Nonlinear Parabolic and Elliptic Equations

Nonlinear Parabolic and Elliptic Equations

C. V. Pao

North Carolina State University Raleigh, North Carolina

Plenum Press • New York and London

Library of Congress Cataloging in Publication Data	
Pao, C. V. (Chia-Ven), 1933-	
Nonlinear parabolic and elliptic equations / C. V. Pao.	
p. cm.	
Includes bibliographical references and index.	
ISBN 0-306-44343-0	
1. Differential equations, Nonlinear. I. Title.	
QA377.P275 1992	92-30342
515'.353dc20	CIP

ISBN 0-306-44343-0

© 1992 Plenum Press, New York A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher To my wife Mei-Shan

Preface

The recent development of reaction diffusion systems in biology, ecology and biochemistry, and the traditional importance of these systems in physics, heat-mass transfer, and engineering lead to extensive study in various aspects of nonlinear parabolic and elliptic partial differential equations. A large amount of mathematically rich and physically interesting work, including several excellent books, has been published in the literature since the middle of the 1960s. Because of the fast growth of reaction diffusion type of problems in various different fields it is desirable to have a unified mathematical treatment and practical methods for solving these problems. This book is intended to give a systematic treatment of the basic mathematical theory and constructive methods for a class of nonlinear parabolic and elliptic differential equations as well as their applications to various reaction diffusion problems. The mathematical problems under consideration include scalar boundary-value problems of parabolic and elliptic equations. integroparabolic and integroelliptic boundary-value problems, and coupled systems of parabolic and elliptic equations. The boundary conditions for these equations may be linear or nonlinear, including nonlinear boundary conditions of integral type. The fundamental approach to all of these problems is the method of upper and lower solutions and the associated monotone iterations. This approach leads not only to the basic results of existence, uniqueness, and multiplicity of solutions but also to various qualitative properties of the solution through suitable construction of upper and lower solutions. Moreover, since the book is concerned primarily with classical solutions, the monotone iteration processes for various types of nonlinear problems are adaptable to numerical solutions of the corresponding discrete system. Some of these methods for finite difference parabolic and elliptic equations have already appeared in the current literature.

Extensive discussion is given to the stability analysis and the asymptotic behavior of the time-dependent solution for both scalar boundary-value problems and coupled systems of equations. This includes the stability or instability of a steady-state solution, the asymptotic limit of the time-dependent solution, and decay or growth property of the solution. This qualitative property of the solution leads to an intrinsic relationship between the solutions of a parabolic boundary-value problem and its corresponding elliptic problem, and is a major concern in many physical, ecological, and engineering problems. Attention is given to various model problems in ecology, biochemistry, enzyme kinetics, combustion theory, and chemical and nuclear engineering. A special topic of the analysis is the finite-time blow-up problem for parabolic equations. Several methods for determining the blow-up behavior of a solution are used for both scalar equations under linear or nonlinear boundary conditions and coupled systems of parabolic equations, including a discussion on the problem of quenching. A chapter is devoted to parabolic and elliptic equations in unbounded domains using the method of upper and lower solutions. This chapter covers the Cauchy problem in \mathbb{R}^n , a half-space problem, and problems in the exterior of a bounded domain. Both linear and nonlinear boundary conditions are considered and various qualitative analyses, such as the finite-time blow-up problem, are discussed.

The book consists of twelve chapters; the first seven chapters treat the scalar parabolic and elliptic boundary-value problems and the remaining five chapters are concerned with coupled systems of parabolic and elliptic equations. The problems with unbounded spatial domains are considered in Chapter 7, while all the other chapters involve only bounded domains. Chapter 12 is devoted to applications of coupled systems of parabolic and elliptic equations to various model problems in different fields, including a coupled system of neutron transport and heat equations. These model problems have motivated much of the discussions in the chapters involving coupled systems. An overview of each chapter is given at the beginning of the chapter, and notes and remarks are added at the end of the chapter to provide historical comments and references. Theorems, Lemmas, Equations etc. are ordered in standard form. For example, the first theorem in section 4 of Chapter 2 is referred to as Theorem 4.1 when it appears in Chapter 2 and is referred to as Theorem 2.4.1 when it appears in a different chapter.

Because of the limitation of scope many interesting topics, such as traveling wave solutions, periodic solutions, and Lyapunov method for stability problems, are not discussed in the book. Also omitted is the class of equations where the nonlinear reaction function depends on the gradient of the unknown function. The references given in the book are mostly related to comparison methods and the method of upper and lower solutions, and is not intended to be complete. I apologize for the incompleteness and omissions in the list of references. The book, in part, is an outgrowth of my research on the subject during the past two decades, and much of the development is motivated by some kind of applied problems. Although effort is made to make the presentation self-contained it is necessary to use some basic theory for linear parabolic and elliptic equations. The book can be used as a reference for mathematicians, engineers and scientists, and can also be used as a text for graduate students who are interested in applied partial differential equations or reaction diffusion systems. Portions of the book have been used as the text in a special course on "Nonlinear Reaction Diffusion Equations" at North Carolina State University.

I am grateful to my students and colleagues for their reading the manuscript and helpful comments, and to the editorial staff of Plenum Publishing Corporation for editing the manuscript. I also owe a special debt of gratitude to Ms. Dionne Wilson for her cordial cooperation and excellent typing of the manuscript.

C. V. Pao

Raleigh, North Carolina

Contents

Chapter 1 Reaction Diffusion Equations

1.1	Derivation of Reaction Diffusion Equations	1
1.2	Boundary Conditions	4
1.3	Derivation of Some Specific Models	7
1.4	Linear Reaction Diffusion Equations	14
1.5	Monotone Method for Time-Dependent Problems	20
1.6	Nonuniqueness of Time-Dependent Solutions	26
1.7	Monotone Method for Steady-State Problems	31
1.8	Applications to Specific Models	36
1.9	Notes and Comments	45

Chapter 2 Parabolic Boundary-Value Problems

2.1	A Review of the Linear Parabolic Problem	47
2.2	A Positivity Lemma	54
2.3	Upper and Lower Sequences	56
2.4	Existence-Comparison Theorems	62
2.5	Positivity and Boundedness of Solutions	65
2.6	Integroparabolic Equations of Volterra Type	69
2.7	Integroparabolic Equations of Fredholm Type	80
2.8	Parabolic Boundary-Value Problems with Time Delay $\ldots \ldots$	86
2.9	Notes and Comments	92

Chapter 3 Elliptic Boundary-Value Problems

3.1	The Linear Boundary-Value Problem	93
3.2	The Method of Upper and Lower Solutions	98
3.3	The Uniqueness Problem 1	104
3.4	Positive Steady-State Solutions 1	108
3.5	The Spectrum Problem 1	112
3.6	Multiple Steady-State Solutions 1	117
3.7	Integroelliptic Boundary-Value Problems 1	125

3.8 Applications	133
3.9 Notes and Comments	138

Chapter 4 Equations with Nonlinear Boundary Conditions

4.1	Parabolic Boundary-Value Problems	139
4.2	An Application to the Linear Problem	145
4.3	Boundary Conditions of Integral Type	149
4.4	Elliptic Boundary-Value Problems	154
4.5	Existence Theorems for Hölder-Continuous Functions	161
4.6	Uniqueness of Positive Solution	168
4.7	Spectrum for Problems with Nonlinear Boundary	
	Conditions	171
4.8	Applications	175
4.9	Notes and Comments	180

Chapter 5 Stability Analysis

5.1	Lyapunov Stability	183
5.2	Stability of Uniform Steady-State Solutions	188
5.3	Stability of Nonuniform Steady-State Solutions	192
5.4	Monotone Convergence of Time-Dependent Solutions	198
5.5	Stability of Maximal and Minimal Solutions	202
5.6	Problems with Nonlinear Boundary Conditions	206
5.7	Application to Models with Nonlinear Reaction Functions \ldots	214
5.8	Application to Models with Nonlinear Boundary Conditions	219
5.9	Notes and Comments	226

Chapter 6 Blowing-Up Behavior of Solutions

6.1	Growth Property of Solutions	229
6.2	Blowing-Up Property of the Solution	234
6.3	Estimate of the Finite Blowing-Up Time	240
6.4	The Blowing-Up Point of the Solution	243
6.5	Nonlinear Boundary Functions	249

6.6 The Method of Concavity	2	257
6.7 The Quenching Problem	2	267
6.8 Thermal Explosion Problems in Combustion Theory	2	277
6.9 Applications to Reactor Dynamics and Nonlinear		
Polarization	2	284
6.10 Notes and Comments	2	287

Chapter 7 Parabolic and Elliptic Equations in Unbounded Domains

7.1	The Linear Parabolic and Elliptic Equations	290
7.2	The Cauchy Problem in \mathbb{R}^n	296
7.3	A Half-Space Problem	302
7.4	Parabolic Problem in General Unbounded Domains	312
7.5	Elliptic Equations in \mathbb{R}^n	319
7.6	Radially Symmetric Solutions	325
7.7	A Model Problem from Geometry and Applied Physics	334
7.8	Elliptic Equations in Exterior Domains	340
7.9	Elliptic Equations in General Unbounded Domains	345
7.10	Exterior Problem with Nonlinear Boundary Conditions	354
7.11	Stability and Asymptotic Behavior of Solutions	361
7.12	Blowing-Up Behavior of the Solution in \mathbb{R}^n	37 1
7.13	Notes and Comments	379

Chapter 8 Coupled Systems of Reaction Diffusion Equations

8.1	Quasimonotone Reaction Functions	381
8.2	Monotone Sequences for Coupled Parabolic Equations	384
8.3	Existence-Comparison Theorems for Coupled Parabolic System	392
8.4	Existence-Comparison Theorems for Coupled Elliptic System	401
8.5	Elliptic Systems with Mixed Quasimonotone Functions \ldots .	408
8.6	Uniqueness of Steady-State Solution	413
8.7	Positive Invariant Rectangles	417

8.8 Finite Parabolic Systems with Quasimonotone Functions 42
8.9 Finite Parabolic Systems with Nonquasimonotone
Functions 43
8.10 Finite Elliptic Systems 43
8.11 Finite Parabolic-Ordinary Systems 44
8.12 Finite Integroparabolic and Integroelliptic Systems 44
8.13 Notes and Comments 45

Chapter 9 Systems with Nonlinear Boundary Conditions

9.1	Quasimonotone Boundary Functions	459
9.2	Construction of Monotone Sequences	462
9.3	Existence-Comparison Theorems for Parabolic System	468
9.4	Elliptic Systems with Coupled Boundary Conditions $\ldots \ldots$	471
9.5	Positive Solution for Coupled Systems	479
9.6	Global Existence Theorems for Bounded Reaction Functions	485
9.7	Finite Parabolic Systems with Coupled Boundary Conditions	491
98	Finite Elliptic Systems with Coupled Boundary Conditions	101
0.0	Finite Complete Systems with Couplet Doublary Conditions .	7 00
9.9	Finite Systems with Nonlocal Boundary Conditions	503
9.10	O Notes and Comments	509

Chapter 10 Stability and Asymptotic Behavior of Solutions

10.1	Stability of the Zero Solution	511
10.2	Stability of Nontrivial Steady-State Solutions	516
10.3	Instability of Steady-State Solutions	522
10.4	Monotone Convergence of Time-Dependent Solutions \ldots	529
10.5	Asymptotic Stability in a Sector	536
10.6	Spatially Homogeneous Upper and Lower Solutions	542
10.7	Stability of Solutions for Nonautonomous Systems	546
10.8	Systems with Nonlinear Boundary Conditions	555
10.9	Finite Coupled Systems with Quasimonotone	
	Nondecreasing Functions	563
10.10	0 Notes and Comments	568

Chapter 11 Asymptotic Limit and Blowing-Up Behavior of Solutions

11.1	Nonisolated Steady-State Solutions	570
11 .2	Asymptotic Limit of Time-Dependent Solutions	573
11.3	Coupled Parabolic and Ordinary Equations	581
11.4	A Special Model	588
11.5	Blowing-Up of Solution for Neumann Boundary $\ensuremath{Problems}$.	593
11.6	Blowing-Up of Solution for Robin Boundary Problems \ldots	598
11.7	Blowing-Up of Solution for Dirichlet Boundary Problems .	604
11.8	Nonquasimonotone Functions	609
11.9	Coupled Nonlinear Boundary Conditions	613
11.10	O Notes and Comments	619

Chapter 12 Applications of Coupled Systems to Model Problems

12.1 A Gas-Liquid Interaction Problem	622
12.2 The Belousov-Zhabotinskii Reaction Diffusion System \ldots	628
12.3 Enzyme-Substrate Reaction Diffusion Problems	641
12.4 The Volterra-Lotka Competition Model in Ecology	654
12.5 Some Prey-Predator Models in Ecology	666
12.6 A Cooperating Model in Ecology	674
12.7 The FitzHugh-Nagumo Equations in Neurophysiology \ldots	681
12.8 Heat-Mass Transfer in Chemical Reactors and Combustion Theory	687
12.9 Epidemic Problems with Diffusion	695
12.10 Coupled Systems in Nuclear Reactor Dynamics	713
12.11 Neutron Transport Problems with Temperature Feedback	723
12.12 Notes and Comments	744
References	747
Index	769