Skip to main content

Adrenergic stimulation and growth factor activity

  • Chapter
Growth Factors and the Cardiovascular System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 147))

  • 37 Accesses

Abstract

Myocardial hypertrophy is the common endpoint of many cardiovascular stimuli such as hypertension, myocardial infarction, valvular disease, and congestive failure. Although in some ways adaptive, this hypertrophic response is pathological in that it is associated with abnormalities in both diastolic and systolic myocardial function. Moreover, the Framingham study has identified myocardial hypertrophy as an independent risk factor for cardiovascular morbidity and mortality (reviewed in [1]). However, not all forms of myocardial hypertrophy are associated with either functional abnormalities or an increase in cardiovascular mortality. This type of hypertrophy, referred to as physiologic hypertrophy, occurs with normal development and exercise training. Because these two seemingly identical phenotypes have strikingly different causes and subsequently outcomes, there has been considerable interest in the pathogenesis of myocardial hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy D, Clinical significance of left ventricular hypertrophy: insights from the framingham study. J Cardiovasc Pharm 1991: 17(Suppl 2); S1–S6.

    Article  Google Scholar 

  2. Laks MM, Morady F. Norepinephrine — the myocardial hypertrophy hormone? Am Heart J 1976; 91: 674–675.

    Article  PubMed  CAS  Google Scholar 

  3. Rossi MA, Cariilo SV. Does norepinephrine play a central causative role in the process of cardiac hypertrophy? Am Heart J 1985; 109: 622–624.

    Article  PubMed  CAS  Google Scholar 

  4. Tarazi RC et al. The multifactorial role of catecholamines in hypertensive cardiac hypertrophy. Eur Heart J 1982; 3(Suppl A): 103–110.

    PubMed  CAS  Google Scholar 

  5. Genovese A et al. Adrenergic activity as a modulating factor in the genesis of myocardial hypertrophy in the rat. Exp Mol Pathol 1984; 41: 390–396.

    Article  PubMed  CAS  Google Scholar 

  6. de Champlain J et al. Circulating catecholamine levels in human and experimental hypertension. Circ Res 1976; 38: 109–114.

    Article  PubMed  Google Scholar 

  7. Ostman-Smith I. Cardiac sympathetic nerves as the final common pathway in the induction of adaptive cardiac hypertrophy. Clin Sci 1981 61; 265–272.

    PubMed  CAS  Google Scholar 

  8. Lake CR. Essential hypertension: are catecholamines involved? Fed Proc 1984; 43: 45–46.

    PubMed  CAS  Google Scholar 

  9. Corea L et al. Plasma norepinephrine and left ventricular hypertrophy in systemic hypertension. Am J Cardiol 1984; 53: 1299–1303.

    Article  PubMed  CAS  Google Scholar 

  10. Trimarco B et al. Participation of endogenous catecholamines in the regulation of left ventricular mass in progeny of hypertensive parents. Circulation 1985; 72: 38–46.

    Article  PubMed  CAS  Google Scholar 

  11. Zierhut W, Zimmer H-G. Significance of myocardial a-and ß-adrenoceptors in catecholamine-induced cardiac hypertrophy. Circ Res 1989; 65: 1417–1425.

    Article  PubMed  CAS  Google Scholar 

  12. Stanton G, Brenner G, Mayfield EDJr. Studies on isoproterenol-induced cardiomegaly in rats. Am Heart J 1969; 77: 72–80.

    Article  PubMed  CAS  Google Scholar 

  13. Laks M, Morady F, Swan H. Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dog. Chest 1969; 64: 75–78.

    Article  Google Scholar 

  14. King BD et al. Absence of hypertension despite chronic marked elevations in plasma norepinephrine in conscious dogs. Hypertension 1987; 9: 582–590.

    Article  PubMed  CAS  Google Scholar 

  15. Pfeffer JM et al. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA 1982; 79: 3310–3314.

    Article  PubMed  CAS  Google Scholar 

  16. Pfeffer MA, Pfeffer JM. Reversing cardiac hypertrophy in hypertension. N Engl J Med 1990; 322: 1388–1390.

    Article  PubMed  CAS  Google Scholar 

  17. Leenen FHH et al. Vasodilators and regression of left ventricular hypertrophy: hydralazine versus prazosin in hypertensive human. Am J Med 1987; 82: 969–978.

    Article  PubMed  CAS  Google Scholar 

  18. Sugishita Y et al. Cardiac determinants of regression of left ventricular hypertrophy in essential hypertension with antihypertensive treatment. J Am Coll Cardiol 1990; 15: 665–671.

    Article  PubMed  CAS  Google Scholar 

  19. Schulman SP et al. The effects of antihypertensive therapy on left ventricular mass in elderly patients. N Engl J Med 1990; 322: 1350–1356.

    Article  PubMed  CAS  Google Scholar 

  20. Strauer BE et al. The influence of sympathetic nervous activity on regression of cardiac hypertrophy. J Hypertension 1985; 3(Suppl 4): S39–S44.

    CAS  Google Scholar 

  21. Long CS et al. ß-adrenergic stimulation of cardiac non-myocytes increases non-myocyte growth factor production. J Mol Cell Cardiol 1992; 24(Suppl I): S245.

    Google Scholar 

  22. Bhambi B, Eghbali M. Effect of norepinephrine on myocardial collagen gene expressionm and response of cardiac fibrblasts after norepinephrine treatment. Am J Pathol 1991; 139: 1131–1142.

    PubMed  CAS  Google Scholar 

  23. Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells: cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ Res 1982; 50: 101–116.

    Article  PubMed  CAS  Google Scholar 

  24. Simpson P, McGrath A, Savion S, Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res 1982; 51: 787–801.

    Article  PubMed  CAS  Google Scholar 

  25. Long CS, Henrich CJ, Simpson PC. A growth factor for cardiac myocytes is produced by cardiac nonmyocytes. Cell Reg 1991; 2: 1081–1095.

    CAS  Google Scholar 

  26. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alphal-adrenergic response. J Clin Invest 1983; 72: 732–738.

    Article  PubMed  CAS  Google Scholar 

  27. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an al-adrenergic receptor and induction of beating through an αl-and ßl-adrenergic receptor interaction: evidence for independent regulation of growth and beating. Circ Res 1985; 56: 884–894.

    Article  PubMed  CAS  Google Scholar 

  28. Long CS, Paningbatan M, Simpson PC. A ß-adrenergic receptor stimulates paracrine growth factor activity. J Cell Biochem 1991; Suppl 15C: H213.

    Google Scholar 

  29. Long CS, Ordahl CP, Simpson PC. α1-Adrenergic receptor stimulation of sarcomeric actin isogene transcription in hypertrophy of cultured rat heart muscle cells. J Clin Invest 1989; 83: 1078–1082.

    Article  PubMed  CAS  Google Scholar 

  30. Bevan JA. Norepinephrine and the presynaptic control of adrenergic transmitter release. Fed Proc 1978; 39: 187–190.

    Google Scholar 

  31. Meidell RS et al. α l-adrenergic stimulation of rat myocardial cells increases protein synthesis. Am J Physiol 1986; 251: H1076–H1084.

    PubMed  CAS  Google Scholar 

  32. Lee HR et al. α 1-adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells: effects on myosin light chain-2 gene expression. J Biol Chem 1988; 263: 7352–7358.

    PubMed  CAS  Google Scholar 

  33. Marino TA et al. Effects of catecholamines on fetal rat cardiocytes in vitro. Am J Anat 1989; 186: 127–132.

    Article  PubMed  CAS  Google Scholar 

  34. Fuller SJ, Gaitanaki CJ, Sugden PH. Effects of catecholamines on protein synthesis in cardiac myocytes and perfused hearts isolated from adult rats: stimulation of translation is mediated through the a 1-adrenoceptor. Biochem J 1990; 266: 727–736.

    PubMed  CAS  Google Scholar 

  35. Simpson P. Calcium entry blockers inhibit catecholamine-induced beating but not catecholamine-stimulated hypertrophy of cultured rat heart cells (abstract). Clin Res 1984; 33: 90A.

    Google Scholar 

  36. Gustafson TA, Markham BE, Morkin E. Effects of thyroid hormone on α-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 1986; 59: 194–201.

    Article  PubMed  CAS  Google Scholar 

  37. Schwartz K et al. α-skeletal muscle actin mRNAs accumulate in hypertrophied adult rat hearts. Circ Res 1986; 59: 551–555.

    Article  PubMed  CAS  Google Scholar 

  38. Izumo S et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy: Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest 1987; 79: 970–977.

    Article  PubMed  CAS  Google Scholar 

  39. Simpson PC. Proto-oncogenes and cardiac hypertrophy. Ann Rev Physiol 1989; 51: 189–202.

    Article  CAS  Google Scholar 

  40. Scheuer J. Bahn AK. Cardiac contractile proteins: adenosine triphosphatase activity and physiological function. Circ Res 1979; 45: 1–12.

    Article  PubMed  CAS  Google Scholar 

  41. Schwartz K et al. Myosin isoenzyme distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol 1981; 13: 1071–1075.

    Article  PubMed  CAS  Google Scholar 

  42. Pagani ED, FJ Julian. Rabbit papillary muscle myosin isoenzymes and the velocity of muscle shortening. Circ Res 1984; 54: 586–594.

    Article  PubMed  CAS  Google Scholar 

  43. Starksen NF et al. Cardiac myocyte hypertrophy is associated with c-myc proto-oncogene expression. Proc Natl Acad Sci USA 1986; 83: 8348–8350.

    Article  PubMed  CAS  Google Scholar 

  44. Bishopric NH, Simpson PC, Ordahl CP. Induction of the skeletal α-actin gene in α l-adrenoceptor-mediated hypertrophy of rat cardiac myocytes. J Clin Invest 1987; 80: 1194–1199.

    Article  PubMed  CAS  Google Scholar 

  45. Waspe LE, Ordahl CP, Simpson PC. The cardiac ß-myosin heavy chain isogene is induced selectively in al-adrenergic receptor-stimulated hypertrophy of cultured rat heart myocytes. J Clin Invest 1990; 85: 1206–1214.

    Article  PubMed  CAS  Google Scholar 

  46. Karliner JS, Kagiya T, Simpson PC. Effects of pertussis toxin on α l-agonist-mediated phosphatidylinositide turnover and cell hypertrophy in neonatal rat ventricular myocytes. Experientia 1990; 46: 81–84.

    Article  PubMed  CAS  Google Scholar 

  47. Henrich CJ, Simpson PC. Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to α l-adrenergic and phorbol ester stimulation. J Mol Cell Cardiol 1988; 20: 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  48. Mochly-Rosen D et al. A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Regul 1990; 1: 693–706.

    PubMed  CAS  Google Scholar 

  49. Kariya K, Karns LR, Simpson PC. Expression of a constitutively activated mutant of the ß-isozyme of protein kinase C in cardiac myocytes stimulates the promoter of the promoter of the ß-myosin heavy chain isogene. J Biol Chem 1991; 266: 10023–10026.

    PubMed  CAS  Google Scholar 

  50. Kariya K-I, Karns LR, Simpson PC. Myocyte-specific and α l-adrenergic and protein kinase c (PKC)-stimulated transcription of the ß-myosin heavy chain (MHC) gene are mediated through interaction of a 20-base pair (bp) promoter element with cardiac myocyte nuclear factors. Circ (abstract) 1992: in press.

    Google Scholar 

  51. Sarzani R, Arnoldi G, Chobanian AV. Hypertension-induced changes of platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension 1991; 17: 888–895.

    Article  PubMed  CAS  Google Scholar 

  52. Speir E et al. Fibroblast growth factors are present in adult cardiac myocytes, in vivo. Biochem Biophys Res Commun 1988; 157: 1336–1340.

    Article  CAS  Google Scholar 

  53. Kardami E, Fandrich RR. Basic fibroblast growth factor in atria and ventricles of the vertebrate heart. J Cell Biol 1989; 109: 1865–1875.

    Article  PubMed  CAS  Google Scholar 

  54. Sasaki H et al. Purification of acidic fibroblast growth factor from bovine heart and its localization in the cardiac myocytes. J Biol Chem 1989; 264: 17606–17612.

    PubMed  CAS  Google Scholar 

  55. Weiner HL, Swain JL. Acidic fibroblast growth factor mRNA is expressed by cardiac myocytes in culture and the protein is localized to the extracellular matrix. Proc Natl Acad Sci USA 1989; 86: 2683–2687.

    Article  PubMed  CAS  Google Scholar 

  56. Quinckler W, Pfeffer J. Isolation of Heparin Binding Growth Factors from Bovine, Porcine, and Canine Hearts. Eur J Biochem 1989; 181: 67–73.

    Article  Google Scholar 

  57. Casscells W et al. Isolation, characterization, and localization of heparin-binding growth factors in the heart. J Clin Invest 1990; 85: 433–441.

    Article  PubMed  CAS  Google Scholar 

  58. Eghbali M. Cellular origin and distribution of transforming growth factor-ßl in the normal rat myocardium. Cell Tissue Res 1989; 256: 553–558.

    Article  PubMed  CAS  Google Scholar 

  59. Casscells W et al. Transforming growth factor beta-1 in normal heart and myocardial infarction (abstract). Circulation 1989; 80: 11–452.

    Google Scholar 

  60. Wunsch M et al. Expression of transforming growth factor ßl (TGFßl) in collateralized swine heart (abstract). Circulation 1989; 80:11–453.

    Google Scholar 

  61. Cercek B et al. Induction of vascular insulin-like growth factor-1 mRNA after balloon denudation precedes neointimal proliferation (abstract). Circulation 1989; 80: 11–453.

    Google Scholar 

  62. Engelmann GL et al. Insulin-like growth factors and neonatal cardiomyocyte development: ventricular gene expression and membrane receptor variations in normotensive and hypertensive rats. Mol Cell Endocrinol 1989; 63: 1–14.

    Article  PubMed  CAS  Google Scholar 

  63. Friedman G et al. Lipoprotein lipase in heart cell cultures is suppressed by bacterial lipopolysaccharide: an effect mediated by production of tumor necrosis factor. Biochem Biophys Acta 1988; 960: 220–228.

    Article  PubMed  CAS  Google Scholar 

  64. Furukawa Y, Furukawa S, Satoyoshi E. Nerve growth factor secreted by mouse heart cells in culture. J Biol Chem 1984; 259: 1259–1264.

    PubMed  CAS  Google Scholar 

  65. Norrgren G, Ebendal T. Nerve growth factor in medium conditioned by embryonic chicken heart cells. Int J Develop Neuroscience 1986; 4: 41–49.

    Article  CAS  Google Scholar 

  66. Bishopric NH, L. Kedes L. Adrenergic regulation of the skeletal α-actin gene promoter during myocardial cell hypertrophy. Proc Natl Acad Sci (USA) 1991; 88: 2131–2136.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Long, C.S., Simpson, P.C. (1993). Adrenergic stimulation and growth factor activity. In: Cummins, P. (eds) Growth Factors and the Cardiovascular System. Developments in Cardiovascular Medicine, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3098-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3098-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6354-5

  • Online ISBN: 978-1-4615-3098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics