 

  124. Weidner, C., D. Miceli & J. Repérant (1983) Orthograde axonal and transcellular transport of different fluorescent tracers in the primary visual system of the rat. Brain Research 272:129–136

    PubMed  CAS  Google Scholar 

  125. Weidner, C., J. Repérant, A.-M. Desroches, D. Miceli & N.P. Vesselkin (1987) Nuclear origin of the centrifugal visual pathway in birds of prey. Brain Research 436:153–160

    PubMed  CAS  Google Scholar 

  126. Weiler, R. (1985) Mesencephalic pathway to the retina exhibits enkephalin-like immunoreactivity. Neuroscience Letters 55:11–16

    PubMed  CAS  Google Scholar 

  127. Wicht, H. & R.G. Northcutt (1990) Retinofugal and retinopetal projections in the Pacific hagfish, Epatretus stouti (Myxinoidea). Brain, Behavior and Evolution 36:315–328

    CAS  Google Scholar 

  128. Witkovsky, P. (1971) Synapses made by myelinated fibers running to teleost and lasmobranch retinas. Journal of Comparative Neurology 142:205–221

    Google Scholar 

  129. Wirsig-Weichmann, C.R. & S.F. Basinger (1988) FMRFamide-immunoreactive retinopetal fibers in the frog (Rana pipiens): demonstration by lesion and immunocytochemical techniques. Brain Research 449:116–126

    Google Scholar 

  130. Woodson, W., T. Shimizu & H.J. Karten (1989) Transmitter and peptide content of the isthmo-optic nucleus in the pigeon (Columba livia): a study of non-tectal afferents. Society for Neuroscience Abstracts 15:459

    Google Scholar 

  131. Wright, A.A. (1979) Color-vision psychophysics: a comparison of pigeon and human. In A.M. Granda , J.H. Maxwell (ed.) Neural mechanisms of behavior in the pigeon.New York, Plenum Press, pp. 89–128

    Google Scholar 

  132. Zucker, C.L. & J.E. Dowling (1987) Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina. Nature 330:166–168

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ward, R., Repérant, J., Miceli, D. (1991). The Centrifugal Visual System: What can Comparative Studies Tell Us about Its Evolution and Possible Function?. In: Bagnoli, P., Hodos, W. (eds) The Changing Visual System. NATO ASI Series, vol 222. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3390-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3390-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6497-9

  • Online ISBN: 978-1-4615-3390-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics